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Abstract: Many drugs affect lipid metabolism and have side effects which promote atherosclerosis.
The prevalence of cancer-therapy-related cardiovascular (CV) disease is increasing due to develop-
ment of new drugs and improved survival of patients: cardio-oncology is a new field of interest
and research. Moreover, drugs used in transplanted patients frequently have metabolic implications.
Increasingly, internists, lipidologists, and angiologists are being consulted by haematologists for side
effects on metabolism (especially lipid metabolism) and arterial circulation caused by drugs used in
haematology. The purpose of this article is to review the main drugs used in haematology with side
effects on lipid metabolism and atherosclerosis, detailing their mechanisms of action and suggesting
the most effective therapies.

Keywords: haematological drugs; side effects; lipid metabolism; hypertriglyceridaemia; hypercholesterolemia;
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1. Introduction

Increased LDL-cholesterol (LDL-C) concentrations are causally related to atheroscle-
rotic cardiovascular disease (ASCVD) [1]. However, many patients with normal LDL-C
levels (genetically determined or after cholesterol lowering therapy) still have a residual CV
risk. Among the principal metabolic lipid-related CV risk factors implicated in this residual
risk, hypertriglyceridaemia, atherogenic lipoprotein subfractions, reduced concentrations
or altered function of HDL and elevated levels of Lpa are sure to play a significant role [1–4].
Many dyslipidaemias are of genetic origin (primary dyslipidaemias), but others are sec-
ondary to other conditions such as: diabetes mellitus, hypothyroidism, chronic kidney
disease, cholestasis, and drugs.

It is well known that many drugs have the ability to influence the lipid profile. In
some cases, this is an effect of the drug class; in other cases, different agents belonging to
the same class can have significantly different effects on lipid levels [5,6].

This aspect is of considerable importance when initiating specific treatments for
patients, especially when the CV risk is high or very high. For example, some antihyperten-
sives can increase the plasma levels of triglycerides (TG), notably thiazide diuretics and
β-blockers [7]. The triglyceride-increasing effects of the latter vary, with greater effects
seen with propranolol, metoprolol, and atenolol, and more generally for nonselective
agents [8]. Antipsychotics and antiretroviral drugs are also known to be associated to
dyslipidaemias. Some second-generation antipsychotic medications such as clozapine,
olanzapine, risperidone, and quetiapine can be associated with hypertriglyceridaemia;
however, this effect has not been seen with aripiprazole or ziprasidone [9]. Antiretroviral
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therapy (ART) in HIV patients has been associated with metabolic changes, particularly
an increased prevalence of insulin resistance [10]. Older protease inhibitors (PIs), such as
saquinavir, indinavir, and ritonavir, sometimes lead to dyslipidaemia. Newer PI therapies,
such as darunavir/ritonavir or atazanavir/ritonavir can still cause mild dyslipidaemia,
much less dramatic than older PIs. Some older nucleoside reverse-transcriptase inhibitors
(NRTIs), such as stavudine and zidovudine, sometimes cause dyslipidaemia, particularly
in combination with PIs. Efavirenz is the only non-NRTI (NNRTI) that could slightly raise
LDL-C. Other new ARTs (tenofovir, nevirapine, rilpivirine, raltegravir, dolutegravir, and
bictegravir) have no significant effects on lipids or have a lipid-lowering effect [11]. Many
other drugs have been implicated in the pathogenesis of secondary dyslipidaemias.

In recent years, there has been a particular focus on the correlation between haemato-
logical diseases, particularly neoplastic diseases, and lipid metabolism and atherosclerosis.
Recent research has demonstrated that this correlation is often due to intrinsic mechanisms
of the disease and its degree of severity. For example, changes in lipid metabolism have
been found in chronic lymphocytic leukaemia (CML) with increased levels of total choles-
terol and low-density lipoproteins (LDL) and decreased levels of high-density lipoproteins
(HDL), especially in advanced stages of the disease. Similar results have been found in
patients with non-Hodgkin lymphoma [12]. In other cases, changes in lipid metabolism are
direct consequences of drugs.

In a retrospective study, the prevalence, clinical characteristics, and risk of severe
pancreatitis were analysed in a large number of children with severe hypertriglyceridaemia
(>2000 mg/dL) [13]. It showed that around 28% of these children were diagnosed with ALL
and treated with L-asparaginase and high doses of steroids. More than half of hypertriglyc-
eridemic patients analysed in that study subsequently developed complications including
at least one case of pancreatitis and the development of insulin-dependent diabetes mellitus.
Therefore, it is important to diagnose drug-induced hyperlipidaemia early to avoid CV
complications or acute pancreatitis.

This review aims to evaluate the effect of commonly used drugs in haematology on lipid
metabolism and vascular health and tries to clarify the underlying mechanisms involved.

2. Tyrosine Kinase Inhibitors

The treatment of chronic myeloid leukaemia (CML) has been revolutionised with
the introduction of oral tyrosine kinase inhibitors (TKIs). It should be remembered that
following approval of TKIs for the treatment of CML, the overall survival of these patients
improved to 70% [14]. Imatinib (a first-generation inhibitor) can reduce serum levels of
proatherogenic LDL and can normalise plasma lipid levels in hypercholesterolemic and hy-
pertriglyceridemic patients [15]. However, imatinib therapy sometimes has adverse events
unacceptable to the patient such as oedema (periorbital and peripheral), musculoskeletal
pain, muscle cramps, diarrhoea, etc.

