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Abstract

Research problems in the domains of physical, engineering, biological sciences often

span multiple time and length scales, owing to the complexity of information transfer

underlying mechanisms. Multiscale modeling (MSM) and high-performance computing

(HPC) have emerged as indispensable tools for tackling such complex problems. We

review the foundations, historical developments, and current paradigms in MSM. A para-

digm shift in MSM implementations is being fueled by the rapid advances and emerging

paradigms in HPC at the dawn of exascale computing. Moreover, amidst the explosion

of data science, engineering, and medicine, machine learning (ML) integrated with MSM

is poised to enhance the capabilities of standard MSM approaches significantly, particu-

larly in the face of increasing problem complexity. The potential to blend MSM, HPC,

and ML presents opportunities for unbound innovation and promises to represent the

future of MSM and explainable ML that will likely define the fields in the 21st century.
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1 | INTRODUCTION

Scientific research in the 21st century is characterized by research

problems of increasing complexity amidst a data revolution. An ever-

growing number of scientific research problems are now focused on

systems and processes that are complex not only in terms of their

underlying mechanisms and governing principles but also by virtue of

the high-dimensional and heterogeneous data worlds that they live

in. Modeling, simulation, and high-performance computing, alongside

experiments, are indispensable for tackling such problems—numerous

success stories have been published across diverse fields. Nonethe-

less, the unabated increases in complexity and data intensiveness of

modern research problems are now posing three evolving challenges

for training a new generation of researchers to have the right tools to

navigate the emerging challenges. First, many contemporary problems

are now defined over multiple length and time scales (i.e., they are

multiscale) and also by multiple distinct, yet intricately coupled, physi-

cal, chemical, and/or biological processes (they are multiphysics).
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Solving multiscale–multiphysics problems through multiscale modeling

(MSM) methods requires the construction of highly sophisticated

algorithms at different scales, the rigorous coupling of the scales, and

laborious algorithmic implementation using message passing on paral-

lel high-performance computing (HPC) platforms. Second, the associ-

ated increases in data types, data intensiveness, and the types of

questions asked now require more sophisticated approaches for data

analysis, including machine learning (ML) techniques, which are

becoming indispensable in many applications. Third, MSM and ML

approaches have evolved independently, and therefore, the art of

combining them is very much an emerging paradigm. This review arti-

cle describes the convergence of several advances in the scientific lit-

erature that has made the field of MSM what it is today and provides

a perspective of its future, hoping that it would benefit current and

potential researchers navigate and advance the field of MSM.

2 | GOVERNING EQUATIONS FOR
MULTIPHYSICS MODELING

While the considerations above and the motivation to combine MSM

and ML can benefit several disciplines, it is particularly relevant for

chemical, biomolecular, and biological engineers. In our disciplines, the

fundamentals (namely, thermodynamics, kinetics, transport, controls)

have always emphasized molecular to process length and timescales.

These core subjects are rooted in their own foundations, each with its

premise, and a set of governing equations are discipline dependent.

Statistical mechanics drives much of molecular-scale interactions,

quantum mechanics (QM) drives catalytic mechanisms, mesoscopic

scale relevant to advanced functional materials, energy, or cellular

processes are constrained by the laws of transport physics, and foun-

dations of process control and optimization are rooted in applied

mathematics, in particular, in the formal analysis of stability, robust-

ness, evolvability, stochastic effects or noise propagation, and sensi-

tivity analyses.1-4 In this section, we attempt to provide a unified

description of the underlying governing equations in multiphysics

modeling. In Section 3, we summarize how the foundations and the

governing equations have translated into methods and algorithms for

multiphysics modeling and simulations. In Section 4, we discuss HPC,

and in Sections 5 and 6 we discuss the current and future prospects

of MSM. We end with some conclusions in Section 7. We begin by

outlining a summary of historical developments of governing equa-

tions and foundations for multiphysics modeling in Table 1.

Within the foundations of statistical mechanics, any theory based

on bottom-up molecular models or top-down phenomenological

models is developed with the notion of microstates accessible by a

system. The dynamics of the system at this level can be described

based on transitions between microstates. A microstate defines the

complete set of configurations accessible to the system (e.g., positions

and momenta of all the particles/molecules of the system). For molec-

ular systems obeying laws of classical dynamics (Newton's laws), the

microstate of the system with a given set of positions and momenta

at a given time t only depends on the microstate at the immediately

preceding time step. This memory-less feature is a hallmark of a Mar-

kov process, and all Markov processes obey the master equation.23

Note that the Markov process is very general, and the classical

dynamics is just a particular case. The probability of access to a micro-

state defined by a given value of the microstate variables y is denoted

by P(y,t), which is time dependent for a general dynamical process at

nonequilibrium. A set of probability balance equations govern Markov

processes (under certain assumptions), collectively referred to as the

master equation given by

∂P y,tð Þ=∂t=
ð
dy0 w yjy0ð ÞP y0 ,tð Þ−w y0jyð ÞP y,tð Þ½ �: ð1Þ

Here, y and y0 denote different microstates and w(yjy0) is the tran-

sition probability (which is a rate of transition in units of a frequency)

from state y0 to state y.

The Liouville equation in classical dynamics is a particular case of

the continuous version of the master equation where the microstates

are enumerated by the positions and momenta of each particle.24,25

Newtonian dynamics obeys the Liouville equation and the parent

master equation, which is easy to see by recognizing that the ele-

ments of the transition probabilities under Newtonian dynamics are

delta functions and therefore Newtonian dynamics trivially satisfies

the Markov property. Similarly, the Schrödinger equation, which gov-

erns the dynamics of quantum systems is consistent with the quantum

master equation.26 Therefore, the laws of classical and quantum

dynamics are both slaves to the master equation (Equation 1). Neither

the Schrödinger equation nor Newton's equations can predict the

interactions between systems (such as atoms and molecules), for

which one needs to invoke Maxwell's equations to determine the

nature of the potential energy functions.27 Macroscopic conservation

equations can be derived by taking the appropriate moment in

(Equation (1)):

TABLE 1 Historical milestones of governing equations for
multiphysics modeling

1687 Newton5

1838 Liouville6

1838 Navier7

1865 Maxwell8

1870 Boltzmann9

1880 Stokes10

1908 Langevin11

1926 Schrödinger12

1930 Slater13 and Fock14

1931 Kolmogorov15

1931 Onsager16,17

1954 Green18 and Kubo19

1964 Hohenberg and Kohn20

1981 van Kampen21

1997 Jarzynski22
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∂ yh i=∂t=
ð ð

dy dy0 y0−yð Þw y0j yð ÞP y,tð Þ: ð2Þ

Here, hyi represents the average of y over all states, weighted by

the probability of accessing each state. Indeed, a particular case of the

master equation is the Boltzmann equation,28 where the microstates

defined in terms of the positions and momenta of all particles are

reduced to a one-particle (particle j) distribution by integrating over

the remaining n − 1 particles. Here, the operator for the total deriva-

tive d/dt is expressed as the operator for the partial derivative ∂/∂t

plus the convection term u � ∂/∂r, where u is the velocity. The

moments of the Boltzmann equation were derived by Enskog for a

general function yi (here i indexes the particle).28 Substituting y as mi,

the mass of particle i yields the continuity equation, as mivi, the

momentum of particle i yields the momentum components of the

Navier–Stokes equation, and as 1/2 miv2i , the kinetic energy of the

particle, yields the energy equation, which together represents con-

servation equations that are the pillars of continuum hydrodynamics.

Similarly, the rate equations for describing the evolution of species

concentrations of chemical reactions can be obtained by computing

the moment of the number of molecules using an analogous version

of Equation (2) known as the chemical master equation.23

2.1 | Thermal and Brownian effects

One of the main attributes of statistical mechanics of equilibrium and

nonequilibrium systems that differentiate it from traditional hydrody-

namics is that the kinematics and thermal effects have to be treated

with equal importance. It is worth noting that while the thermal

effects and fluctuations are described within the scope of the master

equation (Equation (1)), by taking the moment (average) to derive the

conservation law (Equation (2)), often the thermal effects are averaged

out to produce only a mean-field equation. Indeed, the continuity,

momentum (Navier–Stokes), and energy equations cannot accommo-

date thermal fluctuations that are inherent in Brownian motion even

though such effects are fully accommodated at the level of the parent

master equation. Therefore, nanoscale fluid dynamics must be

approached differently than traditional hydrodynamics.

One approach starts with the mean-field conservation equation,

such as the Boltzmann equation, and adds the thermal fluctuations as a

random forcing term, which results in the Boltzmann–Langevin equa-

tion derived by Bixon and Zwanzig.29 This approach amounts to random

fluctuating terms being added as random stress terms to the Navier–

Stokes equations. The above procedure, referred to as the fluctuating

hydrodynamics approach, was first proposed by Landau and Lifshitz.30

In the fluctuating hydrodynamics formulation, the fluid domain satisfies:

r�u=0,
ρdu=dt= ρ ∂u=∂t+ u�ru½ �=r�σ, ð3Þ

where u and ρ are the velocity and density of the fluid, respectively,

and σ is the stress tensor given by σ = pJ + μ [ru + (ru)T] + S. Here, p

is the pressure, J is the identity tensor, and μ is the dynamic viscosity.

The random stress tensor S is assumed to be a Gaussian white noise

that satisfies:

Sij x,tð Þ� �
=0; Sik x,tð ÞSlm x0,t0ð Þh i=2kBTμ δil δkm + δim δklð Þ δ x−x0ð Þ δ t−t0ð Þ,

ð4Þ

where, h�i denotes an ensemble average, kBT is the Boltzmann con-

stant, T is the absolute temperature, and δij is the Kronecker delta.

