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ABSTRACT
A major advantage of DNA vaccination is the ability to induce both humoral and cellular immune
responses. DNA vaccines are currently used in veterinary medicine, but have not achieved widespread
acceptance for use in humans due to their low immunogenicity in early clinical studies. However, recent
clinical data have re-established the value of DNA vaccines, particularly in priming high-level antigen-
specific antibody responses. Several approaches have been investigated for improving DNA vaccine
efficacy, including advancements in DNA vaccine vector design, the inclusion of genetically engineered
cytokine adjuvants, and novel non-mechanical delivery methods. These strategies have shown promise,
resulting in augmented adaptive immune responses in not only mice, but also in large animal models.
Here, we review advancements in each of these areas that show promise for increasing the
immunogenicity of DNA vaccines.

KEYWORDS
DNA Vaccine;
immunogenicity; molecular
adjuvant; plasmid; vaccine
delivery

Introduction

The constant emergence, and re-emergence, of known and
novel pathogens challenges researchers to develop new vaccina-
tion technologies that allow for the rapid development of safe
and effective vaccines. Nucleic acid (DNA and RNA) vaccines
have characteristics that meet these challenges, including ease
of production, scalability, consistency between lots, storage,
and safety. DNA vaccine technology usually is based on bacte-
rial plasmids that encode the polypeptide sequence of candidate
antigens. The encoded antigen is expressed under a strong
eukaryotic promoter, yielding high levels of transgene expres-
sion.1 Inclusion of transcriptional enhancers, such as Intron A,
enhance the rate of polyadenylation and nuclear transport of
messenger RNA (mRNA).2 The vaccine plasmids are generally
produced in bacterial culture, purified, and then used to inocu-
late the host.

Modern DNA vaccine design generally relies on synthesis
of the nucleic acid and possibly one-step cloning into the
plasmid vector, reducing both the cost and the time to manu-
facture. Plasmid DNA is also extremely stable at room tem-
perature, reducing the need for a cold chain during
transportation. Vaccination with DNA plasmid removes the
necessity for protein purification from infectious pathogens,
improving safety. Furthermore, DNA vaccination has an
excellent safety profile in the clinic, with the most common
side effect being mild inflammation at the injection site.3

Importantly, DNA vaccines provide a safe, non-live vaccine
approach to inducing balanced immune responses, as the
in vivo production of antigen allows for presentation on both

class I and class II major histocompatibility complex (MHC)
molecules (Fig. 1). This elicits antigen specific antibodies,4 as
well as cytotoxic T lymphocyte responses (CTL),5 something
that remains elusive in most non-live vaccines. DNA vaccines
have also demonstrated the ability to generate follicular T
helper populations,6 which are critical for the induction of
high quality antigen-specific B cell responses.7

DNA vaccination has proven successful in several animal
models for preventing or treating infectious diseases, allergies,
cancer, and autoimmunity.8-12 The early success of small ani-
mal studies led to several human clinical trials. However, the
protective immunity observed in small animals and non-
human primates was not observed in human studies when
DNA vaccines were administered alone by needle delivery. Like
the more conventional protein-based vaccines, DNA can be
delivered by a variety of routes, including intramuscular (IM),
intradermal (ID), mucosal, or transdermal delivery. Because
DNA plasmids must enter host cell nuclei to be transcribed
into mRNA, the early failure of DNA vaccines to elicit strong
responses in humans was largely due to their delivery by needle
injection, which deposits the DNA in intracellular spaces,
rather than within cells. Improved delivery technologies, such
as intramuscular or intradermal electroporation, have been
used to facilitate transport of DNA into cells, resulting in much
better immunogenicity in both clinical and non-clinical stud-
ies.13-19 In one study, electroporation-enhanced DNA vaccina-
tion resulted in increased polyfunctional antigen-specific CD8C

