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Validation and quantification of left 
ventricular function during exercise 
and free breathing from real‑time 
cardiac magnetic resonance images
Jonathan Edlund1*, Kostas Haris1,2, Ellen Ostenfeld1, Marcus Carlsson1, Einar Heiberg1,3, 
Sebastian Johansson1, Björn Östenson1, Ning Jin4, Anthony H. Aletras1,2 & 
Katarina Steding‑Ehrenborg1*

Exercise cardiovascular magnetic resonance (CMR) can unmask cardiac pathology not evident at rest. 
Real‑time CMR in free breathing can be used, but respiratory motion may compromise quantification 
of left ventricular (LV) function. We aimed to develop and validate a post‑processing algorithm that 
semi‑automatically sorts real‑time CMR images according to breathing to facilitate quantification 
of LV function in free breathing exercise. A semi‑automatic algorithm utilizing manifold learning 
(Laplacian Eigenmaps) was developed for respiratory sorting. Feasibility was tested in eight healthy 
volunteers and eight patients who underwent ECG‑gated and real‑time CMR at rest. Additionally, 
volunteers performed exercise CMR at 60% of maximum heart rate. The algorithm was validated for 
exercise by comparing LV mass during exercise to rest. Respiratory sorting to end expiration and end 
inspiration (processing time 20 to 40 min) succeeded in all research participants. Bias ± SD for LV mass 
was 0 ± 5 g when comparing real‑time CMR at rest, and 0 ± 7 g when comparing real‑time CMR during 
exercise to ECG‑gated at rest. This study presents a semi‑automatic algorithm to retrospectively 
perform respiratory sorting in free breathing real‑time CMR. This can facilitate implementation 
of exercise CMR with non‑ECG‑gated free breathing real‑time imaging, without any additional 
physiological input.

Cardiovascular magnetic resonance (CMR) imaging typically uses an ECG-gated acquisition technique during 
breath-hold for assessment of cardiac volumes and function. Similarly, conventional flow measurements from 
phase-contrast (PC) CMR are also dependent on a stable ECG signal and a steady heart rate and are acquired 
during breath-hold or free  breathing1–3. ECG signals are affected by body motion, especially during exercise, 
and especially at higher  intensities4. Furthermore, adequate breath-hold is challenging during exercise and may 
induce a Valsalva-like maneuver affecting cardiac  physiology4. These issues make CMR complicated for anything 
but breath-hold protocols at rest. These challenges can be overcome by brief periods of exercise cessation allowing 
for a stable ECG signal and breath-hold during acquisition, resuming exercise between  acquisitions5–9. However, 
exercise cessation and breath-hold imaging are not truly representative of the physiological state of exercise.

Non-ECG-gated continuous real-time (RT) cine and PC CMR sequences can be used to overcome the limi-
tations of inadequate ECG signals and non-breath-hold scenarios and they are recommended clinically when 
ECG-gated CMR is not  possible3,10–16. However, the use of RT sequences comes with a cost of lower spatial or 
temporal resolution. Furthermore, when acquiring images during free breathing, respiration leads to cardiac 
translational motion within the thoracic cavity and introduces through-plane motion within the imaging plane. 
This leads to a risk of acquiring the same cardiac imaging slice multiple times. Moreover, respiration in itself has 
physiological effects on ventricular  volumes17–19. Thus, volumetric quantification should ideally be performed 
in the same respiratory state to obtain non-confounded and accurate measurements.
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Free breathing RT CMR has been validated for the quantification of ventricular volume and function using 
additional physiological data such as ECG registration or plethysmography during image  acquisition20–23. How-
ever, these physiological data are not always available during exercise. To advance clinical implementation of 
exercise CMR, there is a need for a validated method to assess ventricular volume and function in RT CMR 
images without collecting additional registered physiological data.

The three aims of this study were first to develop a post-processing algorithm to assess ventricular volume and 
function from free breathing RT CMR with respiratory sorting. Second, to determine the image acquisition time 
needed for the algorithm to construct complete RT short-axis stacks. Third, we aimed to validate the accuracy 
of this algorithm in images acquired both at rest and during exercise.

Methods
Study design. Eight healthy volunteers (four female) and eight patients (three female) from the clinical 
workflow were prospectively included (Table 1) for CMR at rest. The only inclusion criterion for patients was 
normal sinus rhythm during image acquisition. All research participants were scanned on a 1.5 T MAGNETOM 
Aera (Siemens Healthcare, Erlangen, Germany), acquiring both ECG-gated and RT images at rest. In addition to 
CMR at rest, all eight healthy volunteers underwent exercise CMR with RT imaging.

Exercise protocol. Exercise was performed in the supine position using an MR-compatible cycle ergometer 
(Lode, Groningen, The Netherlands). Work rate started at 50 Watts for all research participants and was manu-
ally ramped up until a moderate intensity was reached, defined as a heart rate of approximately 60% of estimated 
maximum heart rate. Estimated maximum heart rate was calculated as 220 beats per minute minus participant 
age. Images were acquired while the participants continued to exercise at a fixed work rate.