The Dirac delta functions δ(x − x0) and δ(t − t0) denote that the com-

ponents of the random stress tensor are spatially and temporally

uncorrelated. The mean and variance of the random stress tensor of

the fluid are chosen to be consistent with the fluctuation–dissipation

theorem.31 By including this stochastic stress tensor due to the ther-

mal fluctuations in the governing equations, the macroscopic hydro-

dynamic theory is generalized to include the relevant physics of the

mesoscopic scales ranging from tens of nanometers to a few microns.

An alternative approach (and one that is different from fluctuating

hydrodynamics) is to start with a form of the master equation referred

to as the Fokker–Planck equation. Formally, the Fokker–Planck equa-

tion is derived from the master equation by expanding w(y0 j y) P(y,t)
as a Taylor series in powers of r = y0 − y. The infinite series is referred

to as the Kramers–Moyal expansion, while the series truncated up to

the second derivative term is known as the Fokker–Planck or the dif-

fusion equation, which is given by23:

∂P y,tð Þ=∂t= −∂=∂y a1 yð ÞP½ �+ ∂2=∂y2 a2 yð ÞP½ �: ð5Þ

Here, an(y) =
Ð
rn w(r) dr. The solution to the Fokker–Planck equa-

tion yields the probability distributions of particles which contain the

information on Brownian effects. At equilibrium (i.e., when all the

time-dependence vanishes), the solution can be required to conform

to the solutions from equilibrium statistical mechanics. This approach

leads to a class of identities for transport coefficients, including the

famous Stokes–Einstein diffusivity for particles undergoing Brownian

motion to be discussed later in this article. Furthermore, there is a

one-to-one correspondence between the Fokker–Planck equation

and a stochastic differential equation (SDE) that describes the trajec-

tory of a Brownian particle. The generalized Fokker–Planck equation

is written in terms of a generalized order parameter (or sometimes

referred to as a collective variables [CVs]) S, given by:

∂P S,tð Þ=∂t= D=kBT½ � ∂=∂S P S,tð Þ ∂F Sð Þ=∂S½ �+D ∂2P S,tð Þ=∂S2, ð6Þ

where F(S) is the free energy density (also referred to as the Landau

free energy) along S,32 D is the diffusion coefficient along S, which is

also related to the an's of the original Fokker–Planck equation, that is,

a2 = 2D. The quantity kBT, which has the units of energy, is called the

Boltzmann factor. Corresponding to every generalized Fokker–Planck

equation (Equation 6), there exists a SDE given by

∂S=∂t= − D=kBT½ � ∂F Sð Þ=∂S+ 2Dð Þ1=2 ξ tð Þ, ð7Þ
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where ξ(t) represents a unit-normalized white noise process. The SDE

encodes for the Brownian dynamics (BD) of the particle in the limit of

zero inertia. When the inertia of the particle is added, the corresponding

equation is often referred to as the Langevin equation.31 In summary,

thermal effects are described in the hydrodynamics framework, either via

the fluctuating hydrodynamics or the BD/Langevin equation approach.

2.2 | Linear response

Thus far, our discussion has not distinguished between a single system

or an interacting system. A general framework for describing its dynam-

ics as well as the equilibrium properties of interacting systems

approaching equilibrium can be understood in light of the linear

response theory, which is the foundation of nonequilibrium thermody-

namics. A system at equilibrium evolving under a Hamiltonian

H experiences a perturbation ΔH = fA, where f is the field variable (such

as an external force), and A is the extensive variable (such as the dis-

placement) that is conjugate to the field. The perturbation throws the

system into a nonequilibrium state, and when the field is switched off,

the system relaxes back to equilibrium in accordance with the regression

process described by Onsager31:

ΔA tð Þ= f=kBTð Þ ΔA 0ð ÞΔA tð Þh i, ð8Þ

where ΔA(t) = A(t) − hAi. The above identity holds under linear

response, when ΔH is small, or equivalently when ΔA(t, λf) = λ ΔA(t, f ).

The most general form to relate the response A to the field f under the

linear response is given by ΔA(t) =
Ð
ς(t – t0)f(t0)dt0. Here, we have further

assumed that physical processes are stationary in the sense that they

do not depend on the absolute time, but only the time elapsed, that is,

ς(t, t0) = ς(t – t0). One can use the linear-response relationship to derive

an equation for the dynamics of a system interacting with a thermal res-

ervoir of fluid (also called a thermal bath). For example, the dynamics of

the particle (in one dimension along the x coordinate for simplicity of

illustration is given by md2U/dt2 = −dV(x)/dx + f, U is the particle veloc-

ity, where V(x) is the potential energy function, and f is an external driv-

ing force including random Brownian forces from the solvent degrees of

freedom. The thermal bath will experience forces fr in the absence of

the particle, and when the particle is introduced, the perturbation will

change the bath forces to f. This change f − fr can be described under

linear response as: Δf(t) = f − fr =
Ð
ςb(t – t0) × x(t0)dt0. Using this relation-

ship, and by performing integration by parts, the particle dynamics may

be written as:

md2U=dt2 = −dV xð Þ=dx+ fr−
ð
ξb t−t0ð ÞU t0ð Þdt0: ð9Þ

Here the subscript b stands for bath, ςb(t) = −dξb/dt, and fr is the

random force from the bath that is memoryless. This form of the

equation for the dynamics of the interacting system is referred to as

the generalized Langevin equation (GLE), and it accounts for the mem-

ory/history forces. We note that while the parent equation (i.e., the

master equation) is Markovian, the memory emerges as we coarse-

grain the timescales to represent the system–bath interactions and is

a consequence of the second law of thermodynamics. One can

recover the Langevin equation from the GLE by assuming that the

memory function in the integral of Equation (9) is a Dirac delta func-

tion. The strength of the random force that drives the fluctuations in

the velocity of a particle (as noted in the above example) is fundamen-

tally related to the coefficient representing the dissipation or friction

present in the surrounding viscous fluid. This is the fluctuation–

dissipation theorem.33 The friction coefficient, ξb, associated is time

dependent and not given by the constant value (given by the Stokes

formula or a drag coefficient). In any description of system dynamics,

and therefore, the mean and the variance of observables under the

thermal fluctuations have to be chosen to be consistent with the

fluctuation–dissipation theorem. In order to achieve thermal equilib-

rium, the correlations between the state variables should be such that

there is an energy balance between the thermal forcing and the dissi-

pation of the system as required by the fluctuation–dissipation theo-

rem.33 Finally, we note that the fluctuation theorems of Crooks and

the Jarzynski relationships for relating equilibrium free energies to

nonequilibrium work can be derived from ratios of the probabilities of

the forward and backward paths of a Markov process.34

2.3 | Equilibrium and transport properties

According to equilibrium statistical mechanics, in a uniform tempera-

ture fluid, the molecular velocities will be Maxwellian, and the energy

components related to the various degrees of freedom will satisfy the

equipartition principle. Thus, the equilibrium probability density func-

tion of each of the Cartesian components of the particle in the above

example Ui, will follow the Maxwell–Boltzmann distribution. Another

important application of the Onsager regression relationship

(Equation 6) is the emergence of a class of relationships that relate

transport properties to correlation functions known as the Green–

Kubo relationships.31,35 These relationships are also a consequence of

the fluctuation–dissipation theorem, take the form:

γ = 1=dð Þ
ð
dt A 0ð Þ �A tð Þh i: ð10Þ

Here, γ is the transport coefficient of interest, t is the time, d is

the dimensionality, A is the current that drives it. The integrand of

Equation (10) is the autocorrelation function of quantity A. One can

calculate the transport coefficients such as diffusion D, shear viscosity

ηs, and thermal conductivity k using the Green–Kubo formula.

3 | ALGORITHMS FOR MULTIPHYSICS
MODELS IN SCIENTIFIC COMPUTING

Numerical analysis in applied mathematics and computational chemis-

try have laid the foundations of much of the algorithms for numerical
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solving the governing equations in multiphysics modeling. A sketch of

the historical developments in the field of numerical analysis that has

laid the foundations for much of scientific computing is provided in

Table 2. Summaries of algorithms (methods) for multiphysics modeling

at different resolutions (length or timescales) are provided in this

section (see also Figure 1). Note that several reviews in the literature

summarize these methods to varying degrees of detail, see, for

example,46 and references therein.

3.1 | Ab initio electronic structure methods

Foundations of electronic structure methods are based on the varia-

tional theorem in QM that states that the exact wave function of the

ground state of a given Hamiltonian alone is the solution of the varia-

tional minimization of the expectation value of the Hamiltonian: mini-

mize hΨjHjΨi subject to hΨjΨi = 1 yields HjΨi = EjΨi. In this manner,

the variational theorem solves the time-independent Schrodinger

equation, which conforms to the quantum master equation, as noted

above. As a practical implementation, one can arrive at very close

approximations to the exact ground-state solution by expanding the

wave function in terms of finite basis sets: jΨi = Σi ci jΦii. Lynchpin
methods that enable the implementation of the variational calculation

for many-electron systems, which are further subject to the con-

straints of Pauli's exclusion principle, are Hartree–Fock methods,14

electronic DFT,47 and higher-order perturbation theory-based

methods.48

Software for quantum chemical calculations are available under

open-source or commercial licenses that make it easy to model

molecular systems using electronic structure methods: https://en.

wikipedia.org/wiki/List_of_quantum_chemistry_and_solid-state_physics_

software. They have been the driving force to parametrize the

force fields of classical simulations such as those in Equation (11)

below.