Nilotinib is a second-generation TKI licensed for first and subsequent line treatment
of CML, with greater potency and affinity for the BCR-ABL1 oncoprotein compared to
imatinib. In the ENESTnd study (a >10 years follow-up study of nilotinib versus imatinib
in CML patients) nilotinib demonstrated lower rates of disease progression and disease-
related death as well as a higher cumulative molecular response rate [16]. In the same study,
CV events were reported in 16.5% of patients taking nilotinib 300 mg twice daily, 23.5%
of patients taking nilotinib 400 mg twice daily, and 3.6% of patients on imatinib therapy.
Patients > 60 years had a higher incidence of CV events: 34.5%, 34%, and 8.5%, respectively.
In addition to peripheral arterial disease (PAD) other serious occlusive arterial diseases,
such as coronary artery disease and cerebrovascular ischaemia, have been reported in
various clinical studies, including retrospective and case studies [17]. Moreover, Bondon
et al. demonstrated that the incidence of PAD was higher above 60 years of age, and the
mean onset of disease was after 24 months of therapy. In the rare cases of PAD in patients
younger than 60 years old, the time to onset after nilotinib therapy appeared sooner [18].
In a study by Kim et al., 129 patients with CML were screened for PAD during treatment
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with TKIs [19]. A pathological ankle brachial index (ABI) < 0.9 was documented in around
6% of patients treated with imatinib as first line therapy, compared to 26% of patients who
were treated with nilotinib as first line therapy and 35% of patients if nilotinib was given
as second line therapy. Tefferi et al. described a case of death due to severe PAD in a
patient with CML treated with nilotinib, and other cases of patients in which treatment
was associated with rapidly progressing intracranial and extracranial atherosclerosis, with
subsequent ischaemic stroke [20].

The mechanism by which nilotinib exerts its proatherogenic effect is not clear and is
likely multifactorial. In a mouse model of atherosclerosis, nilotinib promoted aortic wall
atherosclerosis in ApoE-/- mice, whereas imatinib showed no proatherogenic effect. In
this study it was shown that nilotinib inhibits a series of kinases involved in the “repair”
of stress-induced vascular damage (JAK1, TEK) which are not normally inhibited at a
therapeutic dose of imatinib. Moreover, nilotinib was found to exert a proatherogenic
effect acting directly on human endothelial cells through the upregulation of adhesion
proteins ICAM-1, E-selectin, and VCAM-1 [21]. In other words, this proatherogenic effect
could contribute to creating vessel stenosis, whilst the antiangiogenic effects would stop
defensive mechanisms from recanalising and repairing vessels once stenosis is established.
Another contributing factor appears to be this inhibitor’s ability to create vasospasm that
can trigger the entire pathophysiological mechanism [22].

Hypercholesterolaemia has been described as a side effect during treatment with
nilotinib, which is closely correlated with the development of peripheral arteriopathy.
In particular, the use of nilotinib is associated with an increase in total cholesterol, with
increases in both HDL and LDL. The risk factors for hypercholesterolemia during nilotinib
therapy are older age, duration of treatment, and pre-existing metabolic risk [23]. In the
study by Rea et al., at baseline, plasma cholesterol concentration was 180 ± 38 mg/dL
(mean ± SD); after three months of therapy with nilotinib, cholesterol levels had risen by a
mean of 45 mg/dL, with a mean plasma cholesterol concentration of 224 ± 47 mg/dL [23].
Interestingly, triglyceride concentrations decreased by a mean of −35 mg/dL between base-
line and three months. An Italian study evaluated LDL levels along with arterial occlusive
events in 369 CML patients treated with nilotinib; the total cholesterol and LDL-cholesterol
concentrations increased during nilotinib therapy: the total cholesterol concentrations
were 185 mg/dL (median), (76–305 range), at baseline and raised to 207 mg/dL (median),
(99–305 range), p < 0.001, after 3 months. HDL and triglycerides did not show significant
concentration changes. Patients with hypercholesterolemia 3 months after treatment (total
cholesterol >200 mg/dL and LDL > 70 mg/dL) showed a significantly higher incidence of
arterial vasculopathy (21.9% vs. 6.2%, p < 0.01), but, surprisingly, only a small proportion
of hypercholesterolemic patients (29.5%) were treated with statins [24].

The mechanism by which the second-generation inhibitors induce hyperlipoproteine-
mia is not clear. One hypothesis is that this increase is a secondary consequence of another
side effect of this drug, which is insulin resistance and hyperinsulinemia, as well as a
decreased synthesis of lipoprotein lipase (LPL). A small clinical trial showed that nilotinib
significantly increased PCSK9 plasma concentration after 3 months of therapy and sug-
gested a possible role of this in nilotinib-induced hypercholesterolemia [25]. Other studies
have hypothesised that nilotinib is possibly directly toxic at the level of adipose tissue [26].
The effect on lipid metabolism along with a direct effect on the endothelium could explain
the increase in CV risk seen in this patient group.

Another tyrosine kinase inhibitor which is implicated in vascular damage is ponatinib.
Ponatinib is a third-generation TKI and is an excellent drug in individuals who show a
poor response to therapy in Philadelphia+ ALL and in CML. The PACE trial reported
that the incidence of arterial thrombotic events with ponatinib was around 9% for those
patients treated for 11 months and around 17% when treated for 24 months [27]. However,
it should be noted that most of the patients in that study had previously been treated with
nilotinib. A more recent study demonstrated a smaller incidence of CV events compared to
the PACE trial, but an accurate comparison could not be made due to various confounding
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factors [28]. In any case, Caocci et al. recently showed that the incidence of vascular
events in patients treated with ponatinib are greater if upon commencing treatment, the
triglyceride level is >200 mg/dL, and if the total cholesterol is >200 mg/dL and LDL is
>70 mg/dL after three months from the start of ponatinib. For this reason, the authors
suggested initiating statin therapy before commencing treatment with ponatinib [29]. The
mechanism by which ponatinib induces thrombosis is not fully understood. Animal studies
in mice have demonstrated that ponatinib therapy alters both vessel wall and platelet
function [30].

Hypercholesterolaemia is only one pre-existing risk factor which can favour the occur-
rence of vascular events with tyrosine kinase inhibitors. Other risk factors are hypertension,
smoking, diabetes mellitus, and age. CV events occur more frequently in patients with
high or intermediate baseline Framingham risk than in the low-risk category. In these
patients, reducing the dose by around half can reduce the incidence of CV events by around
33% [31].