ECG‑gated CMR. At rest, standard ECG-gated balanced steady-state free precession (bSSFP) sequences 
were used to acquire cardiac images in a short-axis stack, and in 2-chamber, 3-chamber, and 4-chamber long-
axis views during breath-hold. Typical sequence parameters were: echo time 1.1 ms, repetition time 2.2 ms, flip 

Table 1.  Participant characteristics. Cardiac volumes and mass at rest were determined from bSSFP cine 
imaging. Values presented as median [IQR]. bSSFP balanced steady state free precession, BSA body surface 
area, ECG electrocardiogram, RT real-time, LV left ventricle, EDV end diastolic volume, ESV end systolic 
volume, SV stroke volume, LVM left ventricular mass, LVMI left ventricular mass index, PC phase-contrast.

Healthy volunteers (n = 8) Patients (n = 8)

Age (years) 44 [38–53] 56 [51–59]

Female:male ratio 4:4 3:5

Height (cm) 175 [169–182] 175 [171–184]

Weight (kg) 68 [65–72] 78 [73–88]

BSA  (m2) 1.83 [1.75–1.90] 1.96 [1.88–2.02]

Rest

Heart rate, ECG-gated (beats/min) 59 [56–67] 66 [51–77]

Heart rate, RT (beats/min) 64 [61–71] 75 [65–80]

LV EDV, ECG-gated (ml) 155 [137–179] 167 [145–229]

LV ESV, ECG-gated (ml) 67 [53–84] 92 [71–104]

LV SV, ECG-gated (ml) 91 [82–99] 78 [69–102]

LVM, ECG-gated (g) 85 [69–104] 92 [77–123]

LVMI, ECG-gated (g/m2) 45 [39–56] 48 [41–63]

LVM, RT planimetry (g) 86 [74–102] 92 [84–116]

LVMI, RT planimetry (g/m2) 46 [41–55] 49 [43–59]

Cardiac Output, ECG-gated planimetry (l/min) 5.65 [4.88–6.26] 5.06 [4.66–6.83]

Exercise

Heart rate, RT planimetry (beats/min) 125 [115–132]

Heart rate, RT PC (beats/min) 129 [124–132]

LV SV, RT planimetry end expiration (ml) 101 [96–112]

LV SV, RT planimetry end inspiration (ml) 99 [95–109]

LV SV, RT flow (ml) 94 [84–108]

LVM, RT end expiration (g) 87 [72–95]

LVM, RT end inspiration (g) 83 [70–94]

Cardiac Output, RT planimetry end expiration (l/min) 12.47 [11.36–13.49]

Cardiac Output, RT planimetry end inspiration (l/min) 12.66 [11.27–13.38]

Cardiac Output, RT flow (l/min) 12.22 [11.39–13.26]
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angle 67°, acquired in-plane spatial resolution 1.9 × 2.0 mm, slice thickness 8 mm with no slice gap and temporal 
resolution 40 ms.

Real‑time CMR. Real-time CMR images were acquired using a product real-time steady-state free preces-
sion sequence. Short-axis images with whole-heart coverage, 2-chamber, 3-chamber, and 4-chamber long-axis 
views were acquired during free breathing and in the absence of ECG-triggering. One thousand time-frames at 
rest and 800 time-frames during exercise were acquired per slice. Typically, 14–17 slices were needed to cover the 
whole heart from base to apex. Fewer time-frames were acquired per slice during exercise than at rest to shorten 
image acquisition time and to lower the risk of fatigue.

Typical sequence parameters were: echo time 1.1 ms, repetition time 2.2 ms, flip angle 60°, acquired in-plane 
spatial resolution 1.9 × 2.8mm, slice thickness 10 mm with no slice gap. Parallel imaging (GRAPPA factor 3) 
and Partial Fourier (factor 5/8) acceleration were used to enable an acquired temporal resolution of 32–37 ms.

Depending on the chosen acquisition time, RT image acquisition can cover single or multiple cardiac and 
respiratory cycles. It cannot always be expected that both end diastole (ED) and end systole (ES) will coincide 
with an end respiratory state (end expiration or end inspiration) in one single respiratory cycle. Thus, non-
ECG-gated acquisitions need to collect data during multiple respiratory cycles to increase the likelihood of ED 
and ES coinciding with end expiration or end inspiration. To ensure that data acquisition would cover several 
respiratory cycles, with a typical respiratory rate of 12 breaths per minute at rest, acquisition time was chosen 
conservatively to ~ 34 s (1000 time-frames).

Respiratory sorting of RT short‑axis image stacks. Real-time short-axis stacks comprising time-
frames in both ED and ES with respiratory sorting were constructed during post-processing. This was done 
using the newly developed “respiratory module” in the software Segment (http:// segme nt. heibe rg. se) 24, pre-
sented below and available on request for research collaborations. The respiratory module used an algorithm 
to perform respiratory sorting of images semi-automatically, whereas time-frames in ED and ES were selected 
manually. This was by design to allow the user to review and control the entire stack construction process.

Implementation and development of the semi‑automatic respiratory sorting algorithm. The 
respiratory module generated a one-dimensional representation of the movement due to breathing (respiratory 
curve, Fig. 1) and performed respiratory sorting of the corresponding images via manifold learning (Laplacian 
Eigenmaps)25. The user placed a respiratory region of interest (ROI) covering the diaphragm (Fig. 1) and the 
algorithm created a 2D sequence from this cropped image region and applied the Laplacian Eigenmaps dimen-
sionality reduction method for the 1D representation of the 2D  sequence26.