T cells in patients receiving a HPV DNA vaccine expressing the
E6 and E7 genes of HPV16 and HPV18 respectively.20 The
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majority of DNA vaccinated patients displayed complete
regression of their cervical lesions, as well as viral clearance, fol-
lowing DNA delivery. Other mechanical delivery approaches
use physical force such as particle bombardment (gene gun) to
deliver the DNA plasmids into targeted tissues or cells, with
some clinical successes.21-23 Delivery of a Hepatitis B DNA
vaccine by particle bombardment resulted in sustained anti-
body titers in subjects who had previously failed to respond to
a licensed subunit vaccine.23 Needle-free pneumatic or jet injec-
tors have also shown promise in both animal and human clini-
cal trials,24-27 and function by injecting a high-pressure, narrow
stream of injection liquid into the epidermis or muscles of test
subjects. In addition to these improved mechanical delivery
methods, several other approaches are being explored to
increase the immunogenicity of DNA vaccines in humans.
Here we review 3 of these approaches which show promise for
advancing DNA vaccines: non-mechanical delivery, inclusion
of molecular adjuvants, and improvements in DNA vaccine
vectors.

Non-mechanical DNA vaccine delivery

As already mentioned, the greatest impediment to DNA vaccina-
tion is low immunogenicity due to difficulties in delivering DNA
plasmid into the host cell. The transportation of DNA vaccine
plasmids into cellular nuclei requires the crossing of several bar-
riers. Vaccine plasmid must cross the phospholipid cellular
membrane through endocytosis or pinocytosis, escape degrada-
tion in endosomes and lysosomes, survive cytosolic nucleases,
and translocate across the nuclear envelope. In contrast to physi-
cal delivery systems, chemical delivery approaches use biophar-
maceuticals to increase DNA vaccine transfection efficiency.

The use of liposomes as a carrier molecule has become a
popular DNA vaccine delivery method as liposomes not only
enhance transfection efficiency, but also have an adjuvant
effect. Liposomes are spherical vesicles composed of phospholi-
pids and cholesterol arranged into a lipid bilayer, allowing for
fusion with cellular lipid membranes.28 DNA plasmid can be
either bound to the liposome surface, or encased within the
hydrophobic core of the liposome. This facilitates delivery of
the DNA vaccine plasmid into the cells. Importantly, lipid
vesicles can be formulated as either unilamellar or multilamel-
lar. Multilamellar vesicles allow for sustained delivery of vac-
cine over an extended period of time. While the use of
liposomes for IM injection has resulted in some reactogenicity
issues,29,30 liposome/DNA vaccine complexes have demon-
strated an immunological benefit. IM injection of a liposome/
influenza nucleoprotein formulation increased antibody titers
20-fold compared with vaccine alone.31,32 Boosting of antibody
titers did not diminish the cytotoxic T cell response. Likewise,
inclusion of a liposome formulation in a P. falciparum vaccine
enhanced the IFN-g production.33,34 An ensuing human trial
involving DNA plasmids encoding the influenza H5 HA, nucle-
oprotein, and M2 genes reported cellular immune response
rates and antibody titers comparable to that of the currently
available inactivated protein-based H5 vaccines.35 Additionally,
liposomes have shown promise as a candidate for delivery of
DNA vaccines to mucosal tissue.36 A recent study demon-
strated that vaccination with liposome encapsulated influenza
A virus M1 induced both humoral and cellular immune
responses that protected against respiratory infection.36

Liposomes have also been shown to be an effective delivery
method for intranasal DNA vaccination, conferring protective
immune responses against infection.37,38

DNA vaccine delivery can also be accomplished through the
use of biodegradable polymeric micro- and nanoparticles con-
sisting of amphiphilic molecules between 0.5–10 mm in size.
Similar to loading of DNA plasmid on liposomes, plasmid mol-
ecules can be either encapsulated or adsorbed onto the surface
of the nanoparticles.39-42 These particles function as a carrier
system, protecting the vaccine plasmid from degradation by
extracellular deoxyribonucleases. In addition to shielding plas-
mid DNA from nucleases, micro- and nanoparticles promote
the sustained release of vaccine instead of the bolus type of
delivery characteristic of larger submicrometer complexes.39,43

High molecular weight cationic polymers have proven signifi-
cantly more effective than cationic liposomes in aggregating
DNA vaccine plasmid. Plasmid DNA immobilized within bio-
degradable chitosan-coated polymeric microspheres (ranging
from 20 to 500 mm) can induce both mucosal and systemic
immune responses.44 Microspheres may be delivered either by
the oral or intraperitoneal route, allowing for direct transfection
of dendritic cells (DC), thereby increasing DC activation. The
benefits of microsphere formulations have been shown in mice,
non-human primates, and humans 45-49 against a wide range of
diseases including hepatitis B,50 tuberculosis,51 and cancer.52

These results suggest that microparticle-based delivery systems
are capable of significantly improving DNA vaccine immuno-
genicity, and boosting cellular and humoral immune responses.