An echo colour doppler is one of the best methods to noninvasively evaluate sub-
clinical atherosclerosis and to follow up atherosclerotic lesions, especially in subjects with
dyslipidaemia [32].

For the aforementioned reasons, in patients with CML who are candidates for treat-
ment with nilotinib or ponatinib, it is advisable to perform metabolic and vascular screening
to evaluate CV risk factors. Our suggestion would be to investigate for the presence of
hypertension, diabetes mellitus, dyslipidaemia, hypothyroidism, smoking, abnormal renal
function, and acquire measurements for ankle–brachial pressure indices, duplex ultrasound
of the carotid arteries, and peripheral vessels of the lower limbs, and finally echocardio-
graphic measurement of the ejection fraction.

By way of example, Table 1 shows anthropometric and CV baseline data for 35 patients
undergoing treatment with nilotinib for CML in our Division of Haematology at the A.
Cardarelli Hospital in Naples (Italy); Figure 1 shows the frequency (in our patient cohort) of
the presence of carotid and femoral plaques prior to initiating second- and third-generation
tyrosine kinase inhibitors.

Table 1. Cardiovascular baseline data for 35 patients undergoing treatment with nilotinib.

Mean ± SD Range
Age (years) 51.1 ± 13.6 25–79
Sex (M/F) 51%

Systolic arterial blood pressure (mmHg) 129 ± 18 106–180
Diastolic arterial blood pressure (mmHg) 82 ± 6 70–90

Ankle–brachial pressure index (Right) 1.14 ± 0.12 0.92–1.42
Ankle–brachial pressure index (Left) 1.14 ± 0.17 0.67–1.54

Carotid intima–media thickness (right) (mm) 1.36 ± 0.7 0.6–3.0
Carotid intima–media thickness (left) (mm) 1.23 ± 0.7 0.7–4.0

Cardiac ejection fraction (%) 60.7 ± 3.5 55–65

Smokers (%)
60% No
27% Ex

13% Yes
Hypertensive (%) 29%

Diabetic (%) 12%
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Figure 1. Prevalence of carotid and femoral plaques prior to initiating second- and third-generation
tyrosine kinase inhibitors (nilotinib and ponatinib; n = 55).

3. Janus Associated Kinase (JAK) Inhibitors

Ruxolitinib is a JAK1/2 inhibitor used for the treatment of myelofibrosis and poly-
cythaemia vera intolerant or resistant to hydroxyurea due to its efficacy in the symptomatic
reduction and treatment of splenomegaly typical of these diseases, and is associated with
improved survival compared to placebo. In addition, there are a number of trials under-
way to evaluate the safety and efficacy of ruxolitinib for cases of graft-versus-host disease
(GvHD) in allograft recipients who are refractory to treatment with corticosteroids [33].

Ruxolitinib improves metabolism in patients with myelofibrosis because this disease
is characterised by abnormally low cholesterol concentrations, which have been associated
with shortened survival. As reported by Mesa et al., levels of total cholesterol increased
in patients treated with ruxolitinib compared to pretreatment levels of the same group.
Patients receiving ruxolitinib experienced a mean 35.8% increase in total cholesterol (mean
increase: 38.0 mg/dL); however, for the majority of patients, the total cholesterol concentra-
tion did not exceed 240 mg/dL. Given that hypocholesterolaemia is associated with poorer
prognosis in these patients, the improvements in total cholesterol levels after ruxolitinib
therapy could represent disease-modifying effects that contribute to a better prognosis than
placebo [34].

The summary of product characteristics of ruxolitinib mentions hypertriglyceridaemia
as a common although “mild” adverse effect. Sometimes hypertriglyceridaemia during
treatment with ruxolitinib (especially if associated with sirolimus) could be severe and
life-threatening. Watson et al. reported a case of hypertriglyceridaemia in a 50-year-old
patient treated with a combination of ruxolitinib and sirolimus for chronic GvHD. TG levels
were between 300 and 400 mg/dL over the last several years but peaked to 2983 mg/dL
after sirolimus and ruxolitinib therapy. TG levels only returned to basal levels once JAK1
inhibitors had been suspended [35]. A similar case was reported by Bauters et al. in a
patient who already had raised TG levels due to sirolimus, but these values were further
elevated once ruxolitinib was added (to around 10,000 mg/dL), resulting in pancreatitis.
The effects of treatment with this drug on CV outcomes are not known, and for this
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reason both authors suggest monitoring the lipid profile at initiation of treatment and after
8–12 weeks, especially in patients where it is used alongside sirolimus [36].

The mechanism behind this dyslipidaemia and weight gain seems to correlate with
the dysregulation of leptin levels at a hypothalamic level mediated by JAK2/STAT3, a phe-
nomenon which can cause hyperlipidaemia, dysphagia, and changes in glucose metabolism.
In fact, ruxolitinib seems to interrupt postprandial leptin signalling pathways, which can
cause hyperphagia, which contributes to the increases in weight seen in the majority of
patients treated [37].