3.2 | Molecular dynamics

Molecular dynamics (MD) simulation techniques directly solving New-

ton's equations of motion are commonly used to model systems of

biomolecules and biomaterials because they can track individual

atoms and, therefore, answer questions to specific material proper-

ties.49,50 In MD simulations, the starting point is defining the initial

coordinates and initial velocities of the atoms characterizing the

model system, for example, the desired molecule plus the relevant

environment, that is, water molecules or other solvent and/or mem-

branes. The potential of interactions of each of the atoms is calculated

using a force field function, which parameterizes the nonbonded and

bonded interaction terms of each atom depending on its constituent

atom connectivity: bond terms, angle terms, dihedral terms, improper

dihedral terms, nonbonded Lennard-Jones terms, and electrostatic

terms. The potential interactions are summed across all the atoms

contained in the system to compute an overall potential energy:

U R
*� �

=
X
bonds

Kb b−b0ð Þ2 +
X
angles

Kθ θ−θ0ð Þ2

+
X

dihedrals

Kχ 1+ cos ηχ−δð Þð Þ+
X

impropers

Kϕ ϕ−ϕ0ð Þ2

+
X

nonbonded

εij
Rminij

rij

� �12

−
Rminij

rij

� �6
" # !

+
qiqj
ϵrij

: ð11Þ

Constant temperature dynamics are derived by coupling the sys-

tem to a thermostat using well-established formulations such as the

TABLE 2 Historical milestones in numerical analysis and
simulations

1941 Numerical solvers for partial differential equations

(PDE): Hrennikoff36 and Courant37

1947 Numerical linear algebra: von Neumann and

Goldstine38

1953 Monte Carlo method: Metropolis et al39

1960–1970 The finite element method: FEM 1960s and 1970s:

Strang and George40

1970 Electronic structure methods in computational

chemistry: Gaussian is a general-purpose

computational chemistry software package initially

released in 1970 by Pople41

1974–1977 The first molecular dynamics simulation of a realistic

system; the first protein simulations42,43

1970 Development of linear algebra libraries: Linear algebra

package (LAPACK) (https://en.wikipedia.org/wiki/

LAPACK) and basic linear algebra subprograms

(BLAS)44

1980–2010 Development of parallel algorithms for linear algebra,

Fourier transforms, N-body problems, graph theory

(https://cvw.cac.cornell.edu/APC/)

2010–2020 Parallel algorithms for machine learning (https://cvw.

cac.cornell.edu/APC/)

F IGURE 1 Multiphysics simulations and capabilities of current
systems in high-performance computing platforms available to
U.S. researchers such as the extreme science and engineering
discovery environment (XSEDE; xsede.org). This figure is inspired and
remade from a similar figure in Reference 45 [Color figure can be
viewed at wileyonlinelibrary.com]
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Langevin dynamics or the Nose–Hoover methodologies.51 Application

of MD simulations to complex molecules including biomolecules is

facilitated by several popular choices of force fields such as

CHARMM2752 (www.charmm.org), AMBER53 (www.ambermd.org),

and GROMOS54 (www.gromacs.org), as well as dynamic simulations

packages and visualization/analysis tools such as NAMD55 (www.ks.

uiuc.edu/Research/namd/) and VMD56 (www.ks.uiuc.edu/Research/

vmd/). MD simulations for commonly modeled molecules such as pro-

teins, nucleic acids, and carbohydrates that have well-established

force fields can be performed directly using a favorite software pack-

age such as LAMMPS, GROMACS or HOOMD-blue (http://

glotzerlab.engin.umich.edu/hoomd-blue).

3.3 | Monte Carlo methods

In the limit of steady state, the master equation in Equation (1) can

be written in matrix form as WP = P or wijP
e
j =P

e
i in the familiar

Einstein's convention of, where the summation over the repeated

index is implicitly assumed. It is important to recognize is that W is

the entire matrix and wij is the ijth element of the matrix. Note that

wij is the transition probability of migrating from microstate j to i,

consistent with the definition of w in Equation (1). Similarly, P is the

entire vector of probabilities of each microstate, and the ith element

of P is Pi, the probability to access microstate i. Note that here, Pei is

the equilibrium distribution. More generally, if we start with a non-

equilibrium state P(1), here (1) is the initial time and the system transi-

tions to later times and is tracked by (2), (3), and so on, then WP(1) = P

(2), WP(2) = P(3), WP(3) = P(4), …, WP(n) = P(n+ 1), and as n becomes

large, P(n) = P(n+1) = Pe. In a Monte Carlo (MC) simulation, we simu-

late the system by sampling accessible microstates according to their

equilibrium distribution Pe, for example, as given by the Boltzmann

distribution or the appropriate equivalent distribution in different

ensembles (for thermodynamic systems at equilibrium). To achieve

this task, we need to choose a W or all wij that make up the W, such

that Pei = exp(−Ei/kBT)/[Σj exp(−Ej/kBT)] is satisfied. Metropolis et al57

recognized that this could be achieved by choosing wij that satisfy

equation wijP
e
j = P

e
i by imposing a stronger criterion, namely,

Pemwnm =Penwmn , which leads to the Metropolis MC method for sam-

pling microstates of a classical system.

Quantum MC techniques provide a direct and potentially efficient

means for solving the many-body Schrödinger equation of QM.58 The

simplest quantum MC technique, variational MC, is based on a direct

application of MC integration to calculate multidimensional integrals

of expectation values such as the total energy. MC methods are statis-

tical, and a key result is that the value of integrals computed using MC

converges faster than by using conventional methods of numerical

quadrature, once the problem involves more than a few dimensions.

Therefore, statistical methods provide a practical means of solving the

full many-body Schrödinger equation by direct integration, making

only limited and well-controlled approximations.

The kinetic Monte Carlo (KMC) method is a MC method com-

puter simulation intended to simulate the time evolution of processes

that occur with known transition rates among states (such as chemical

reactions or diffusion transport). It is essential to understand that

these rates are inputs to the KMC algorithm; the method itself cannot

predict them. The KMC method is essentially the same as the dynamic

MC method and the Gillespie algorithm.59 From a mathematical stand-

point, solving the master equation for such systems is impossible

owing to the combinatorially large number of accessible microstates,

even considering that the limited number of accessible states renders

the transition probability matrix sparse. The Gillespie algorithm pro-

vides an ingenious way out of this issue. The practical idea behind

KMC is not to attempt to deal with the entire matrix, but instead to

generate stochastic trajectories that propagate the system from state

to state (i.e., a Markovian sequence of discrete hops to random states

happening at random times). From this, the correct time evolution of

the probabilities Pi(t) is then obtained by ensemble averaging over

these trajectories. The KMC algorithm does so by selecting elemen-

tary processes according to their probabilities to fire, followed by an

updating of the time.

3.4 | Particle-based mesoscopic models

Earlier, we outlined the connection between the Boltzmann equation

(a particular case of the master equation) and the continuum transport

equations. However, at the nanoscopic to mesoscopic length scales,

neither the molecular description using MD nor a continuum descrip-

tion based on the Navier–Stokes equation are optimal to study

nanofluid flows. The number of atoms is too large for MD to be com-

putationally tractable. The microscopic-level details, including thermal

fluctuations, play an essential role in demonstrating the dynamic

behavior, an effect which is not readily captured in continuum trans-

port equations. Development of particle-based mesoscale simulation

methods overcomes these difficulties, and the most common coarse-

grained models used to simulate the nanofluid flows are BD, multipa-

rticle collision dynamics,60 and dissipative particle dynamics61-63

methods. The general approach used in all these methods is to aver-

age out relatively insignificant microscopic details in order to obtain

reasonable computational efficiency while preserving the essential

microscopic-level details.

In the BD simulation technique, explicit solvent molecules are

replaced by a stochastic force, and the hydrodynamic forces mediated

by them are accounted for through a hydrodynamic interaction

(HI) kernel. The BD equation thus replaces Newton's equations of

motion in the absence of inertia:

ri = r
0
i +
X
j

DijF
0
j

kBT
Δt+Ri Δtð Þ, ð12Þ

where the superscript 0 denotes the value of the variable at the

beginning of the time step, ri is the position of the ith nanoparticle, Dij

is the diffusion tensor, and Fj refers to the force acting on the jth parti-

cle. The displacement Ri is the unconstrained Brownian displacement

6 of 21 RADHAKRISHNAN

http://www.charmm.org
http://www.ambermd.org
http://www.gromacs.org
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Research/vmd/
http://glotzerlab.engin.umich.edu/hoomd-blue
http://glotzerlab.engin.umich.edu/hoomd-blue


with a white noise having an average value of zero and a covariance

of 2Dijδ tð Þ. The Rotne–Prager–Yamakawa hydrodynamic mobility ten-

sor64,65 is a commonly employed diffusion tensor to approximate the

HIs mediated by the fluid. The trajectories and interactions between

the coarse-grained molecules are calculated using the SDE

(Equation (12)), which is integrated forward in time, allowing for the

study of the temporal evolution and the dynamics of complex fluids.

Stokesian dynamics also represent a class of methods under this

paradigm.66

3.5 | Continuum models based for fluid flows

We summarize two popular approaches, namely the direct numerical

simulations, and lattice Boltzmann methods for solving transport

equations.

In direct numerical simulations, a finite element method such as the

arbitrary Lagrangian–Eulerian technique can be used to directly solve

equations such as Equation (3)) and handle the movement of single-

phase or multiphase domains including particle motions and fluid flow.