The use of liposomes or nanoparticles appears to be safe and
well tolerated in clinical studies. Microparticle-based delivery

Figure 1. Induction of antigen-specific, adaptive immunity by DNA vaccination.
Optimized gene sequences are inserted into a plasmid backbone and then deliv-
ered to the host via one of several delivery methods. Vaccine plasmid enters the
nucleus of host myocytes and antigen presenting cells by using host cellular
machinery. The plasmid components are transcribed and protein is produced. The
cell provides endogenous post-translational modifications to antigens, producing
native protein conformations. Vaccine-derived endogenous peptides are presented
on MHC class I molecules. Engulfment of apoptotic or necrotic cells by APC also
allows for cross-presentation of cell-associated exogenous antigens. Secreted anti-
gen is captured and processed by antigen presenting cells, and presented on MHC
class II. Antigen experienced APC migrate to the draining lymph node to stimulate
CD4C and CD8C T cell populations. In addition, shed antigen can be captured by
antigen-specific high affinity immunoglobulins on the B cell surface for presenta-
tion to CD4C T cells, driving B cell responses.
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systems can increase gene expression, as well as, DNA vaccine
immunogenicity. Although many of the earliest carrier formu-
lations did not show a significant clinical benefit, more recent
studies highlighted herein yielded promising clinical data. As
microparticles can be prepared with significant structural diver-
sity (size, surface charge, lipid content), they offer considerable
flexibility of vaccine formulation. This allows for optimization
of the vaccine based on the specific needs of the clinician.

Molecular adjuvants

Another approach that has been effective in increasing DNA
vaccine immunogenicity is the use of “vaccine cocktails” contain-
ing the DNA vaccine as well as plasmids encoding adjuvanting
immunomodulatory proteins. Plasmid DNA contains unmethy-
lated deoxycytidylate-phosphate-deoxyguanylate (CpG) motifs
that function as a “built in” adjuvant.53-59 Molecular adjuvant
plasmids expressing cytokines, chemokines, or co-stimulatory
molecules may be co-administered with the antigenic DNA
vaccine plasmid. Cells transfected by molecular adjuvant
plasmids secrete the adjuvant into the surrounding region,
stimulating both local antigen presenting cells (APC) and cells in
the draining lymph node. This results in durable, but low level,
production of immune modulating cytokines that can tailor the
immune response toward a more desirable outcome without
the concerns of a systemic cytokine storm. While human data
are limited, a wide range of inflammatory and helper T cell
cytokines have been studied, in conjunction with DNA
vaccination, in small animal models.60,61 In particular, we have
highlighted a few of the most prominent molecular adjuvants
with demonstrated ability to increase DNA vaccine immunoge-
nicity.62 A more comprehensive list of molecular adjuvants is
included in Table 1.

Plasmid-encoded cytokines

Cytokines are a class of immunoregulatory proteins that affect
the behavior of other cells, and are critical for immune cell sig-
naling. Cytokine-encoding genes can be delivered either as a
separate plasmid, or as additional genes encoded within the
antigen containing plasmid. The most extensively studied

molecular adjuvant is Interleukin-2 (IL-2). IL-2 plays an essen-
tial role in the immune response by promoting the differentia-
tion of na€ıve T cells into effector T cells, as well as driving the
generation of memory T cell pools. It is also required for the
proliferation of Natural Killer (NK) cells. Inclusion of IL-2 has
resulted in improved immunogenicity for HIV,63-65 influenza,66

and SARS-CoV67 anti-viral DNA vaccines. Interestingly, a ther-
apeutic vaccine encoding for the BCR/ABL-pIRES genes of
myeloid leukemia and IL-2 also demonstrated enhanced
immune responses, suggesting that IL-2 molcular adjuvants
have the capability of alleviating the symptoms of chronic
infection.68

Similar to IL-2, IL-15 is a cytokine that induces NK and
T cell proliferation. IL-15 is necessary for the generation of pri-
mary antigen-specific CD4C and CD8C T cell responses. It also
plays a substantial role in establishment of memory CD8C