4. PEG-Asparaginase

Asparaginase is a key drug in most protocols used for the treatment of ALL, above all
during the induction phase and intensification phases of the treatment. Survival of both
children and adults affected by this disease has improved since the introduction of this drug
in chemotherapy protocols [38]. Among numerous side effects are abnormalities affecting
lipid metabolism, predominantly hypertriglyceridaemia [39]. The exact mechanism causing
lipid abnormalities is not fully understood and still needs clarification. It has been suggested
that it could be related to an increased endogenous hepatic synthesis of VLDL. Another
suggested mechanism is a reduced enzymatic activity of LPL, a key enzyme in the removal
of triglyceride-rich lipoproteins from plasma, reducing clearance and consequently causing
hypertriglyceridaemia [40]. This latter aspect is more evident when used in combination
with corticosteroids. In fact, systemic steroid therapy normally brings about increased
concentrations of triglyceride-rich VLDL, but this is balanced by an increased activity of
LPL induced by the steroids. When steroids are used in combination with L-asparaginase,
this latter effect is lacking, and hypertriglyceridaemia is a typical finding in some patients
treated with both drugs. The way in which L-asparaginase decreases the catalytic activity
of LPL is not clear but appears to be due to the inhibition of synthesis [41]. A study by
Tong et al. showed that the combined use of L-asparaginase and steroids was associated
with changes in lipid metabolism in more than 50% of cases. That study also demonstrated
that the incidence of hypertriglyceridaemia and hypercholesterolaemia was higher in the
cohort of patients treated with the pegylated-asparaginase (PEG-ASP) than with the Erwinia
formulation. PEG-ASP-induced hypertriglyceridaemia did not, however, correlate with
an increased incidence of severe clinical events such as acute pancreatitis and/or arterial
thrombosis. In that study the median triglyceride level was 71 mg/dL and the median
cholesterol level was 143 mg/dL at baseline. After PEG-ASP therapy, the concentration
of TG rose to 280 mg/dL (p < 0.001) and remained stable at high values throughout the
course of therapy. Cholesterol concentrations after 9 weeks of therapy peaked to 240 mg/dL
(p < 0.001) and remained stable thereafter. The triglyceride and cholesterol levels normalised
in all patients 8 weeks after the end of the PEG-ASP therapy [42]. Finch et al. found the
same results. However, they observed that the treatment with PEG-ASP carried significant
increases in TG compared to L-asparaginase, when used in combination with identical
doses of dexamethasone. Even so, in that case, there was not an increased incidence of
CV or gastroenterological side effects [43]. In newly diagnosed children with ALL, it was
observed a 67% incidence of hypertriglyceridaemia, 19% with concentrations greater than
1000 mg/dL [39].

The increase in TG therefore appears to be rarely of any clinical importance and
is transitory and so does not always require suspension of therapy. In any case, other
studies have reported satisfactory results with the use of omega-3, fibrates, or temporary
suspension of dexamethasone therapy. Some cases of severe asparaginase-induced hyper-
triglyceridaemia have been successfully managed with plasmapheresis, which was found
to be a safe and effective method for treating hypertriglyceridaemia and preventing related
complications [44].

Recently, it has been proposed that the increase in triglycerides to the particularly high
levels which is observed in some individuals treated with PEG-ASP could be due, at least in
part, to genetic predisposition. In particular, it was seen that the presence of a rare missense
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variant (c.11 G > A-p(arg4Gin)) in the ApoCIII gene along with four other common single
nucleotide polymorphisms (SNPs; c.*40 C > G in APOCIII e c.*158 T > C; c.162-43 G > A;
c.-3 A > G in ApoA5) were associated with a case of severe hypertriglyceridaemia in an
adult patient with ALL after two cycles of therapy with PEG-ASP and steroids [45].

5. Calcineurin Inhibitors

It is generally accepted that therapy with calcineurin inhibitors (CNIs) is associated
with hyperlipidaemia. Cyclosporine and tacrolimus are immunosuppressive agents that
play a pivotal role in patients receiving organ transplantation. These drugs are also used
in some haematological diseases such as aplastic anaemia, haemophagocytic syndrome
and Castleman disease [46]. Particular attention has been given in previous years to the
use of cyclosporine and tacrolimus following haematopoietic stem cell transplantation. In
fact, GvHD represents one of the most common causes of mortality, not related to disease
relapse, following transplantation.

Introduced in the 1980s, these immunosuppressive agents, which prevent the acti-
vation of T-cells by inhibiting calcineurin, have dramatically improved survival rates of
the allograft recipients. The first studies that reported very beneficial results of regimes
using CNIs date back to 1986, with a significant reduction of GvHD and improved survival
compared to the use of only one of the two agents in prophylaxis protocols [47]. Two multi-
centre studies, randomised and prospective, conducted in the mid-1990s demonstrated a
lower incidence of GvHD with tacrolimus plus methotrexate compared to cyclosporine plus
methotrexate, although overall survival was not significantly different [48]. A recent study
has confirmed the ability of cyclosporine in both acute and chronic GvHD prophylaxis;
the addition of mycophenolate mofetil did not reduce the incidence or severity of this
complication in patients undergoing allogenic transplant for acute myeloid leukaemia [49].

CNIs have important and serious side effects: nephrotoxicity, hypertension, diabetes
mellitus, and dyslipidaemia. Different metabolic abnormalities are associated with the
use of CNIs, including glucose intolerance, osteoporosis, and increased levels of total
cholesterol (TC), LDL and apolipoprotein B100 (apo B-100). The effects on HDL are less
relevant, although some studies have shown increases in this lipoprotein [6]. Hyperlip-
idaemia can occur in up to 60% of patients post-transplant [50]. This is due to multiple
factors including post-transplant obesity, side effects of other drugs (including steroids
and other immunosuppressors), and diabetes. The effects on lipid metabolism are much
more evident with cyclosporine compared to tacrolimus, which seems to have fewer effects
on TC and LDL. However, it is also important to mention that the dose of corticosteroid
used is higher in patients treated with cyclosporine than with tacrolimus and could intro-
duce a bias in a comparison between the two drugs in affecting lipid metabolism. One
prospective randomised study compared a regime based on tacrolimus to a regime based
on cyclosporine in patients following heart transplantation. After 12 months of therapy,
TC, LDL, and TG were significantly higher in the cyclosporine group compared to the
tacrolimus group. In particular, LDL rose from 115 ± 36 mg/dL (baseline, mean ± SD) to
131 ± 38 (cyclosporine) and to 116 ± 28 (tacrolimus); TG rose from 156 ± 109 to
218 ± 117 (cyclosporine) and to 187 ± 128 (tacrolimus) [51]. Zimmerman et al. inves-
tigated changes in lipid metabolism under CNI (78 patients) and mTOR (14 patients)
immunosuppressive regimens after liver transplantation. LDL-C (mg/dl) was 118.2 ± 36.7
(mean ± SD) at baseline, 115 ± 34 after CNI-only containing regimen and 139 ± 46
(p < 0.047) after mTOR-containing regimen. TG (mg/dl) values were, respectively, 177± 134,
160 ± 129, and 258 ± 122 (p < 0.001) [52]. On the other hand, there are conflicting data
regarding the effect on small dense LDL (sdLDL), whose concentration has been associ-
ated with an increased risk of CV disease in the general population [53]. The impact of
cyclosporine and tacrolimus on lipid levels seems to be dose-dependent and baseline lipid
levels play a significant role in TC and LDL concentrations after therapy with these drugs.
Some patients develop moderate to severe hypertriglyceridaemia after using CNIs, while
they rarely show severe hypercholesterolemia. The mechanism by which cyclosporine
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causes hyperlipidaemia is not completely clear. Different studies have demonstrated that
cyclosporine increase Ser552 phosphorylation in adipose tissue by hormone sensitive lipase
and contribute to the development of insulin resistance [54]. Cyclosporine has a dose-
dependent lipid-increasing effect; the drug, as part of its metabolism, inhibits the sterol
27-hydroxylase (CYP27A1), reduces the activity of sterol 27-hydroxylase, and in this way,
slows the catabolism of cholesterol through bile acids; it promotes the synthesis of choles-
terol due to a lack of inhibition from hydroxymethylglutaryl-CoA reductase (HMG-CoA
reductase) by 27-hydroxycholesterol [55]. It also binds to the LDL receptor causing an
increase in LDL cholesterol and reducing clearance of VLDL [56,57]. Moreover, through the
inhibition of LPL, it induces hypertriglyceridaemia [58,59]. Lastly, cyclosporine induces an
increase in apoCIII (endogenous inhibitor of LPL) that could result in hypertriglyceridaemia
and an increased concentration of small dense LDL [60].