An adaptive finite element mesh enables a significantly higher number

of mesh points in the regions of interest (i.e., close to the particle and

wall surfaces compared to the regions farther away). This feature also

keeps the overall mesh size computationally reasonable.67

Vast number of flow applications of the lattice Boltzmann method

(LBM) have been demonstrated by previous researchers.68,69 This

approach's primary strategy is to incorporate the microscopic physical

interactions of the fluid particles in the numerical simulation and

reveal the mesoscale mechanism of hydrodynamics. The LBM uses

the density distribution functions f(xi,vi,t) (similar to the Boltzmann or

Liouville equations) to represent a collection of particles with the

microscopic velocities vi and positions xi at time t, and model the

propagation and collision of particle distribution taking the Boltzmann

equations for flow and temperature fields into consideration. The

LBM solves the discretized Boltzmann equation in velocity space

through the propagation of the particle distribution functions f(x,t)

along with the discrete lattice velocities ei and the collision operation

of the local distributions to be relaxed to the equilibrium distribution

f0i . The collision term is usually simplified to the single-relaxation-time

Bhatnagar–Gross–Krook collision operator, while the more general-

ized multirelaxation-time collision operator can also be adopted to

gain numerical stability. The evolution equation for a set of particle

distribution function with a single relaxation time is defined as:

fi x−Δx,t+Δtð Þ= fi x,tð Þ− Δt=τð Þ fi x,tð Þ− fi
0 x,tð Þ

h i
+ Fs, ð13Þ

is the single-relaxation time scale associated with the rate of relaxa-

tion to the local equilibrium, and Fs is a forcing source term introduced

to account for the discrete external force effect. The macroscopic var-

iables such as density and velocity are then obtained by taking

moments of the distribution function, that is, ρ=Σif
eq
i and. As

explained earlier, through averaging the mass and momentum vari-

ables in the discrete Boltzmann equation, the continuity, and Navier–

Stokes equations may be recovered.

Fluctuating hydrodynamics method: As noted in Equation (4), thermal

fluctuations are included in the equations of hydrodynamics by adding

stochastic components to the stress tensor as white noise in space and

time as prescribed by the fluctuating hydrodynamics method.30,70 Even

though the original equations of fluctuating hydrodynamics are written

in terms of stochastic partial differential equations (PDEs), at a very fun-

damental level, the inclusion of thermal fluctuations always requires the

notion of a mesoscopic cell in order to define the fluctuating quantities.

The fluctuating hydrodynamic equations discretized in terms of finite

element shape functions based on the Delaunay triangulation satisfy

the fluctuation–dissipation theorem. The numerical schemes for

implementing the thermal fluctuations in the fluctuating hydrodynamics

equations are delicate to implement, and obtaining accurate numerical

results is a challenging endeavor.71

4 | PARALLEL AND HIGH-PERFORMANCE
COMPUTING

As noted earlier, a summary of the current capabilities of some of the

multiphysics methods on current computing platforms is provided in

Figure 1. In order to truly leverage the power of these methods in

real-world applications, one needs to utilize parallel and HPC

resources, which we discuss below. In current terms, HPC broadly

involves the use of new architectures (such as graphical processing

unit [GPU] computing), computing in distributed systems, cloud-based

computing, and computing in parallel to massively parallel platforms

or extreme hardware architectures for running computational models

(Figure 2). The term applies especially to systems that function with

large floating-point operations per second or systems requiring exten-

sive memory. HPC has remained a sustained and powerful driving

force for multiphysics modeling and scientific computing and central

to applications in science, engineering, and medicine.

A summary of historical developments in parallel and high-

performance computing architectures is sketched in Table 3. The

switch to parallel microprocessors is a game-changer in the history of

computing.76 The advances in parallel hardware and software

(implementing multiple input multiple date [MIMD] instruction) have

torpedoed the advances in multiphysics and multiresolution simula-

tions. This convergence of high-performance computing and MSM

has transformed parallel algorithms (see Table 2), which are the

engines of multiphysics modeling.

4.1 | Multicore architecture and the decline of
Moore's law

The linear trends in Figure 2 ceases to hold beyond 2007 prediction

due to the power wall in chip architecture. The industry was forced to

find a new paradigm to sustain performance enhancement. The viable
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option was to replace the single power-inefficient processor with

many efficient processors on the same chip, with increasing numbers

of processors, or cores, each technology generation every 2 years.

This style of the chip was labeled a multicore microprocessor. Hence,

the leap to multicore is not based on a breakthrough in programming

or architecture and is a retreat from building power-efficient, high-

clock-rate, single-core chips.76 The emergence of the multicore

architecture in 2005 prompted shared memory architectures and the

establishment of the application programming interface (API), open

multiprocessing (OpenMP) standard, which supports multiplatform

shared memory multiprocessing programming in C, C++, and Fortran

(OpenMP.org).

One of the main drawbacks of MIMD platforms is the high cost

of infrastructure. The alternative to MIMD platforms is single-input

multiple data (SIMD) architectures. The use of GPUs in scientific com-

puting has exploded enabled by programing and instructional lan-

guages like compute unified device architecture (CUDA), a parallel

computing platform and application programming interface or API

model created by Nvidia (https://en.wikipedia.org/wiki/CUDA).

CUDA allows software developers and software engineers to use a

CUDA-enabled GPU for general-purpose processing—an approach

termed GPGPU (general-purpose computing on GPUs). The HPC tech-

nology is rapidly evolving and is synergistic yet complementary to the

development of scientific computing: some useful links on HPC

reviews, training, community, and resources are summarized in

Table 4.

In Table 2, we mentioned the development of parallel algorithms,

which led to a transformation in multiphysics simulations: some exam-

ples include parallel matrix operations and linear algebra (https://cvw.

cac.cornell.edu/APC/); parallel implementation of the N-body problem

with short-range interactions (https://cvw.cac.cornell.edu/APC/);

long-range interactions and the parallel particle-mesh Ewald sum81;

parallel MC82; linear-scaling methods such as multipole expansion81;

linear-scaling DFT83; parallel graph algorithms (https://cvw.cac.

cornell.edu/APC/). As a specific example, we note that the N-body

problem is an essential ingredient in MD. A common goal in MD of

large systems is to perform sufficient sampling of the combinatorially

F IGURE 2 (Top) High-performance computing (HPC) paradigms—
current and future; (bottom) Moore's law and the slow down due to
the power wall. This figure is inspired and remade from a similar figure
in Reference 72 [Color figure can be viewed at
wileyonlinelibrary.com]

TABLE 3 Historical milestones in parallel computing architectures

1842 Parallelism in computing: Menabrea73

1958–1970 Parallel computers: Burroughs et al74

1992 Message passing interface as a standard for

communication across compute nodes in inherently

and massively parallel architectures75

2005 Establishment of multicore architecture by Intel and

others to circumvent the power wall inhibiting

Moore's law; standardization of OpenMP (doi:

10.1145/1562764.1562783) (see OpenMP.org)

2007 Release of CUDA: parallel computing platform and

application programming interface (API) for graphics

processing units (GPUs)

TABLE 4 Resources on high-performance computing (HPC)
training, resources, community

Parallel computing: Krste Asanovi�c et al77

GPU computing: Prandi78

Cloud computing: Griebel et al79

HPC virtual workshops and virtual training: https://cvw.cac.cornell.edu/

topics

HPC resources: Exascale computing project (https://www.

exascaleproject.org/); the extreme science and engineering

discovery environment (XSEDE) (https://www.xsede.org); National

Science Foundation advanced cyber infrastructure (https://www.

nsf.gov/div/index.jsp?div=OAC)

HPC conferences: PEARC (Practice and Experience in Advances in

Research and Computing) (https://www.pearc.org/);

supercomputing (http://supercomputing.org)

HPC and industry: Intel (https://www.intel.com/content/www/us/en/

high-performance-computing/overview.html); IBM (https://www.

ibm.com/cloud-computing/xx-en/solutions/high-performance-

computing-cloud/); Google (https://cloud.google.com/solutions/

hpc/); Amazon (https://aws.amazon.com/hpc/)

Quantum computing: Steane80; quantum computing emulator on

Amazon: (https://aws.amazon.com/braket/)
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large number of conformations available to even the simplest of bio-

molecules.42,84 In this respect, a potential disadvantage of MD calcula-

tions is that there is an inherent limitation upon the maximum time

step used for the simulation (≤2 fs). Solvated systems of biomolecules

typically consist of 105–106 atoms. For such system sizes, with cur-

rent hardware and software, simulation times extending into the tens

of microseconds regime is an exceedingly labor-intensive and chal-

lenging endeavor that requires a combination of algorithmic enhance-

ments as well as the utilization of high-performance computing

hardware infrastructure. For example, cutoff distances reduce the

number of interactions to be computed without loss of accuracy for

short-range interactions but not for long-range (electrostatic) interac-

tions; long-range corrections such as the particle-mesh Ewald algo-

rithm85 along with periodic boundary conditions are typically

implemented for maintaining accuracy. Parallelization techniques

enable the execution of the simulations on supercomputing resources

such as 4,096 processors of a networked Linux cluster. Although a

cluster of this size is a big investment, its accessibility is feasible

through the extreme science and engineering discovery environment

(XSEDE) for academic researchers. XSEDE resources (www.xsede.org)

currently include petaflop of computing capability, and other

U.S. national laboratories such as the Oakridge are moving toward

exascale computing (https://www.exascaleproject.org).86 Another

approach, capitalizing on advances in hardware architecture, is creat-

ing custom hardware for MD simulations, and offers one to two

orders of magnitude enhancement in performance; examples include

MDGRAPE-387,88 and ANTON.89,90 GPU-accelerated computation

has recently come into the forefront to enable massive speed

enhancements for easily parallelizable tasks with early data indicating

that GPU-accelerated computing may allow for the power of a super-

computing cluster in a desktop, see for example, References 91

and 92.