We let the sub-images of the respiratory ROI be x1, x2, . . . xN where N is the number of time-frames of the 
cine. Given that the size of the ROI is approximately 40 × 40 pixels (for 128 × 128 cine frames), each sub-image 
xi , i = 1, 2, . . . ,N is a vector of 1600 dimensions representing a snapshot of the moving diaphragm. This image 
sequence was input to the Laplacian Eigenmaps nonlinear dimensionality reduction method which created a 
low-dimensional representation of the input data so that the distances between each point and its k nearest 
neighbors were minimized. In this way, temporally close sub-images were projected to similar values indirectly 
resulting in the discrimination of the end inspiration and end expiration sub-images. The locality of temporally 
close sub-images was captured by an adjacency graph with edges between neighboring nodes (sub-images) and 
edge-weights depending on the corresponding intensity similarity. Formally, it is required that the low-dimen-
sional points y1, y2, . . . yN do minimize the following functional: ϕ(y1, y2, . . . yN ) =
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where �·� is the Euclidean norm and σ 2 is the variance of the Gaussian distribution, determining the influence 
of neighboring graph nodes (points). In our case, the nodes i of the adjacency graph G correspond to the images 
xi and each node is connected to its k temporally nearest neighbors ( ⌊k/2⌋ before and ⌈k/2⌉ after).

In this study, the low-dimension was selected to be one and therefore the resulting low-dimensional y-points 
were scalar values. In the resulting 1D representation, the extreme end points of the moving diaphragm (cor-
responding to end expiration and end inspiration) were projected to opposite positions and therefore their 
detection was reduced to local maxima and minima identification. As a result, two sets of images were produced, 
one containing end expiratory images and the other end inspiratory images (Fig. 1).

These image sets were presented in separate windows in the respiratory module, with each window displaying 
a time-frame at either end expiration or end inspiration as chosen by the user. The time-frame position of each 
window was annotated in the respiratory curve for each short-axis slice.

User input and manual handling of RT short‑axis image stack construction using the respira‑
tory module. Two user inputs were needed for the algorithm:
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a) Region of interest
manually placed over
the diaphragm

b) Respiratory curve generated by the
algorithm, indicating time-frames with end
inspiration (circles) and end expiration
(triangles)

c) Time-frames corresponding to triangles 1-5 in the respiratory curve. Time-
frames containing end diastole (ED) and end systole (ES) are selected, with the
possibility of stepping forward or backward in time-frames if no suitable ED or
ES is presented

d) Steps 1-3 are repeated for each slice, resulting in a short-axis stack
containing end diastole and end systole at end expiration or end inspiration as
chosen

Base Apex

ED

ES

1 2 3 4 5

End expiration

End inspirationBase Apex

ED

ES

Figure 1.  Flow chart for the respiratory module in Segment. The respiratory module in Segment utilized 
manual input to construct short-axis image stacks containing end diastole and end systole at end expiration 
or end inspiration from real-time CMR images. (a) A short-axis image with a respiratory region of interest 
(ROI, white box) placed over the superior border of the diaphragm. (b) The respiratory curve generated by the 
algorithm based on calculations from the placed ROI. Here the filled triangles annotate time-frames in which 
end expiration was identified, filled circles end inspiration. (c) An image gallery of the corresponding time-
frames to the annotations in the respiratory curve (end expiration shown in the figure). These images were used 
for selecting time-frames in which end diastole and end systole coincide with end expiration. It was possible 
to manually step forward or backward several time-frames in each image if no suitable time-frames for end 
diastole or end systole were automatically suggested. While stepping forward or backward in time-frames the 
corresponding annotation moved in the respiratory curve, which allowed the user to ensure the current time-
frame was still within end expiration or end inspiration. (d) The resulting short-axis image stacks containing 
end diastole and end systole at end expiration and end inspiration. The software used for this figure was Segment 
3.0 (http:// segme nt. heibe rg. se). 

http://segment.heiberg.se
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1. The placement of the respiratory ROI for detection of respiratory cycle as described above. The resulting 
respiratory curve was created with the extreme points (maxima and minima) automatically defined to end 
expiration and end inspiration (Fig. 1).

2. The acceptance of the suggested ED and ES, or manually stepping forward and backward in time-frames in 
each slice to find maximum (ED) or minimum (ES) lumen blood volume. At rest, the duration of an end 
expiratory state in a research participant typically allowed for manual steps of ± 15 time-frames from the 
generated respiratory end points. For the end inspiratory state, which is a shorter interval than end expira-
tion, manual steps of approximately ± 10 time-frames were considered. During exercise, where the respiratory 
cycle was shorter, manual steps of ± 8 time-frames were considered for end expiration and ± 5 time-frames 
for end inspiration.

Rationale for manual input. By design, we chose the possibility of manual selection to allow for full 
control of all processing steps to ensure that the correct time-frames in ED and ES were chosen at the correct 
respiratory phase. The entire process, starting at the placement of the respiratory ROI, was repeated for each slice 
depicting the left ventricle in the RT short-axis image stack. Occasionally, when the diaphragm was not visible 
during the entire respiratory cycle, determination of end expiration or end inspiration was performed manu-
ally. This occurred mainly in the basal slices. Determination of respiratory states in these cases was performed 
by looking at the motion of the diaphragm outside of the ROI, the thoracic wall, and the greater lung vessels.