Tacrolimus shares many of the effects on lipid balance with cyclosporine, and the
mechanisms of action are also often the same. The main mechanism linking tacrolimus
with hyperlipidaemia (especially hypertriglyceridaemia) and diabetes mellitus is increased
insulin resistance [61]. Another mechanism in tacrolimus-related dyslipidaemia was pro-
posed by Zhang et al., who observed that tacrolimus could induce TG accumulation in
hepatocytes and dyslipidaemia by downregulating a circRNA (circFANS), stimulating
a microRNA (miR-33A), and dysregulating SREBPs (sterol regulatory element-binding
protein) [62]. Moreover, tacrolimus potentiates the effect of glucolipotoxicity, decreasing
the Akt phosphorylation and reducing β-cell proliferation [63].

The serum levels of drugs need to be monitored during treatment, as increased lev-
els are associated with adverse effects. Furthermore, if appropriate, switching from cy-
closporine to tacrolimus can be considered if hyperlipidaemia occurs, as many studies have
shown [64]. Although patients could benefit from treatment with HMG-CoA reductase
inhibitors, it has been shown that the concomitant use of cyclosporine with HMG-CoA
reductase inhibitors increases the risk of myopathy and rhabdomyolysis due to a potential
drug–drug interaction caused by the inhibition of the CYP3A-mediated metabolism of
simvastatin and the inhibition by cyclosporine of the hepatic absorption of simvastatin
mediated by organic ion transporter proteins (OATP1B1) [65]. Many statins (atorva, lova,
simva, etc.) compete with CNIs for the same hepatic metabolising enzymes (cytochrome
P450 3A4 isoenzyme) and can increase blood concentration of the CNIs; since pravastatin
and fluvastatin are not metabolised in a significant way by CYP enzymes, they could
be a favourable choice in this group of patients due to a decreased risk of drug–drug
interactions [66].

6. Mammalian Target of Rapamycin Inhibitors

The mammalian target of rapamycin (mTOR) is a downstream target of many sig-
nalling pathways. The most famous is the PI3k/Akt/mTOR signalling pathway, which has
a central role in cell growth, proliferation, differentiation, and survival, in protein synthesis,
and in the metabolism of glucose and lipids. The mTOR pathway regulates lymphoid and
myeloid development and function. The aberrant regulation or hyperactivation of mTOR is
a distinctive sign of many tumours, including haematological malignancies. Various phar-
maceutical agents which inhibit the mammalian target of rapamycin have been developed,
since they induce the apoptosis of neoplastic cells, arrest of the cell cycle, and inhibition of
signal transduction. mTOR inhibitors sirolimus and everolimus are well known drugs and
were initially used as immunosuppressive therapy in the field of solid organ transplanta-
tion. Other mTOR inhibitors are deforolimus (an investigational agent in the management
of sarcoma and breast cancer), zotarolimus (used as a coating in stents), ridaforolimus
(used in eluting stents and in advanced malignancies) and temsirolimus (used in kidney
cancer and under investigation for lymphoma, breast cancer, and other tumours). The use
of mTOR inhibitors in the field of haematology is very broad, varying from standardised
first-line treatments (GvHD), to promising new drug regimens whose results are waiting to
be confirmed in multicentre studies (autoimmune haemolytic anaemia, myelodysplasias,
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acute leukaemias, lymphomas, multiple myeloma, Waldenstrom macroglobulinemia, im-
mune thrombocytopenic purpura, acquired aplastic anaemia, pure red cell aplasia, and
autoimmune lymphoproliferative syndrome). mTOR inhibitors have been used in acute
leukaemias in combination strategies with other chemotherapies and could be an effective
treatment for patients with acute high-risk leukaemias, after an accurate stratification of
patients [67]. Platzbecker et al. treated 19 patients with myelodysplastic syndrome with
sirolimus as a single agent and demonstrated a good efficacy of remission in patients
with advanced disease, although this efficacy was not seen for low-risk myelodysplastic
syndrome [68]. The combination of JAK inhibitors such as ruxolitinib with everolimus
has showed some synergy in inducing a blockade of proliferation, which is promising for
the treatment of myeloproliferative neoplasms [69]. The American Society of Hematology
recommended sirolimus as a second-line treatment of autoimmune haemolytic anaemia in
the case of failure to steroid treatment [70]. However, the primary use of mTOR inhibitors
rests in the prophylaxis of GvHD in patients who have undergone allogenic transplantation.
Sirolimus has shown clinical benefit in both prevention and treatment of GvHD. In 2008,
Armand et al. demonstrated that sirolimus combined with tacrolimus prevented GvHD in
lymphoma patients after bone marrow transplantation [71]. In a recent study, after marrow
transplant, the standard prophylaxis regime for GvHD (cyclosporine and mycophenolate
mofetil) was compared to a combination of three drugs (cyclosporine, mycophenolate
mofetil, and sirolimus). Consistent with previous findings, the incidence of grade II–IV
GvHD was lower in the group treated with three drugs (26%) than in the standard group
(52%) after 100 days [72].