5 | MULTISCALE MODELING 1.0

The acceptance of multiphysics simulation techniques has helped

bridge the gap between theory and experiment.93 Electronic structure

(quantum level or ab initio) simulations can reveal how specific mole-

cules assume stable geometrical configurations and charge distribu-

tions when subject to a specific chemical environment. By examining

the charge distributions and structure, it is possible to quantify and

predict structural properties as well as chemical reactivity pertaining

to the molecule, which is particularly pertinent when investigating

novel materials. Although the quantum simulations provide a wealth

of information regarding structure and reactivity, it is currently not

possible to model much more than a few hundred atoms at most. MD

simulations based on classical (empirical) force fields can model hun-

dreds of thousands of atoms for tens of microseconds in time. Since

MD simulations can be set up at atomic resolution, they are uniquely

suited to examine thermodynamic and statistical properties of (bio)

materials: such properties include (but not limited to) Young's modu-

lus, surface hydration energies, and protein adsorption to different

surfaces.94 Coarse-grained or mesoscale simulations are used to

bridge the gap between the atomistic scale of MD simulations and

continuum approaches such as elasticity theory or hydrodynamics at

the macroscale (i.e., milliseconds, millimeters, and beyond).93

The ultimate purpose of MSM is to predict the macroscopic

behavior from the first principles. Finding appropriate protocols for

multiscale simulations is also challenging as either multiphysics simula-

tions need to operate at multiple resolutions, or two or more multi-

physics simulations need to be combined. In general, these are

achieved via adaptive resolution schemes, coarse-graining, sequential

MSM, concurrent MSM, and enhanced sampling schemes,46,95 see

Table 5.

The sequential approach links a series of computational schemes

in which the operative methods at a larger scale utilize the coarse-

grained (CG) representations based on detailed information attained

from smaller-scale methods. Sequential approaches are also known as

implicit or serial methods. The second group of multiscale approaches,

the concurrent methods, is designed to bridge multiple individual

scales in a combined model. Such a model accounts for the different

scales involved in a physical problem concurrently and incorporates

some sort of a handshaking procedure to communicate between the

scales. Concurrent methods are also called parallel or explicit

approaches. Another concept for multiscale simulations is adaptive

resolution simulations. Finally, a number of advanced techniques allow

for extending the reach of a single-scale technique such as MD within

certain conditions. Such methods offer a route to temporal MSM

through enhanced conformational sampling strategies. While these

are a lot to review in detail, we summarize these methods into the

subclasses followed by references (Table 5) and choose to highlight

TABLE 5 Recipes for multiscale modeling

Enhanced sampling
methods24

Adaptive resolution methods

Umbrella sampling57 Multiple time step molecular

dynamics96

Parallel tempering24 Multigrid PDE solvers71,97

Metadynamics98 Dual resolution46

Path sampling99 Equation free methods100,101

Coarse graining
methods102,103

Concurrent multiscale methods

Structure matching

method104
QM/MM methods105

Force matching methods106 MM/CG methods107

Energy matching

methods108
CG/CM methods46

Sequential multiscale
methods

Field-based methods

Parameter passing

methods109
Classical density functional

theory110,111

Particle to field passing112 Polymer field theory113

Loosely coupled process

flow114,115

Memory-function approach to

hydrodynamics116
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just some of the more foundational methods below. There is an entire

journal dedicated to MSM, Multiscale Modeling and Simulation (https://

www.siam.org/journals/mms.php).

5.1 | Enhanced sampling methods

The second law of thermodynamics states that natural systems seek a

state of minimum free energy at equilibrium. Thus, the computation

of a system's free energy is essential in comparing the results of simu-

lation and experiment. Several different methods have been

implemented for the calculation of the free energy of various chemical

and biomolecular systems, and here we will discuss three of the more

commonly employed techniques, namely, the free energy perturbation

method117 and umbrella sampling,24 and metadynamics.

Free energy perturbation: In molecular systems, the free energy

problem is typically presented in terms of computing a free energy dif-

ference, ΔF, between two defined thermodynamic states, for example,

a ligand-bound versus unbound molecule. The free energy difference

between the two states is expressed as118:

ΔF = −
1
β
ln exp −βΔV xð Þ½ �h i0;β =

1
kBT

, ð14Þ

where the subscript zero indicates configurational averaging over the

ensemble of configurations representative of the initial state of the

system, kB is the Boltzmann constant, T is the temperature, and V(x) is

the potential energy function that depends on the Cartesian coordi-

nates of the system, (x). ΔF can also be computed by the reverse

integration:

ΔF = −
1
β
ln exp −βΔV xð Þ½ �h i1, ð15Þ

where the subscript one indicates averaging over the ensemble of

configurations representative of the final state of the system. How-

ever, for systems where the free energy difference is significantly

larger, a series of intermediate states must be defined and must differ

by no more than 2kBT. The total ΔF can then be computed by sum-

ming the ΔFs between the intermediate states:

ΔF = −
1
β

XM+1

i=1

ln exp −β V x;λi+1ð Þ−V x;λið Þ½ �½ �h iλi , ð16Þ

where M indicates the number of intermediate states, and λ is the

coupling parameter, a continuous parameter that marks the extent of

the transition from the initial to the final state. As λ is varied from

0 (initial state) to 1 (final state), the potential energy function V(x; λ)

passes from V0 to V1.

Umbrella sampling: This procedure enables the calculation of the

free energy density or potential of mean force (PMF) along an a priori

chosen set of reaction coordinates or order parameters, from which

free energy changes can be calculated by numerical integration, see,

for example, Reference 31. For the free energy calculation, the proba-

bility distribution P(S) is calculated by dividing the range of order

parameter S into several windows. The histograms for each window

are collected by harvesting and binning trajectories in that window,

from which the PMF Λ(S) is calculated; the PMF Λ(S) is given by Chan-

dler119 and Bartels and Karplus,120

Λ Sð Þ= −kBT ln P Sð Þð Þ+Constant;then,exp −βΔFð Þ=
ð
exp −βΛi Sð Þð ÞdS:

ð17Þ

The functions Λ(S) in different windows are pieced together by

matching the constants such that the Λ function is continuous at the

boundaries of the windows. Thus, the arbitrary constant associated

with each window is adjusted to make the Λ function continuous.

Note that Λ(S) here is the same function as F(S) in Equation (6). The

error in each window of the PMF calculations is estimated by dividing

the set of trajectories into two blocks and collecting separate histo-

grams. The calculation of the multidimensional PMF (multiple reaction

coordinates) using the weighted histogram analysis method reviewed

by Roux,121 which enables an easy and accurate recipe for unbiasing

and combining the results of umbrella sampling calculations, which

simplifies considerably, the task of recombining the various windows

of sampling in complex systems and computing ΔF.

Metadynamics: In metadynamics, the equations of motion are aug-

mented by a history-dependent potential V(S,t) = kBΔT[1 + N(S,t)/τ],

where N(S,t) represents the histograms of previously visited configura-

tions up to time t. With this choice of the biasing potential, the evolu-

tion equation of V is derived and is solved together with the equation

of motion. One can show that the unbiased free energy can be con-

structed from the biased dynamics using the equation F(S) = [(T + ΔT)/

ΔT]V(S). Metadynamics accelerates rare events along chosen CVs S.

Well-tempered metadynamics98,122 is widely used to sample the

large-scale configurational space between the configurations in large

biomolecular systems.

Methods for determining reaction paths: Path-based methodologies

seek to describe transition pathways connecting two well-defined

states123-125; practical applications of this ideology are available

through methods such as stochastic path approach,126 nudged elastic

band,127-129 finite temperature string,130 and transition path

sampling,99,131,132 which each exploit the separation in timescales in

activated processes, namely, the existence of a shorter time scale of

relaxation at the kinetic bottle neck or the transition state (τrelax), in

comparison with a much longer timescale of activation at the transi-

tion state itself (τTS). Below, we review the path-based method of

transition path sampling.

Transition path sampling99,131 aims to capture rare events (excur-

sions or jumps between metastable basins in the free energy land-

scape) in molecular processes by essentially performing MC sampling

of dynamics trajectories; the acceptance or rejection criteria are

determined by selected statistical objectives that characterize the

ensemble of trajectories. In transition path sampling, time-reversible

MD trajectories in each transition state region are harvested using the
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shooting algorithm132 to connect two metastable states via a MC pro-

tocol in trajectory space. Essentially, for a given dynamics trajectory,

the state of the system (i.e., Basin A or B) is characterized by defining

a set of order parameters χ = [χ1, χ2, …]. Each trajectory is expressed

as a time series of length τ. To formally identify a basin, the population

operator hA = 1 if and only if a particular molecular configuration asso-

ciated with a time t of a trajectory belongs to Basin A; otherwise

hA = 0. The trajectory operator HB = 1 if and only if the trajectory

visits Basin B in duration τ, that is, there is at least one time slice for

which hB = 1; otherwise HB = 0. The idea in transition path sampling is

to generate many trajectories that connect A to B from one such exis-

ting pathway. This is accomplished by a Metropolis algorithm that

generates an ensemble of trajectories [χτ] according to a path action S

[χτ] given by S[χτ] = ρ(0)hA(χ0)HB[χ
τ], where ρ(0) is the probability of

observing the configuration at t = 0 (ρ(0)/exp(−E(0)/kBT), in the

canonical ensemble). Trajectories are harvested using the shooting

algorithm132: a new trajectory χ*τ is generated from an existing one χτ

by perturbing the momenta of atoms at a randomly chosen time t in a

symmetric manner,132 that is, by conserving detailed balance. The per-

turbation scheme is symmetric, that is, the probability of generating a

new set of momenta from the old set is the same as the reverse prob-

ability. Moreover, the scheme conserves the equilibrium distribution

of momenta and the total linear momentum (and, if desired, the total

angular momentum). The acceptance probability implied by the above

procedure is given by Pacc = min(1, S[χ*τ]/S[χτ]). With sufficient sam-

pling in trajectory space, the protocol converges to yield physically

meaningful trajectories passing through the true transition-state (sad-

dle) region.