After short-axis image stack construction, all stacks were visually inspected within the Segment software to 
identify and remove potential duplicate slices which may have been included owing to cardiac translation dur-
ing image acquisition. As a final check to avoid including too few or too many short-axis slices, left ventricular 
length at ED and ES was measured in the 4-chamber view and compared to left ventricular length in the short-
axis images as calculated from slice thickness and number of delineated slices. If too many or too few short-axis 
slices were identified, either through visual inspection or differing left ventricular lengths in short-axis images 
compared to 4-chamber view, this was defined as a mismatch in left ventricular length.

Shorter image acquisition times than the original ~ 34 s per slice were simulated by cropping to the first 
~ 17, 8, and 4 s of the acquired short-axis stack (corresponding to 500, 250 and 100 time-frames respectively).

Real‑time phase‑contrast CMR. Real-time PC CMR images for flow measurement of the ascending aorta 
were acquired in healthy volunteers during exercise. A prototype sequence using segmented echo planar imag-
ing was used with the following typical sequence parameters: repetition time 9.4 ms, echo time 4.9 ms, Echo-
train-length 7, segments 4, flip angle 15°, reconstructed in-plane spatial resolution 3.1 × 3.1 mm, slice thickness 
10 mm, VENC 200 cm/s, and reconstructed temporal resolution 38 ms with shared velocity  encoding27.

Flow measurements in RT PC images were not matched for respiration. Thus, acquisition time did not need 
to ensure coverage of several respiratory and cardiac cycles, and an acquisition time of five seconds in free 
breathing was chosen.

Image analysis. Image analysis was performed using Segment 3.0 (http:// segme nt. heibe rg. se24,28. The pro-
posed methods were implemented as a module in the software. Assessment of left ventricular mass (LVM), end 
diastolic volume (EDV) and end systolic volume (ESV) was performed by manual delineation of the epicardial 
and endocardial borders of the left ventricle in the short-axis slices in both ECG-gated and RT images at ED and 
ES. Papillary muscles and trabecular tissue were excluded from the myocardial mass according to international 
 recommendations29. Stroke volume (SV) was calculated as the difference between EDV and ESV, and ejection 
fraction (EF) as SV divided by EDV. Left ventricular mass was calculated as myocardial volume (the volumetric 
difference between epicardial and endocardial delineations) multiplied by 1.05 g/cm3 (the specific density of 
myocardium).

Stroke volume from PC CMR images during exercise was measured in the ascending aorta by using a semi-
automatic vessel segmentation algorithm in  Segment28. The net flow from the first diastole to the last diastole 
within a five-second acquisition window was divided by the number of heart beats to get an average stroke 
volume.

Heart rate was manually calculated for the RT cine images as no ECG-data were available. As heart rate may 
vary over time, especially during exercise, heart rate was calculated as the average from three slices per short-axis 
stack corresponding to near beginning, middle and end of acquisition.

Intra‑ and inter‑observer variability. Intra- and inter-observer variability of volumetric quantifica-
tion was assessed in RT and ECG-gated images of eight healthy volunteers. Inter-observer testing of RT images 
included short-axis construction from a cropped acquisition time of ~ 17 s per slice (500 time-frames) using the 
respiratory module and manual delineation of the left ventricle. Intra-observer measurements were performed 
with more than one week between measurements. Inter-observer variability of the RT images was performed by 
a second observer. Both observers had > 1 year of CMR experience. Inter-observer variability of the ECG-gated 
images was performed by an observer with > 10 years of CMR experience.

Statistical analysis. Continuous data are expressed as median and interquartile range [IQR]. Shapiro–
Wilk tests were used to test for normal distribution. Bland–Altman analysis (bias ± standard deviation, SD) was 
used to compare differences between RT images and ECG-gated images, to compare SV between planimetry 
and flow quantification in RT images, and to evaluate intra- and inter-observer  variability30,31. Intraclass cor-
relation coefficient (ICC) was calculated with 95% confidence intervals using a two-way mixed model to assess 
the reliability of measurements of the same variable in RT image stacks constructed from differing acquisition 

http://segment.heiberg.se
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 times32. Coefficient of variation was calculated to assess precision in SV measurements during exercise. Pearson 
or Spearman’s rank correlation was used as appropriate for calculating correlation between measurements in RT 
images and ECG-gated images. A p-value of < 0.05 was considered statistically significant.

GraphPad Prism (version 8.4.1 for Windows, GraphPad Software, San Diego, California USA, www. graph 
pad. com) and IBM SPSS Statistics (version 26.0 for Windows, Armonk, NY: IBM Corp.) were used for statisti-
cal analyses.

Primary measures for validation of the semi‑automatic algorithm at rest and during exer‑
cise. The primary measures used for validation of the algorithm at rest were LVM, EDV, ESV and SV meas-
ured in RT short-axis images at end expiration in both patients and healthy volunteers. These were compared 
with a reference standard of ECG-gated images also acquired at rest and end expiration.