A common side effect of mTOR inhibitors is metabolic toxicity. in observational
studies, an incidence of mTOR-inhibitor-related hyperlipidaemia of up to 75% has been
reported [73]. However, most patients experience a mild dyslipidaemia; only a few patients
have moderate or severe increases in triglycerides or cholesterol concentrations. Everolimus
(1.5 mg/day) is associated with significantly lower concentrations of triglycerides and LDL
after 6 months of therapy compared with sirolimus (3.0 mg/day). A review on the inci-
dence of adverse lipid-related events in transplantation studies of everolimus or sirolimus
demonstrated hypertriglyceridaemia in 4% of patients taking everolimus (with reduced- or
standard-dose tacrolimus or cyclosporine) and in 21 to 57% of patients taking sirolimus
(with cyclosporine ± corticosteroids); the incidence of hypercholesterolemia was, respec-
tively, 16% and 20 to 46% [70]. In a meta-analysis of patients with advanced malignancies
treated with mTOR inhibitors (everolimus, temsirolimus, and ridaforolimus) the incidence
rate of hypertriglyceridaemia was 35% (severe hypertriglyceridaemia 3%) and the inci-
dence rate of hypercholesterolemia was 32% (severe hypercholesterolemia 3%) [74]. mTOR
inhibitors (sirolimus and everolimus) have a dose-dependent lipid-increasing effect, that is
greater compared to CNIs. Increased levels of TC, LDL-C, and TG have been reported with
mTOR inhibitor therapy, which are greater than with cyclosporine monotherapy [75]. The
increase in the fraction of sd-LDL turns out to be proportional to the time elapsed since
transplantation [52]. In effect, mTOR inhibitors worsen cyclosporine-induced hypercholes-
terolaemia and steroid-induced hypertriglyceridaemia. Sirolimus works by reducing the
activity of 27-hydroxylase and inhibits the transcription of the gene for the LDL receptor in
hepatic cells, which results in a reduced clearance of LDL [76]. Chronic rapamycin treat-
ment in rats induces glucose and insulin intolerance and downregulates genes implicated
in lipid uptake and storage in adipose tissue [77]. Other mechanisms suggested for the
pathogenesis of mTOR-inhibitor-induced hypertriglyceridaemia are: (1) an upregulation
of the gene CIII A, which is an inhibitor of LPL with a consequent inhibition of TG and
VLDL catabolism leading to hypertriglyceridaemia [60]; (2) an upregulation of adipocyte
fatty-acid-binding protein expression, which may contribute to hypertriglyceridaemia [78];
and (3) a reduced catabolism of lipoproteins containing apo B 100 leading to an elevation in
VLDL concentrations [79]. In patients with mTOR-inhibitor-related severe hypertriglyceri-
daemia, fenofibrate should be considered the drug of first choice; if LDL-C concentrations
are elevated too, a statin therapy could be added under strict surveillance for potential
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drug-related myopathy [80]. Despite optimal therapy for dyslipidaemia, many patients (up
to 50%) with hyperlipidaemia after mTOR inhibitors therapy do not achieve the cholesterol
and triglyceride concentrations recommended by the most prestigious scientific societies.
However, the treatment of transplant patients with drug-induced dyslipidaemia was ad-
dressed in a recent review [81]. The other side of the coin is the protective role played by
some mTOR inhibitors against atherosclerosis and thrombosis. Several pieces of evidence
of the antithrombotic effects of sirolimus and everolimus have been reported. In a recent
review, Arachchillage and Laffan demonstrated that these drugs, by inhibiting the mTOR
complex, prevent endothelial proliferation and intimal hyperplasia in patients affected
by antiphospholipid syndrome (APS). In patients with APS, endothelial proliferation and
intimal hyperplasia lead to microthrombosis, which is one of the main pathological man-
ifestations of APS that occur alone or in combination with large-vessel thrombosis [82].
Moreover, everolimus has been shown to have antithrombotic effects, since it improves
microcirculatory derangements in postischemic pancreatitis experimentally, through the
modulation of the expression of several inflammatory proteins such as interleukin 6, vascu-
lar endothelial growth factor (VEGF) and toll-like receptor 4 [83]. Wenzel at al. suggested
that the early use of mTOR inhibitors may limit the inflammatory increase of IL 6 and
VEGF after ischaemia reperfusion injury [84].