5.2 | Coarse graining

Coarse-grained molecular dynamics (CGMD) simulations employ inter-

mediate resolution in order to balance chemical detail with system

size. They offer sufficient size to study membrane-remodeling events

while retaining the ability to self-assemble. Because they are capable

of simulating mesoscopic length scales, they make contact with a

wider variety of experiments. A complete coarse-grained model must

include two components: a mapping from atomistic structures to

coarse-grained beads and a set of potentials that describe the interac-

tions between beads. The former defines the geometry or length scale

of the resulting model, while the latter defines the potential energy

function or the force field. The parameterization of the force field is

essential to the performance of the model, which is only relevant inso-

far as it can reproduce experimental observables. Here we will

describe the characteristic methods for developing CGMD models,

namely, the bottom-up structure- and force-matching and top-down

free energy-based approaches. We note that excellent reviews have

been written on coarse-grained methods with applications in other

fields such as polymer physics, see, for example, Reference 102.

Structure and energy matching: Klein and coworkers developed a

coarse-grained model for phospholipid bilayers by matching the struc-

tural and thermodynamic properties of water, hydrocarbons, and lipid

amphiphile to experimental measurements and all-atom simula-

tions.133 The resulting force field, titled CMM-CG, has been used to

investigate a range of polymer systems as well as those containing

nonionic liquids and lipids. Classic coarse-grained methods propose

pair potentials between CG beads according to the Boltzmann inver-

sion method. In this method, a pair correlation function, or radial dis-

tribution function g(r) defines the probability of finding a particle at

distance r from a reference particle such that the conditional probabil-

ity of finding the particle is ρ(r) = ρg(r), where ρ is the average number

density of the fluid. The PMF between CG beads is then estimated by

Equation (18) where gaa(r) is measured from atomistic simulation, and

αn is a scaling factor (corresponding to the nth iteration of the esti-

mate) designed to include the effect of interactions with the (neces-

sarily) heterogeneous environment.

Vn rð Þ= αn −kBTln gaa rð Þð Þf g: ð18Þ

The Boltzmann inversion method is iteratively corrected

according to Equation (19) to correct the tabulated potentials until the

pair-correlation functions for the atomistic and coarse-grained sys-

tems agree.

Vn+1 rð Þ=Vn rð Þ+ kBTlngn rð Þ
gaa rð Þ

: ð19Þ

Force matching: The method of force matching provides a rigorous

route to developing a coarse-grained force field directly from forces

measured in all-atom simulations. In so far as the multibody coarse-

grained PMF is derived from structure factors that depend on temper-

ature, pressure, and composition, they cannot be transferred to new

systems. To avoid this problem, the force-matching approach pro-

poses a variational method in which a coarse-grained force field is sys-

tematically developed from all-atom simulations under the correct

thermodynamic ensemble.134 In the statistical framework developed

by Izvekov and Voth,134-136 it is possible to develop the exact many-

body coarse-grained PMF from a trajectory of atomistic forces with a

sufficiently detailed set of basis functions.

The method starts with a collection of sampled configurations

from an atomistic simulation of the target system and calculates the

reference forces between atoms of a particular type. After

decomposing their target force into a short-ranged part approximated

by a cubic spline and a long-ranged Coulomb part one solves the over-

determined set of linear equations given by Equation (20):

XK
β =1

XNβ

j=1

− f rαil,βjl, rαβ,κ
� 	

, fαβ,κ
� 	

, f 00αβ,κ
n o� �

−
qαβ
r2αil,βjl

 !
nαil,βjl = F

ref
αil : ð20Þ

In Equation (20), the rαβ,κ correspond to the spline mesh at points

κ for pairs of atoms of types α and β, while f and f00 are spline parame-

ters that ensure continuous derivatives f0(r) at the mesh points and

define the short-ranged part of the force. The subscript αil labels the

ith atom of type α in the lth sampled atomic configuration. Solving

RADHAKRISHNAN 11 of 21



these equations minimizes the Euclidean norm of vectors of residuals

and can be solved on a minimal set of atomistic snapshots using a sin-

gular value decomposition algorithm. By adding the Coulomb term to

the short-ranged potential above, this technique allows for the inclu-

sion of explicit electrostatics. The method reproduces site-to-site

radial distribution functions from atomistic MD simulations in the as

well as the density profiles in inhomogeneous systems such as lipid

bilayers.

The energy-based approach of the Martini force field: The Martini

force field developed by Marrink and coworkers eschews systematic

structure-matching in pursuit of a maximally transferable force field

which is parameterized in a “top-down” manner, designed to encode

information about the free energy of the chemical components,

thereby increasing the range of thermodynamic ensembles over which

the model is valid.108

The Martini model employs a four-to-one mapping of water and

non-hydrogen atoms onto a single a bead, except in ring-like struc-

tures, which preserve geometry with a finer-scale mapping. Molecules

are built from relatively few bead types, which are categorized by

polarity (polar, nonpolar, apolar, and charged). Each type is further dis-

tinguished by hydrogen bonding capabilities (donor, acceptor, both, or

none) as well as a score describing the level of polarity. Like the

methods described above, Lennard-Jones parameters for nonbonded

interactions are tuned for each pair of particles. These potentials are

shifted to mimic a distance-dependent screening effect and increase

computational efficiency. Charged groups interact via a Coulomb

potential with a low relative dielectric for explicit screening. This

choice allows the use of full charges while reproducing salt structure

factors seen in previous atomistic as well as the hydration shell identi-

fied by neutron diffraction studies. Nonbonded interactions for all

bead types are tuned to semi-quantitatively match measurements of

density and compressibility. Bonded interactions are specified by

potential energy functions that model bonds, angles, dihedrals with

harmonic functions, with relatively weak force constants to match the

flexibility of target molecules at the fine-grained resolutions. The Mar-

tini force field's defining feature is the selection of nonbonded param-

eters that are optimized to reproduce thermodynamic measurements

in the condensed phase. Specifically, the Martini model semi-

quantitatively reproduces the free energy of hydration, the free

energy of vaporization, and the partitioning free energies between

water and a collection of organic phases, obtained from the equilib-

rium densities in both phases.108

5.3 | Minimal coupling methods

Minimal coupling methods minimize explicit and concurrent communi-

cation across scales via a variety of clever algorithmic or software

architecture tricks and represent a power repertoire of multiscale

methods. There are numerous techniques in this popular category,

and we chose not to delve into any of them in detail. A few of the

methods in these categories are listed along with their references in

Table 5 under sequential multiscale methods and adaptive resolution

methods. Sequential methods involve computing a property or a con-

stitutive relationship at one (typically the molecular) scale and

employing (either pre- or on-the-fly-) computed values in the other

(typically the continuum scale).121,125,126

5.4 | Concurrent multiscale methods

The concurrent approaches couple two or more methods and execute

them simultaneously with continuous information transfer across

scales in contrast to the minimal coupling methods that attempt to do

the opposite. In this class of methods, the behavior at each scale

depends strongly on the phenomena at other scales. A successful

algorithm in the concurrent method implements a smooth coupling

between the scales. In concurrent simulations, often, two distinct

domains with different scales are linked together through a buffer or

overlap region called the handshake region.46

Quantum mechanics/molecular mechanics (QM/MM) simulations:

An example of concurrent include mixed QM/MM methods combin-

ing MD using the empirical force field approach with electronic struc-

ture methods47,48,137 to produce a concurrent multiscale

method.105,138-149 In the QM/MM simulations, the system is sub-

divided into two subregions, the QM subregion (QM region) where

the reactive events take place, and the MM subregion (which provides

the complete environment around the reactive chemistry).139,141

Since electronic structure methods are limited by the number of

atoms they can handle (typically 50–500), the QM subregion is

restricted to a small number of atoms of the total system. For exam-

ple, in an enzymatic system, the quantum region can consist of Mg2+

ions, water molecules within 3 Å of the Mg2+ ions, parts of the sub-

strate molecules, and the catalytic amino acid residues (such as

aspartic acids). The remaining protein and solvent molecules are

treated classically using the regular classical force field.