T cell populations.69-73 Results of small animal studies suggest
that the adjuvant effect of IL-15 is most potent when delivered
in tandem with other cytokines. For example, a synergistic
effect was seen when IL-15 and IL-21 were co-delivered with a
DNA vaccine against Toxoplasma gondii infection.74,75 Addi-
tionally, sequential administration of IL-6, IL-7, and IL-15
genes augmented long-term CD4C T cell memory responses to
a foot and mouth disease DNA vaccine.76 Therefore, depending
on the antigen, it may be necessary to deliver IL-15 in combina-
tion with other molecular adjuvants. Notably, a study in rhesus
macaques suggests that delivery of an IL-15 encoding DNA
vaccine itself resulted in increased proliferation of NK and
T cells, with no adverse effects.77 Another recent study demon-
strated that co-vaccination of rhesus macaques with SIV pol
plasmid and HIV env plasmid plus IL-15 allowed for faster
control of viremia than the group not formulated with IL-15.78

Moreover, macaques vaccinated with IL-15 exhibited increased
T cell proliferation compared with those receiving the antigen
plasmid alone, suggesting that IL-15 has a robust effect on
T cell memory responses.

IL-12 is another pro-inflammatory cytokine secreted by both
dendritic cells and monocytes. IL-12 plays an integral role in
shaping the innate and adaptive immune responses to infec-
tion.79-83 IL-12 signaling supports the secondary expansion of
activated T helper 1 (Th1) cells,

79,82,84-86 resulting in high levels

Table 1. Molecular adjuvants tested in vivo.

Molecular Adjuvant Molecule Type Animal Model Adaptive Response Effect References

CD40L Co-Stimulatory Mice Cellular 161

CD80/86 Co-Stimulatory Mice, NHP Cellular 162

GM-CSF Cytokine Mice Humoral 163

ICAM-1 Co-Stimulatory Mice Cellular 164

IFN-g Cytokine Mice, NHP Cellular 165

IL-2 Cytokine Mice Cellular, Humoral 165,166

IL-4 Cytokine Mice, NHP Humoral 166,167

IL-7 Cytokine Mice Cellular, Humoral 168

IL-8 Chemokine Mice Cellular, Humoral 169,170

IL-10 Cytokine Mice Cellular 166

IL-12 Cytokine Mice, NHP Cellular 98,171

IL-15 Cytokine Mice, NHP Cytokine 98,172

IL-18 Cytokine Mice, NHP Cytokine 166,173

MCP-1 Chemokine Mice Humoral 169

M-CSF Cytokine Mice Cellular 163

MIP-1a Chemokine Mice Humoral 169

RANTES Chemokine Mice Cellular 169, 170
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of antigen-specific CD8C T cells, and the expression of cyto-
toxic mediators such as interferon-g (IFN-g), granzyme B, and
perforin.82,83 IL-12 was the first cytokine to be evaluated for use
as a molecular adjuvant, and several studies have shown that
inclusion of IL-12 expression plasmids within the vaccine for-
mulation enhances Th1 immune responses.87-95 Vaccination of
mice with a bicistronic plasmid expressing IL-12 and Yersinia
pestis resulted in increased mucosal IgA and serum IgG, pro-
viding significantly higher levels of protection against challenge
than antigen-only groups.96 Studies in rhesus macaques have
shown similar increases in DNA vaccine immunogenicity.
Co-vaccination with SIV gag and IL-12 allowed for dose spar-
ing,97 as well as increased breadth of T cell responses.89,91,98,99

Additionally, multiple human clinical studies using vaccines
adjuvanted with IL-12 have proven safe100 and highly immuno-
genic, yielding high level CD4C and CD8C T cell
responses.87,101,102 Furthermore, inclusion of IL-12 expression
plasmids can improve weakly immunogenic vaccines. A recent
clinical study demonstrated that addition of IL-12 improved
the immunogenicity of a Hepatitis B DNA vaccine, resulting in
increased vaccine immunogenicity, as well as sustained
memory T cell responses.103