7. All-Trans Retinoic Acid

Acute promyelocytic leukaemia (APL) is the M3 subtype of acute myeloid leukaemia,
characterised by a mutation of the chimeric oncoprotein PML-RARα. Even though a
raised body mass index (BMI) and high prevalence of obesity are reported in patients
with APL, this does not seem to be associated with abnormalities of the lipid profile at the
time of diagnosis [85]. Retinoid hyperlipidaemia has been recognised since the mid-1970s
when synthetic retinoids became available for clinical use, especially in dermatology [86].
All-trans retinoic acid (ATRA) and the trioxide of arsenic (As2O3) have long been used
successfully in treating APL. However, in recent years, a lot of attention has been paid
towards hypertriglyceridaemia induced by ATRA when given for APL. Two mechanisms
have been suggested to explain this. Firstly, the action of ATRA increases lipid synthesis
in the liver, increasing the serum levels of cholesterol and triglycerides. Apo CIII pro-
duction and plasma concentrations are increased in humans on retinoid treatment which
suggests that this effect, at least in part, could participate in the frequently observed hyper-
triglyceridemic effects of ATRA [87]. Secondly, metabolites, comprised of cytokines and
adipokines, produced by APL cells could contribute to ATRA-induced hypertriglyceri-
daemia [88]. Most of the time, ATRA induces a modest hyperlipidaemia controllable with
a correct dietary approach, but sometimes, cases of severe hypertriglyceridaemia (rarely
with pancreatitis) have been reported, requiring a suspension of the drug. In a landmark
study on the use of ATRA for the treatment of newly diagnosed APL, 18% of the patients
developed hypercholesterolemia (9% mild, 9% moderate) and 50% hypertriglyceridaemia
(17% mild, 29% moderate, and 4% severe) [89]. On the other hand, one must consider that
ATRA improves atherosclerosis in Apo-E mice and that ATRA improves insulin sensitivity
and increases lipid catabolism by activating retinoic acid receptor (RAR) and peroxisome
proliferator-activated receptor (PPAR) β/δ in obese mice [90,91].

8. Corticosteroids

Here are just a few words on corticosteroids due to their use as a single agent or the
fact they are added to other drugs in many haematological diseases.

It has been postulated that the chronic use of glucocorticoids can cause secondary dys-
lipidaemia, but the severity of hyperlipidaemia in various clinical conditions is extremely
variable and previous studies have given conflicting results and have been incoherent [92].
Observational studies looking at the use of steroids in the treatment of asthma, rheumatoid
arthritis, or connective tissue diseases have shown increased serum levels of triglycerides,
LDL, and total cholesterol [93]. These diseases are all conditions that require long term use
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of steroids. One study demonstrated that premenopausal women who took steroids for
an average of 3.1 years developed significantly raised total cholesterol and reduced levels
of HDL-C. In contrast, a study looking at female patients with asthma found significantly
increased levels of serum TG but no changes in cholesterol levels [94].

Exposure to systemic steroid therapy, used as a fundamental part of therapeutic
protocols for the treatment of ALL in children, is associated with an increased risk of
developing hypertriglyceridaemia, metabolic syndrome, obesity, and hypertension in adult
life [95].

Potential mechanisms explaining the effects of steroids on the lipid profile are multi-
factorial. Glucocorticoids induce hyperinsulinemia and hepatic insulin resistance. They
stimulate hepatic gluconeogenesis and increase VLDL synthesis contributing to hyper-
triglyceridaemia. Moreover, steroid-induced hyperinsulinemia stimulates an increased rate
of VLDL production and augmented plasma VLDL concentrations [96,97].

9. Anti-CD20

Rituximab is a chimeric monoclonal antibody specific to CD20, an antigen expressed
on B-cells. The efficacy of rituximab for the treatment of non-Hodgkin B-cell lymphoma and
its relative lack of toxicity have brought its use into the majority of treatment protocols for B-
cell lymphoma, as well as a broad spectrum of other B-cell disorders, including autoimmune
diseases and other malignancies. Treatment with rituximab potently suppresses systemic
inflammation, improves the lipid profile and the atherogenic index, and appears to decrease
carotid intima–media thickness [98,99].

However, we must highlight that two subtypes of B-lymphocytes exist, which have
contrasting effects on atherosclerosis: B1 cells are protective against atherosclerosis whereas
B2 cells are proatherogenic. Treatment with rituximab suppresses the atherogenic effect
whilst preserving the atheroprotective aspects of B1 cells, with the consequent inactivation
of T-cells and macrophages, which decreases the production of proinflammatory cytokines
and antibodies and ultimately the oxidation of LDL. The selective inhibition of T-cells could
also indirectly influence endothelial function and prevent major vascular events. A recent
study has demonstrated that a single infusion of rituximab effectively suppresses circulating
mature B-cells after just 30 min following infusion of doses up to 200 mg, suggesting the
feasibility of a “fire and forget” approach, with a rapid modulation of immune responses
during the first critical months following myocardial infarction [100]. Moreover, rituximab
was used in a case of severe acquired autoimmune hypertriglyceridaemia resistant to
traditional triglyceride-lowering therapies and it was observed to reduce plasma anti-LPL
antibody levels and resulted in an improvement of hypertriglyceridaemia [101].

Statin therapy in patients with diffuse large B-cell lymphoma under treatment with
rituximab plus a regimen of cyclophosphamide, doxorubicin, vincristine, and prednisolone
(CHOP) is still debated. Some authors claim that the depletion of cholesterol induced by
statins could determine conformation change in CD20, which could impair the binding
of rituximab to CD20 preventing its killing effect on lymphoma cells [102]. Other studies
suggest that statins could be a therapeutic strategy to ameliorate responses to rituximab
plus CHOP in patients with diffuse large B-cell lymphoma [103].

In conclusion, unlike the other haematological drugs discussed so far, which in most
cases have a negative effect on the lipid profile and atherosclerosis, rituximab appears to
have a favourable effect on lipid balance and ultrasound proxies of atherosclerosis.

10. Conclusions

The present review summarises the principal actions on atherosclerosis and lipid
metabolism of drugs used in the treatment of haematological diseases. Table 2 gives a brief
overview of these pharmacological side effects. However, the magnitude of the effect on
lipid metabolism is quite different among the different haematologic drugs examined in
this review. Although it is not always clear if these effects on lipid metabolism have an
impact on CV outcomes, awareness that drug-induced dyslipidaemia occurs and allowing
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a cost-benefit analysis for each individual patient is essential for a “global” treatment of
haematological disorders.

Table 2. Principal drugs used in haematology which cause dyslipidaemia or vasculopathy.