In QM/MM simulations, wave function optimizations are typi-

cally performed in the quantum (or QM) subregion of the system

using an electronic structure method such as DFT.47 In this step, the

electrostatic coupling between the QM and the MM subregions is

accounted for, that is, the charges in the MM subregion are allowed

to polarize the electronic wave functions in the QM subregion. The

forces in the quantum subregion are calculated using DFT on-the-fly,

assuming that the system moves on the Born–Oppenheimer sur-

face.141,150 That is, we assume a clear timescale of separation

between the electronic and nuclear degrees of freedom and the elec-

tronic degrees of freedom are in their ground state around the instan-

taneous configurations of the nuclei. The forces on the classical

region are calculated using a classical force field. Besides, a mixed

Hamiltonian (energy function) accounts for the interaction of the

classical and the quantum subregions. For example, since the

QM/MM boundary often cuts across covalent bonds, one can use a

link atom procedure144 to satisfy the valences of broken bonds in the

QM subregion. Also, bonded terms and electrostatic terms between

the atoms of the QM region and those of the classical region are typi-

cally included.142
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From a practitioner's standpoint, QM/MM methods are

implemented based on existing interfaces between the electronic struc-

ture and the MD programs; one example implementation is between

GAMESS-UK151 (an ab initio electronic structure prediction package)

and CHARMM.52 The model system can then be subjected to the usual

energy minimization and constant temperature equilibration runs at the

desired temperature using the regular integration procedures in opera-

tion for pure MM systems; it is customary to carry out QM/MM

dynamics runs (typically limited to 10–100 × 10−12 s because of the

computationally intensive electronic structure calculations) using a stan-

dard 1-fs time step of integration. The main advantage of the QM/MM

simulations is that one can follow reactive events and dissect reaction

mechanisms in the active site while considering the explicit coupling to

the extended region. In practice, sufficient experience and care are

needed in the choices of the QM subregion, and the many alternative

choices of system sizes, as well as the link-atom schemes, need to be

compared to ensure convergence and accuracy of results.142 The

shorter length of the dynamics runs in the QM/MM simulations

(10−12 s) relative to the MD simulations (10−9 s) implies that sufficiently

high-resolution structures are usually necessary for setting up such runs

as the simulations only explore a limited conformational space available

to the system. Another challenge is an accurate and reliable representa-

tion of the mixed QM/MM interaction terms.145 These challenges are

currently being overcome by the suitable design of next-generation

methods for electronic structure and MM simulations.83,152 Other

examples of concurrent methods linking electronic structure and or

MM scales include Car–Parrinello MD153,154 and mixed molecular

mechanics/coarse-grained (MM/CG).107,155

Linking atomistic and continuum models: In several applications

involving solving continuum equations in fluid and solid mechanics,

there is a need to treat a small domain at finer (often molecular or

particle-based resolution) to avoid sharp fronts or even singularities. In

such cases linking atomistic and continuum domains using bridging algo-

rithms are necessary. A class of algorithms that realize this challenging

integration have been reviewed in Reference 46: examples include the

quasicontinuum approach, finite-element/atomistic method, bridging

scale method, and the Schwartz inequality method,156,157 which all

employ domain decomposition bridging by performing molecular scale

modeling in one (typically a small domain) and integrating it with contin-

uum modeling in an adjoining (larger) domain, such that certain con-

straints (boundary conditions) are satisfied self-consistently at the

boundary separating the two domains. Such approaches are useful for

treating various problems involving contact lines.

5.5 | Field-based coarse-graining

For specific systems such as nanoparticle and nanofluid transport, both

molecular interactions (due to biomolecular recognition) and HIs (due to

fluid flow and boundary effects) are significant. The integration of dispa-

rate length and time scales does not fit traditional multiscale methods.

The complexity lies in integrating fluid flow and memory for multiphase

flow in complex and arbitrary geometries, while simultaneously

including thermal and stochastic effects to simulate quasi-equilibrium

distributions correctly to enable receptor–ligand binding at the physio-

logical temperature. This issue is ubiquitous in multivalent binding or

adhesive interactions between nanoparticles and cells or between two

cells. Bridging the multiple length scales (from meso to molecular) and

the associated time scales relevant to the problem is essential to suc-

cess herein. Multiple macroscopic and mesoscopic time scales

governing the problem include (a) hydrodynamic time scale, (b) viscous/

Brownian relaxation time scale, and (c) Brownian diffusion time scale.

Memory function approach to coarse-graining with HIs: In the

description of the dynamics of nanosized Brownian particles in an

bounded and unbounded fluid domains the memory functions decay

with algebraic correlations as enumerated by theoretical and compu-

tational studies.71,116,158 The equation of stochastic motion for each

component of the velocity of a nanoparticle immersed in a fluid in

bounded and unbounded domains takes the form of a GLE of the form

of Equation (9); to account for HI, a composite GLE was

introduced.159,160

M
dU x,tð Þ

dt
= −6πηβU x,tð Þ−A1 tð Þ

ðt
−∞

t−t0j j−3=2U x,t0ð Þdt0
� �

−A2 tð Þ
ðt
−∞

t−t0j j−5=2U x,t0ð Þdt0
� �

−
dF
dx

+R tð Þ:
ð21Þ

Here M is the added mass, and β is the geometric factor with wall

effect corrections, the integrands include the memory functions associated

with the velocity autocorrelation functions in different domains (lubrica-

tion, bulk, and near-wall regimes in order of the first three terms on the

right-hand side). The fourth term on the right-hand side is the force from

other thermodynamic potentials, same as F(S) in Equation (7), and the fifth

term is the random force term with colored noise to be consistent with

the fluctuation–dissipation theorem for composite GLE.159,160

Effect of molecular forces is introduced as forcing functions in

the GLE159 and the effect of multiple particles including multiparticle

HI can be introduced via DFT-based treatments110,111 to define F(S)

from hydrodynamic and colloidal effects in addition to the specific

contributions from molecular forces. If the memory functions are

unknown, they can be obtained via deterministic approaches by solv-

ing the continuum hydrodynamic equations numerically.71,158 These

disparate hydrodynamic fields and molecular forces can be integrated

into a single GLE to realize a unified description of particle dynamics

under the influence of molecular and hydrodynamic forces.116

Another approach to integrating these forces is via the Fokker Planck

approach using the sequential multiscale method paradigm.161

6 | MULTISCALE MODELING 2.0

6.1 | Integrating MSM and ML to elucidate the
emergence of function in complex systems

We are riding the wave of a paradigm shift in the development of

MSM methods due to rapid development and changes in HPC
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infrastructure (see Figure 2) and advances in ML methods. Thus, MSM

and HPC have emerged as essential tools for modeling complex prob-

lems at the microscopic scales with a focus on leveraging the struc-

tured and embedded physical laws to gain a mechanism-based

understanding. This success notwithstanding, the design of new MSM

algorithms in coupling different scales, data utilization, and their

implementation on HPC is becoming increasingly cumbersome in the

face of heterogeneous data availability and rapidly evolving HPC

architectures and platforms. On the other hand, while purely data-

driven models of molecular and cellular systems spawned by the tech-

niques of data science,162-164 and in particular, ML methods including

deep learning methods,165-167 are easy to train and implement, the

underlying model manifests as a black box. This general approach

taken by the ML community is well suited for classification, learning,

and regression problems, but suffers from limitations in interpretabil-

ity and explainability, especially when mechanism-based understand-

ing is a primary goal. There lies a vast potential in combining MSM,

HPC, and ML methods with their complementary strengths.4 MSM

models are routinely coupled together by appropriately propagating

information across scales (see Section 5), while the ever-increasing

advances in hardware capabilities and high-performance software

implementations allows us to study increasingly more complex phe-

nomena at a higher fidelity and higher resolution. While much of the

discussion thus far has been focused on MSM and HPC methods, the

progress and potential in integrating MSM and ML are discussed

below and represent the forefront of emerging MSM research, in

which we discuss a few emerging integrative approaches to combine

ML and MSM.

6.2 | Integrators and autotuning

Over the past two decades, MSM has emerged into a promising tool

to build in silico predictive models by systematically integrating

knowledge from the tissue, cellular, and molecular level. Depending

on the scale of interest, governing equations in each scale of the

MSM approaches may fall into two categories, ordinary differential

equation-based and PDE-based approaches. Examples include MD,49

coarse-grained mesoscale models,103 lattice Boltzmann methods,68

immersed boundary methods,168 as well as classical finite element

approaches.169 ML-based methods can speed up, optimize, and

autotune several of the existing solvers for multiphysics

simulations.170,171

6.3 | ML-enabled MSM

As noted earlier, one of the main objectives of MSM is to couple the

physics at different scales using bridging algorithms that pass informa-

tion between two scales, such as in QM/MM, MM/CG, coarse-

grained continuum (CG/CM), and field-based methods discussed in

Section 5. However, the implementation of this methodology on par-

allel supercomputing HPC architectures is complicated and

cumbersome. To address this significant limitation in implementation,

we advocate for an ML-enabled integration or bridging of scales as a

viable approach to develop the next-generation of MSM methods to

achieve maximal efficiency and flexibility in integrating scales.

Here one can leverage ongoing developments in ML to accelerate

the prediction of large-scale computational models. As a viable path

forward, ML workflow can be implemented in three steps (see

Figure 3)4: (1) train deep neural network (NN) encoders that connect

properties of the MSM model at Scale 1 (e.g., MD or MC) to those at

Scale 2 (e.g., continuum model), using explicit MSM computations

overextended parameter sets to cover all possible conditions;

(2) implement the encoders in place of the coupling algorithms to

bridge Scales 1 and 2; (3) ensure that the properties profiles obtained

from the two scales match by defining a cost-function that constrains

the training of NNs in (1). The NN-based coupling of scales is

expected to be robust, computationally efficient for MSM algorithms.