Reliability of LV volumetric and mass measurements between all completed RT short-axis stack constructions 
was tested using ICC to further evaluate necessary image acquisition time. For reliability during exercise, only 
LVM was compared to ECG-gated images as volumes, but not mass, were expected to differ between these two 
physiological  conditions17,33,34. Similarly, RT CMR images analyzed at end inspiration were not used for volumes 
as ventricular volumes may differ depending on the respiratory  state17–19.

Comparisons of LVM at end inspiration were included to test the feasibility of the algorithm to detect and 
construct complete short-axis stacks in both end respiratory states. Finally, comparisons of LVM measured 
from the first heart beat during image acquisition regardless of respiratory state was also included to gauge the 
impact of respiratory gating.

Ethics approval and consent to participate. The Regional Ethical Review Board in Lund, Sweden, 
approved the study (reference number 948/2018). All participants gave written informed consent to participate 
in the study, including publication of data.

Consent for publication. All participants gave written informed consent to publish data.

Results
Necessary acquisition time for complete construction of RT short‑axis image stacks using the 
respiratory module. Matching end diastole (ED) and end systole (ES) to end expiration in all slices pre-
sented by the algorithm was possible in images with acquisition times of ~ 34, ~ 17 and ~ 8 s per slice (1000, 500 
and 250 time-frames respectively). It was not possible to match ED and ES to end expiration in all slices when 
cropping to a ~  4 s image acquisition time (100 time-frames) in any of the research participants. Therefore, it 
was concluded that a ~ 4 s acquisition time was too short to allow for accurate volumetric quantification using 
the method described in the present study.

One case of mismatch in left ventricular length was found in one out of eight total RT short-axis stacks 
originating from the ~ 8 s acquisition time during exercise. This was due to time-frames containing ED and ES 
not coinciding with end expiration within the acquired images in the most basal slice of the ventricle. Thus, the 
most basal slice was not included in the resulting constructed short-axis stack. Note that measurements from 
this stack were still included in the volumetric results.

Reliability of left ventricular (LV) volumetric and mass measurements for constructed RT 
image stacks. Median values of LV volumes and mass derived from RT image stacks of 1000, 500, and 250 
time-frames at rest as well as 250 time-frames during exercise are presented in Table 2 and Fig. 2. Reliability was 
high in LV volumetric and mass measurements in all constructed image stacks. ICC (95% CI) for 1000, 500 and 
250 time-frames at rest and end expiration was for end diastolic volume (EDV) 0.994 (0.966–0.999), end systolic 
volume (ESV) 0.992 (0.974–0.998) and stroke volume (SV) 0.972 (0.900–0.994). ICC  for all RT measurements 
(1000, 500 and 250 time-frames at rest and exercise, end expiration and end inspiration) was for LVM 0.990 
(0.974–0.998).

Table 2.  Median values of LV volume and mass measurements from RT short-axis image stacks originating 
from 1000, 500, and 250 time-frames at end expiration, end inspiration, regardless of respiratory state, at rest 
and during exercise in eight healthy volunteers. Values are presented as median [IQR]. RT real-time, EDV end 
diastolic volume, ESV end systolic volume, SV stroke volume, LVM left ventricular mass, LVMI left ventricular 
mass index, ICC intraclass correlation coefficient, CI confidence interval.

EDV (ml) ESV (ml) SV (ml) LVM (g) LVMI (g/m2)

Rest

1000 time-frames end expiration 160 [152–187] 70 [63–86] 95 [84–106] 88 [76–104] 47 [44–56]

500 time-frames end expiration 158 [149–179] 71 [65–79] 89 [83–100] 86 [74–102] 46 [41–55]

250 time-frames end expiration 161 [154–190] 72 [65–83] 92 [87–109] 85 [75–104] 45 [42–56]

500 time-frames end inspiration 158 [144–185] 72 [61–80] 89 [82–104] 84 [71–100] 45 [39–54]

First heart beat regardless of respiration 163 [151–187] 69 [57–83] 99 [88–107] 99 [79–116] 53 [45–62]

Exercise
250 time-frames end expiration 161 [152–184] 62 [53–73] 101 [96–112] 87 [72–95] 46 [39–53]

250 time-frames end inspiration 163 [147–178] 66 [50–69] 99 [95–109] 83 [70–94] 45 [39–52]

http://www.graphpad.com
http://www.graphpad.com
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Agreement of LVM measurements in RT images versus ECG‑gated images in healthy volun‑
teers. The bias of LVM in RT image stacks was for 1000 time-frames at rest at end expiration 3 ± 5 g, 500 
time-frames at rest at end expiration 1 ± 5 g, 250 time-frames at rest at end expiration 1 ± 4 g, 250 time-frames at 
rest at end inspiration -1 ± 5 g, 500 time-frames during exercise at end expiration 0 ± 7 g, 500 time-frames during 
exercise at end inspiration -1 ± 8 g, and first heart beat regardless of respiratory state 11 ± 5 g compared with the 
reference of ECG-gated images at rest (see Fig. 3).

As measurements in 500 time-frames compared with 1000 time-frames showed high correlation, similar 
bias when compared to ECG-gated images for LVM and could be acquired with half the image acquisition time 
(~ 17 s), acquiring 500 time-frames was deemed more clinically relevant. Therefore, stacks constructed from 500 
time-frames were chosen for comparison with ECG-gated images at rest as well as for intra- and inter-observer 
variability testing.