Name of the Drug
Haematological

Diseases in Which
They Are Used

Mechanism of
Action

Main Effects on
Lipids or

Vasculopathy
Pathogenesis

Treatment
(Lifestyle

Modifications Are
Always Encouraged)

Nilotinib LMC
Second-generation

tyrosine kinase
inhibitor

↑ LDL-C [23]
↑↑ Vascular disease

(PAD) [17–20]

Not fully understood
prothrombotic and

antiangiogenic effects

-Statins
-Vasoactive drugs

-Nilotinib
discontinuation

Ponatinib LMC
Third-generation
tyrosine kinase

inhibitor

↑ Vascular disease
(PAD) [27]

Not fully understood
prothrombotic effects

-Statins
-Vasoactive drugs

-Ponatinib
discontinuation

Ruxolitinib Idiopathic
myelofibrosis JAK1/2 inhibitor ↑↑ TG (together with

sirolimus) [35,36]
Dysregulation of the
leptin receptor [37]

In severe hyperTG:
-Ruxolitinib

discontinuation
-Plasma exchange

PEG-asparaginase LLA Depletion of amino
acid L-asparagine

↑↑ TG (together with
corticosteroids)

[44,45]

↑ VLDL [39]
↓ LPL [40]

-Omega 3
-Fibrates

In severe hyperTG:
-PEG-ASP

discontinuation
-Plasma exchange

Cyclosporine

Prophylaxis of GvHD
after haematopoietic

stem-cell
transplantation,

Castleman disease

Calcineurin inhibitor
↑ LDL [51]
↑TG [51]
↑ sdLDL [60]

↑ Insulin resistance
[54]

↑ Cholesterol
synthesis [55]
↓ Clearance VLDL

[57]
↑ Apo CIII [60]
↓ LPL [58,59]

-Fluvastatin,
pravastatin

-fibrates

Tacrolimus

Prophylaxis of GvHD
after haematopoietic

stem-cell
transplantation

Calcineurin inhibitor ↑ LDL [104]
↑ TG [104]

↑ Insulin resistance
[61]
↓ Akt

phosphorylation [63]
↓ Circ-RNA [62]

-Fluvastatin,
pravastatin

-fibrates

Sirolimus

Prophylaxis of GvHD
after haematopoietic

stem-cell
transplantation;
myelodysplastic

syndrome;
autoimmune

haemolytic anaemia

mTOR inhibitor

↑ TG [60,73,74]
↑ VLDL [79]
↑ sd LDL [52]
↑ LDL [73,74]

↑ Apo CIII [60]
↑ Fatty acid binding

protein [78]
↑ Gluconeogenesis

[77]
↓ LPL activity [75]
↓ Clearance LDL

[75,76]

-Fenofibrate
-Statins

(↑ risk of
rhabdomyolysis)

-Omega-3-acid ethyl
esters

Everolimus

Prophylaxis of GvHD
after haematopoietic

stem-cell
transplantation

mTOR inhibitor

↑ TG [73,75]
↑ VLDL [80]
↑ sd LDL [52]
↑ LDL [75]

↑ Apo CIII [80]
↓ LPL activity [75,80]
↓ Clearance LDL

[75,80]

-Fenofibrate
-Statins

(↑ risk of
rhabdomyolysis)

-Omega-3-acid ethyl
esters

ATRA APL Antineoplastic agent ↑↑ TG [89]
↑ Hepatic TG

synthesis [105]
↑ apo CIII [87]

-Omega-3-acid ethyl
esters

-Fibrates
-ATRA withdrawal

Corticosteroids

Used in conjunction
with other agents in

multiple
haematological

diseases

Anti-inflammatory
steroid

↑ TG [95]
↑= LDL [93,94]

↑ Insulin resistance
[96]

↑ VLDL [97]

-Statins
-Fibrates

Rituximab Non-Hodgkin
lymphomas Anti-CD20 ↓ Carotid IMT [98,99]

↓ TG [101]
Suppression of active

B2 cells [106] Not necessary

Legend: ↑ increase; ↑↑marked increase; ↓ decrease.
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Abbreviations

LDL Low-density lipoproteins
LDL-C Low-density lipoprotein cholesterol
ASCVD Atherosclerotic cardiovascular disease
VLDL Very low density lipoproteins
HDL High-density lipoproteins
HDL-C High-density lipoprotein cholesterol
TG Triglycerides
ART Antiretroviral therapy
HIV Human immunodeficiency virus
PIs Protease inhibitors
NRTIs Nucleoside reverse-transcriptase inhibitors
ALL Acute lymphoblastic leukaemia
CML Chronic myeloid leukaemia
TKIs Tyrosine kinase inhibitors
CV Cardiovascular
PAD Peripheral arterial disease
ABI Ankle brachial index
ApoE Apolipoprotein E
JAK1 Janus kinase 1
TEK Tyrosine kinase, endothelial
ICAM-1 Intercellular adhesion molecule-1
VCAM-1 Vascular cell adhesion molecule-1
LPL Lipoprotein lipase
PCSK-9 Proprotein convertase subtilisin–kexin type 9
GvHD Graft-versus-host disease
JAK2/STAT3 Janus kinase2/signal transducer and activator transcription3
PEG-ASP Pegylated asparaginase
ApoCIII Apolipoprotein CIII
SNP Single nucleotide polymorphisms
ApoA5 Apolipoprotein A5
CNIs Calcineurin inhibitors
ApoB100 Apolipoprotein B100
sdLDL Small dense low-density lipoproteins
HMG-CoA Hydroxymethylglutaryl-CoA
circRNA Circular RNA
miR MicroRNA
SREBP Sterol regulatory element-binding protein
Akt Protein kinase B
mTOR Mammalian target of rapamycin
APS Antiphospholipid syndrome
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VEGF Vascular endothelial growth factor
APL Acute promyelocytic leukaemia
ATRA All-trans retinoic acid
PML Promyelocytic leukaemia gene from chromosome 17
RAR-α Retinoic acid receptor α gene from chromosome 15
PPAR Peroxisome proliferator-activated receptor
CHOP Cyclophosphamide, doxorubicin, vincristine, prednisolone
CD20 Cluster of differentiation 20 (B-lymphocyte antigen)
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