One challenge is to discover interpretable models from heteroge-

neous data of variable fidelity and guide the judicious acquisition of

new information toward elucidating the emergence of function in bio-

logical systems. This challenge can be addressed by subjecting the

entire MSM model to contemporary data science and statistical meth-

odologies, that is, 172 sensitivity,1 evolvability,2 robustness173 ana-

lyses, uncertainty quantification,174 multifidelity modeling,4 and

pattern discovery and model reduction.175

6.4 | Physics-informed NN (PINN)

Can we use prior physics-based knowledge to avoid overfitting or

nonphysical predictions? From a conceptual point of view, can we

supplement ML with a set of known physics-based equations, an

approach that drives MSM models in engineering disciplines? While

F IGURE 3 The proposed synergy of multiscale and machine

learning aspires to (a) accelerate the prediction of large-scale
computational models, (b) discover interpretable models from
irregular and heterogeneous data of variable fidelity, and (b) guide the
judicious acquisition of new information towards elucidating the
emergence of function in biological systems. This figure is inspired
and remade from a similar figure in Reference 4 [Color figure can be
viewed at wileyonlinelibrary.com]
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data-driven methods can provide solutions that are not constrained

by preconceived notions or models, their predictions should not vio-

late the fundamental laws of physics. There are well-known examples

of deep learning NNs that appear to be highly accurate but make

highly inaccurate predictions when faced with data outside their train-

ing regime, and others that make highly inaccurate predictions based

on seemingly minor changes to the target data.176 To address this

ubiquitous issue of purely ML-based approaches, numerous opportu-

nities to combine ML and MSM toward a priori satisfying the funda-

mental laws of physics, and, at the same time, preventing overfitting

of the data.

A potential solution is to combine deterministic and stochastic

models. Coupling the deterministic governing equations MSM

models—the balance of mass, momentum, and energy—with the sto-

chastic equations of systems biology and biophysical systems—cell-

signaling networks or reaction–diffusion equations—could help guide

the design of computational models for otherwise ill-posed problems.

Physics-informed NNs177 is a promising approach that employs deep

NNs and leverages their well-known capability as universal function

approximators.178 In this setting, we can directly tackle nonlinear

problems without the need for committing to any prior assumptions,

linearization, or local time stepping. PINNs exploit recent develop-

ments in automatic differentiation179 to differentiate NNs concerning

their input coordinates and model parameters to obtain physics

informed NNs. Such NNs are constrained to respect any symmetry,

invariance, or conservation principles originating from the physical

laws that govern the observed data, as modeled by general time-

dependent and nonlinear PDEs. This construction allows us to tackle a

wide range of problems in computational science and introduces a

potentially disruptive technology leading to the development of new

data-efficient and physics-informed learning machines, new classes of

numerical solvers for PDEs, as well as new data-driven approaches for

model inversion and systems identification.

6.5 | Deep NN algorithms inspired by statistical
physics and information theory

Large amounts of data, cheap computation, and efficient algorithms

are driving the impressive performance and adoption of robust deep

learning architectures. However, building, maintaining, and expanding

these systems is still decidedly an art and requires a lot of trial and

error. Learning and inference methods have a history of being inspired

by and derived from the principles of statistical physics and informa-

tion theory.180,181 We summarize examples to advance this theme to

derive NN algorithms based on a confluence of ideas in statistical

physics and information theory182 and to feed them back into core

MSM methods by prescribing new computational techniques for deep

NNs. (A) Generalization in deep NN: the approach utilizes algebraic

topology183,184 to characterize the space of reachable functions using

stochastic dynamics on data in order to build computationally efficient

architectures and algorithms to train them.185-187 (B) Characterizing

the quality of representations and the performance of encoders,

decoders: Recent works have proposed to exploit principles of repre-

sentation learning to formulate variational approaches for the assess-

ment of performance in deep learning algorithms34 that provide

guarantees on the performance of the final model.

6.6 | ML-enhanced conformational sampling

Advances in ML-derived force fields are promising to revolutionize

classical simulations by directly defining energy landscapes from more

accurate QM simulations.188,189 Besides, in particle-based simulations

of MSM, the efficient sampling of high-dimensional conformational

spaces constitutes a significant challenge in the computational molec-

ular sciences limiting the longtime MD simulations of molecular sys-

tems in biophysical chemistry and materials science. Combining MD

simulations with ML can provide a powerful approach to address the

challenges mentioned above.190 The last decade has seen significant

advances in the use of electronic structure calculations to train ML

potentials for atomistic simulations capable of reaching large systems

sizes and longtime scales with accurate and reliable energies and

forces. More recently, ML approaches have proved useful in learning

high-dimensional free energy surfaces,191,192 and in providing a low

dimensional set of CVs.193 Some examples are discussed below.

Boltzmann generators: The primary difficulty in sampling physical

realizations or microstates of the system from the Boltzmann distribu-

tion lies in the nature of the potential energy. In large, complex sys-

tems, the conformational space holds the positions of hundreds of

thousands to millions of atoms. The potential energy should be

viewed as a vast, rugged landscape in this high-dimensional space

characterized by an exponentially large number of low-energy regions

or minima, all separated by ridges. It is now possible to train a deep

NN to learn a transformation from the conformational space to

another variable space such that in this new space, the variables are

distributed according to simple distributions such as the Gaussian dis-

tribution. One can backmap to the original space through inverse

transformation onto a high-probability region of the original confor-

mational space.190

ML-enabled conformational enhanced sampling: The choice of

appropriate CVs (aka order parameters in the earlier section) for

enhanced sampling methods such as meta-dynamics is still a chal-

lenge. Recent advances have enabled ML tools of supervised learning

to define appropriate CVs. The pipeline flow for such supervised ML

methods utilizes ML-identified features from (A) as CVs for enhanced

sampling simulations.194 Another choice for ML-identified CV is

through the use of variational autoencoders,195 which are deep NNs

that perform dimensionality reduction similar to principal component

analysis. The neural encoder takes a high dimensional input vector

and outputs a lower-dimensional output vector. The neural decoder

then takes the latent variable as input and attempts to reconstruct the

original high dimensional input using standard optimization techniques

of a loss function.196

ML-enhanced adaptive path sampling: While enhanced sampling

methods are efficient in exploring the landscape based on predefined
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CVs, one often discovers new variables during sampling. In such sce-

narios, new variables that become relevant are often orthogonal to

the original CVs, and it is impossible to incorporate such variables

adaptively into the free energy landscape. One approach is to com-

bine enhanced sampling such as metadynamics with path sampling

and utilize the newly identified CVs in the path sampling through a

path action.197 In this approach, path sampling is pursued by adap-

tively modifying the path action, and the free energy landscape based

on the original CVs can be refined iteratively. The path action

approach is also easily customized to include other ML strategies such

as reinforcement learning to guide the system through non-Boltzmann

paths.

6.7 | Ab initio methods using quantum computing

Quantum computers hold promise to enable efficient simulations of

the properties of molecules and materials; however, at present, their

abilities are limited due to a limited number of qubits that can be real-

ized. In the near-term, the throughput of quantum computers is lim-

ited by the small number of qubits available, which prohibits large

systems. It is more practical to develop hybrid quantum-classical

methods where the quantum computation is restricted to a small por-

tion of the system; for example, molecules where an active region

requires a higher level of theoretical accuracy than its environment.

Galli et al outline a quantum embedding theory for the calculation of

strongly correlated electronic states of active regions, with the rest of

the system described within DFT.198 The authors demonstrate the

efficacy of the method by investigating defect quantum bits in semi-

conductors that are of great interest for quantum information tech-

nologies. The calculations are performed on quantum computers and

show that they yield results in agreement with those obtained with

exact diagonalization on classical architectures, paving the way to sim-

ulations of realistic materials on near-term quantum computers.

7 | CONCLUSIONS

Amidst the explosion of data in all walks of science, engineering, biol-

ogy, and biomedical science, it is useful to seek an interpretable basis

for the emergence of function. How can geometry, physics, and engi-

neering best inform biology or lead to the discoveries of new func-

tional advanced materials? The complex multiscale interactions that

characterize the dynamic behavior of biological systems199 and

advanced materials have limited our ability to understand the funda-

mental mechanisms behind the emergence of function to relatively

idealized systems.200

ML integrated with MSM is poised to enhance the capabilities of

standard MSM approaches profoundly, particularly in the face of

increasing problem complexity and data intensiveness. The contempo-

rary research problems warrant an interdisciplinary environment to

tackle emerging scientific and technological grand-challenge problems

that carry substantial societal impact. Research projects, while posed

across varied application domains in science and engineering, often

have common features: (a) the problem/solution spans diverse length

and timescales and benefits from MSM, (b) ML methods integrate into

the MSM methods to define the new approaches at the frontiers of

MSM development, (c) tools of data science are effectively leveraged

to integrate experimental data with the proposed model, and (d) the

implementation of the model will utilize HPC methods and/ or plat-

forms. Foundational training for future scholars should ideally provide:

(a) working knowledge in fundamental science and modeling method-

ologies at multiple lengths and timescales spanning the molecular to

process scales; (b) the requisite skills to integrate, and couple multiple

scales into a multiscale paradigm; (c) learnings to exploit elements of

data science, including ML methods and tools of data integration from

cloud-based, data-rich repositories in order to validate and test com-

putational models and software; (d) learnings to combine the rich tools

of ML with MSM methods to define the next-generation of MSM

methods; (e) experience to adopt, and implement best practices in

software architecture to leverage modern computational infrastruc-

ture and develop efficient sustainable codes. With these foundations

and skill sets in the arsenal of the emerging researcher, the potential

to blend MSM, HPC, and ML presents opportunities for unbound

innovation and represents the future of MSM and explainable ML that

will likely define the fields in the 21st century.
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