Agreement of LV volumes and mass in RT images versus ECG‑gated images in healthy vol‑
unteers and patients. The bias for LVM, EDV, ESV and SV between RT images at rest at end expiration 
originating from 500 time-frames compared to ECG-gated images at rest as a reference was 0 ± 5 g, 3 ± 15 ml, 
-3 ± 12 ml, and 6 ± 14 ml, respectively (Fig. 4).

Validation of exercise RT planimetric stroke volume versus RT phase contrast stroke vol‑
ume. For left ventricular SV during exercise, mean difference between RT planimetric images and RT PC 
images as a reference standard was at end expiration 11 ± 17 ml (8.75% Coefficient of variation, CoV), and at end 
inspiration 10 ± 18 ml (10.15% CoV) (Table 1, Fig. 5).

Agreement of LV volumes in RT images at end expiration versus end inspiration at rest and 
during exercise. The bias for EDV, ESV and SV between RT images at rest at end expiration compared to 
end inspiration was 0 ± 8 ml, 0 ± 4 ml and 0 ± 6 ml, respectively. During exercise, the bias for EDV, ESV and SV 
between end expiration compared to end inspiration was 3 ± 8 ml, 2 ± 7 ml and 1 ± 5 ml, respectively.

Intra‑ and inter‑observer variability. The intra- and inter-observer variability was excellent with low 
bias for EDV, ESV, SV and LVM in both RT images and ECG-gated images (Table 3).

Discussion
We have developed and validated a new semi-automatic algorithm for respiratory sorting of non-ECG gated 
free breathing RT CMR to obtain accurate LV volumes and mass at rest and during exercise. The bias was low 
when comparing LVM measurements at rest with those during exercise, and the interobserver variability showed 
similar bias and variation (SD) when comparing RT with ECG-gated images, supporting the validity of the new 
algorithm.

Previous CMR studies as well as other imaging modalities have also used extraction of a respiratory curve 
or signal for proper volumetric measurement or to minimize imaging artifacts from respiratory motion 35–39. 
The novelty of the proposed method is the integration of an algorithm for a) extraction of a respiratory curve 
without any additional physiological data needed such as plethysmography from RT CMR short-axis images, b) 
construction of an image stack in the desired cardiac phase and respiratory state and c) ensuing analysis of the 
image stack. Thus, this study provides a validated post-processing method, and a so called “one-stop shop” for 

Figure 2.  Reliability of left ventricular mass (LMV) measurements between real-time image stacks constructed 
from different numbers of time-frames at rest and during exercise in eight healthy volunteers. Reliability was 
high between measurements of left ventricular mass in real-time short-axis image stacks originating from 
1000, 500, and 250 time-frames at end expiration. Real-time image stacks originating from 1000, 500 and 250 
time-frames correspond to image acquisition times of ~ 34, ~ 17 and ~ 8 s respectively. The lines between the 
different time-frame measurements indicate the same research participants in the groups. 250 exercise shows 
measurements from images acquired during on-going exercise. ICC intraclass correlation coefficient.
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Figure 3.  Agreement of left ventricular mass (LVM) measurements in real-time (RT) images versus ECG-gated 
images in healthy volunteers. Panels a–h show measurements made at rest, panels i–l during exercise and panels 
m–n regardless of respiratory state at rest. Note that for all panels, ECG-gated LVM was measured at rest. RT 
measurements were made at rest and end expiration unless otherwise specified. Bias was low and correlation 
high in all measurements in end-respiratory states, however one extreme value was seen in the two exercise 
measurements (i, k). In both cases, one basal slice was missing in one RT image stack during exercise. Bias was 
high in first heart beat measurements made regardless of respiratory state. For Bland–Altman plots the dotted line 
represents bias, defined as the mean difference between real-time and ECG-gated measurements and the dashed 
lines represent the upper and lower 95% limits of agreement (bias ± 1.96 SD of the difference). In the scatter plots the 
dashed line represents a line of identity. 
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analysis, which may facilitate exercise CMR studies as all post-processing of exercise CMR non-ECG gated free 
breathing RT images can be done in the same software environment.

For complete RT short-axis stack construction, an image acquisition time of ~ 17 s per slice comprised 
adequate numbers of time-frames in which ED and ES occur during end expiration or end inspiration. How-
ever, in all but one out of eight cases, an acquisition time of only ~ 8 s during exercise also resulted in complete 
short-axis stacks. An acquisition time of anywhere between ~ 8 to ~ 17 s may therefore be sufficient. However, a 
shorter acquisition leads to an increased risk of a timewise mismatch of ED and ES, and respiration.

The low bias when comparing LV volumes between end expiration and end inspiration, both at rest and during 
exercise, are in line with previous results 17, suggesting that both end expiration or end inspiration may be used 
when quantifying LV volume and mass. Further, bias was somewhat high when comparing LV mass between RT 
images regardless of respiratory state to ECG-gated values. This underlines the importance of performing analysis 
in a predefined respiratory state, i.e. either end expiration or end inspiration, to minimize cardiac translation 
and through-plane motion. For the right ventricle, however, respiratory phase is of physiological importance as 

Figure 3.  (continued)
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Figure 4.  Agreement of left ventricular volumes, mass, and ejection fraction in real-time (RT) images 
at rest versus ECG-gated images at rest in eight healthy volunteers and eight patients. In all panels, RT 
measurements were made in stacks with a ~ 17 s image acquisition time per slice (500 time-frames). Bias was 
low and correlation high for all measurements. In the panels depicting EDV (c), SV (g) and EF (i), one point 
of measurement from the same patient can be seen outside the limits of agreement. In this case the ECG-
gated images contained respiratory artifacts in several basal slices which may have impacted measurements. 
In the panel depicting ESV (e), one point of measurement from another patient can be seen outside the 
limits of agreement. In this case the patient had a severely dilated ventricle, making the absolute difference 
in measurements noticeable while the relative difference was comparable to other ESV measurements. In the 
Bland–Altman plots the dotted line represents bias, defined as the mean difference between real-time and ECG-
gated measurements and the dashed lines represent the upper and lower 95% limits of agreement (bias ± 1.96 SD 
of the difference). In the scatter plots the dashed line represents a line of identity. LVM = left ventricular mass; 
EDV = end diastolic volume; ESV = end systolic volume; SV = stroke volume; EF = ejection fraction.
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Figure 4.  (continued)

Figure 5.  Comparison of stroke volume during exercise quantified by planimetry in real-time (RT) images at 
end expiration and end inspiration to flow in RT CMR images. Planimetric RT measurements were made in 
stacks with an ~ 8 s image acquisition time per slice (250 time-frames). Bias was low for left ventricular stroke 
volume (SV) when comparing planimetric measurements in RT CMR images with flow measurements in the 
ascending aorta in RT phase-contrast images in eight healthy volunteers. The outlier in each plot represents 
the same healthy volunteer in which stroke volume measured from flow was lower than from planimetry. No 
apparent irregularities in either modality were found in this individual. In the Bland–Altman plots the dotted 
line represents bias, defined as the mean difference between planimetric and flow measurements, and the dashed 
lines represent the upper and lower 95% limits of agreement (bias ± 1.96 SD). In the scatter plots the dashed line 
represents a line of identity. 
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shown by previous studies indicating a more pronounced difference in right ventricular volumes between end 
expiration and end  inspiration17,40.

The strength of the method described in the present study is the ability to ensure that all images analyzed are 
in the same respiratory phase, for example end expiration or end inspiration, and exercise can be continuously 
performed during the data acquisition, providing new insights to pump physiology during exercise. The feasibility 
of acquiring RT CMR during exercise and free breathing to assess volumes has previously been shown by Lurz 
et al.20,22. However, in contrast to the present study, Lurz et al. did not adjust for breathing in the post-processing 
analysis or during image analysis. This limits the evaluation of volumes due to cardiac translation and variation 
in ventricular filling caused by respiration during image  acquisition17–19.

Results from the present study regarding good agreement between RT images and ECG-gated images are in 
concordance with La Gerche et al.23 and Claessen et al.17 who used RT CMR to quantify biventricular volumes 
both at rest and during exercise. There is a difference between these studies and the present, however, regarding 
the methodology of data acquisition. The studies by La Gerche et al. and by Claessen et al. used plethysmogra-
phy to track and register a respiratory phase curve in real-time during image acquisition. An acquisition time 
of ~ 3.8 s per slice (100 time-frames) at rest was possible by acquiring sufficient frame repetitions to include 
at least one respiratory cycle per slice 17. The present study suggests a simpler data acquisition method of RT 
images, but at the cost of comparatively longer image acquisition times. Further, already acquired RT images in 
which plethysmography was not used can likely be analyzed in a desired end respiratory state using the proposed 
method, making it possible to include retrospective data as well.

Exercise CMR is a future tool to study physiological adaptations to exercise both in clinical and research 
settings. Several studies have either applied exercise cessation or breath-hold, or both, to obtain images of good 
 quality5–7,41,42. The present study shows that RT CMR with free breathing combined with a post-processing 
algorithm to identify end expiration can be used to accurately measure volumes at rest, as well as mass at rest 
and during exercise. This allows for quantification of LV function in a setting which more closely represents 
the physiological state of on-going exercise. Another potential use of the algorithm is the ability to detect the 
respiratory phase. Thereby, it is possible to measure volumes during different parts of the respiratory cycle, and 
not just exclusively at end expiration as is typically the case in ECG-gated CMR.

Two statistical outliers were seen in the patient group when comparing volumes from ECG-gated images 
and RT images (Fig. 3). This could result from the presence of respiratory motion artifacts due to intolerance to 
breath-hold during image acquisition, making exact delineation of endocardial and epicardial borders more dif-
ficult. One could speculate that RT images in these cases may provide more accurate LV volumes as they do not 
require breath-hold and thus do not contain respiratory motion artifacts. Further, one of the outliers represented 
a patient with a severely dilated left ventricle. In this case, the absolute difference in measurements made the 
differences more pronounced when viewed together with the rest of the group, while the relative differences were 
on a similar level. As previously mentioned, one basal slice was missing in one RT image stack during exercise. 
This resulted in an outlier when comparing LVM between rest and exercise in the healthy controls, both when 
measured at end expiration and end inspiration. Finally, an outlier was seen when comparing planimetric stroke 
volume in RT images to RT aortic flow during exercise, both at end expiration and end inspiration. In this case, 
no apparent irregularities in either imaging modality were found to explain the differences.

Some limitations to the present study are to be noted. First, selecting the frames to construct a complete RT 
short-axis stack typically took 20 to 40 min, which may be considered by some to be labor intensive. However, 
when compared to manually inspecting 1000 time frames per slice for 14 to 17 slices to identify ED and ES 
within a chosen end respiratory state, processing time was considerably shortened. Additionally, the benefit of 
accounting for actual physiology in RT images, when ECG-gated acquisition is not possible, may outweigh the 
added analysis time. While additional processing power and software optimization would reduce post-processing 
time, the major time-consuming factor was dependent on manual user input. This was by design, in order to 
keep full control of which image slices were added to the image stack. However, automation of RT short-axis 
stack construction through new machine learning techniques may potentially decrease total analysis time by a 
substantial margin.

Only healthy volunteers underwent exercise CMR in the present study. However, by including measurements 
from cardiac patients at rest, we demonstrated clinical-setting feasibility and provided a more likely scenario of 
how the described method and algorithm would perform in the clinic.

The constructed RT image stacks contained only images at ED and ES and not an entire cardiac cycle per 
slice. In time-resolved ECG-gated images, time-frames adjacent to ED and ES can be helpful to differentiate 

Table 3.  Intra- and inter-observer variability between RT planimetric and ECG-gated images. Intra- and inter-
observer variability testing in real-time (RT) images included construction of RT short-axis stack originating 
from 500 time-frame stacks. Values are presented as bias ± SD. RT real-time, ECG electrocardiogram, LVM left 
ventricular mass, EDV end diastolic volume, ESV end systolic volume, SV stroke volume.

RT images ECG-gated images

Intra-observer Inter-observer Intra-observer Inter-observer

LVM (g) − 1 ± 4 8 ± 5 0 ± 6 6 ± 1

EDV (ml) 2 ± 3 3 ± 7 0 ± 4 − 4 ± 5

ESV (ml) 1 ± 3 − 3 ± 6 0 ± 3 − 2 ± 4

SV (ml) 1 ± 4 6 ± 4 0 ± 4 − 2 ± 6
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papillary muscles and trabeculation to the endocardial border. As such, it could be more difficult to differentiate 
these structures in RT images. However, this risk was minimized by comparison to adjacent slices in the api-
cal or basal direction, and there was good agreement between volumes and mass obtained from RT and those 
obtained from ECG-gated images.

Determination of ED and ES for the short-axis stacks was not performed identically in RT images and ECG-
gated images. In ECG-gated images, one time-frame of the cardiac cycle was determined as ED and ES respec-
tively for the entire short-axis stack. In the RT images, determination of ED and ES was performed on a per-slice 
basis as the cardiac cycle was not synchronized between slices due to a lack of ECG-gating. As the ventricle does 
not always contract in a perfectly synchronized pattern along the long axis, such as in patients with left bundle 
branch block or after myocardial  infarction43,44, this could lead to discrepancies in what is considered ED or ES 
at different levels of the ventricle. However, this is likely not a major limitation in the current study population 
but may be of importance when applying this algorithm in cases with ventricular dyssynchrony.

Additionally, during exercise, the height of the research participants and the bore diameter did not always 
permit optimal table positioning for the ascending aorta to be at the scanner isocenter. While the feasibility of 
using RT PC during exercise in free breathing has been previously presented, isocenter positioning was not 
 addressed45–47. Thus, it is unknown to what extent this affects flow measurements in the present study.

Last, we found a bias in stroke volumes during exercise between flow measurements and planimetric meas-
urements in RT CMR. This may in part be explained by planimetric measurements not accounting for mitral 
regurgitation when assessing left ventricular stroke volume. On the other hand, the size of the bias implies that a 
potential mitral regurgitation is to be considered small. Furthermore, aortic flow does not include coronary blood 
flow proximal of the PC imaging plane in the calculated stroke volume; however, this can explain only a small 
part of the difference owing to the small proportion of coronary flow. Aside from strictly methodological differ-
ences, the bias could also result from RT flow images and short-axis images not being acquired simultaneously. 
While they were acquired during the same exercise session, small physiological differences owing to continuous 
on-going exercise could affect the left ventricular stroke volumes between the two image acquisitions. Further, 
the RT PC images had relatively low spatial and temporal resolution when compared to typical ECG-gated PC 
images recommended for clinical  routine10. While the imaging parameters were mostly within recommended 
limits, they could nonetheless have added to the measured bias. These potential explanations for the differences 
between the two methods of measuring stroke volume further strengthen the argument that the reliability of RT 
planimetric measurements for volumetric quantification during exercise is high.

Conclusion
This study presents a semi-automatic algorithm with retrospective respiratory sorting for assessment of left 
ventricular mass, volumes, and function from free breathing real-time CMR at rest and during exercise. The 
algorithm requires no ECG or additional physiological data during image acquisition. By acquiring images dur-
ing ~ 17 s per slice (500 time-frames), complete construction of RT short-axis stacks was possible in all cases 
with a total post-processing time of typically 20 to 40 min. The validation shows good agreement and high cor-
relation between measurements at rest and during exercise. As such, we present a new validated tool applicable 
to ventricular functional assessment of non-ECG triggered cine images acquired during free breathing as well 
as exercise.

Data availability
The datasets used during the current study are available from the corresponding author on reasonable request.
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