The final immunomodulatory cytokine that has received
considerable focus as a molecular adjuvant is granulocyte-
macrophage colony stimulating factor (GM-CSF). GM-CSF
recruits antigen presenting cells to the vaccination site and pro-
motes DC maturation.104 It has been successfully used in
multiple DNA vaccines.105-107 Plasmid-encoded GM-CSF,
when co-delivered with a rabies virus DNA vaccine in mice,
resulted in increased CD4C T cell responses, antibody produc-
tion, and protection from lethal viral challenge.108 Likewise, a
bicistronic DNA vaccine encoding HIV-1 gp120 and GM-CSF
recruited inflammatory cellular infiltrates and elicited a potent
CD4C T cell response.109 However, the benefit of GM-CSF
molecular adjuvants remains unclear. Recent studies have
shown that co-administration of GM-CSF plasmid with an
antigen-encoding DNA vaccine can have deleterious effects.
Co-delivery of GM-CSF suppressed the response to a DNA vac-
cine encoding Dengue virus type 1 and type 2, and also failed to
improve the response elicited by a Hepatitis C vaccine.110

Furthermore, inclusion of plasmid GM-CSF provided minimal
adjuvant effect when co-administered with a malaria DNA vac-
cine in rhesus macaques.111 Likewise, GM-CSF had no clear
effect on T cell responses in patients receiving a melanoma
DNA vaccine.112 One possible explanation for these results is
that high levels of GM-CSF can expand myeloid suppressor cell
populations, and suppress the generation of adaptive immune
responses. Alternatively, the lack of improved immunogenicity
seen in clinical trials may be due to the relative lack of GM-CSF
receptors on rhesus and human APC compared with murine
cells.113 While no specific adverse effects have been reported,
the use of GM-CSF as an adjuvant may require some fine-tun-
ing, particularly if GM-CSF expression levels must be consid-
ered with regards to immunosuppression.

In addition to cytokine-encoding plasmids, several other
methods for increasing DNA vaccine immunogenicity exist.
The increased understanding of immune signaling pathways
has led to the development of adjuvant plasmids encoding
adhesion molecules, chemokines, costimulatory molecules, and

Toll-like receptor (TLR) ligands. These molecular adjuvants
have had some success in small animal models. For example,
the innate immune signaling molecule TRIF increased the anti-
body response generated by a swine fever virus DNA
vaccine.114 Moreover, TRIF increased the protective activity of
an influenza HA-encoding DNA vaccine.115 Similar results
were seen in studies encoding the dsRNA receptors MDA5 and
RIG-I.116,117 Additionally, antigen-fusion constructs, whereby
the antigen of interest is linked to a “carrier protein,” can
increase the immune visibility of the vaccine, and enhance
DNA vaccine potency.118-120

A major advantage of DNA vaccination is the ability of mul-
tiple molecules such as molecular adjuvants to be inserted into
the plasmid. Unlike the addition of recombinant cytokines, co-
stimulatory molecules, and TLR ligands, which have a limited
duration due to the short half-life of recombinant protein
in vivo, molecular adjuvant-encoding plasmids will express
protein for the same duration as the antigen, stimulating the
immune system for a greater length of time. This can be done
without fear of eliciting a cytokine storm, as generation of
the adjuvanting signal will be localized to the site of vaccina-
tion. Of note, homologous recombination between plasmid-
encoded cytokines and the host gene sequence does not appear
to be a significant concern, as multiple studies have shown that
only extrachromosomal plasmid DNA has been identified fol-
lowing intramuscular injection.121,122 Furthermore, many cur-
rent plasmids have been-codon optimized to improve gene
expression in mammalian cells. This has resulted in changes to
the cytokine gene sequence, limiting the possibility for
homologous recombination and/or integration. Molecular
adjuvants therefore show great promise for both increasing
immunogenicity and extending the longevity of the immune
response.

Improvements in DNA plasmid design

Plasmid DNA vectors contain functional elements, such as the
origin of replication and selection markers, that are only
required during the prokaryotic growth process in E. coli. These
“bacterial region” elements (Fig. 2) are no longer needed
once cell culture is halted, and may have a negative effect on
vaccine stability, uptake, and efficacy. Additionally, these
elements can pose safety concerns, particularly if widely used
antibiotic resistance markers are horizontally transmitted to
host enteric bacteria populations.123,124

These concerns have been addressed by development of
small bacterial RNA-based antibiotic free selection
markers.124,125 Noncoding RNA markers are preferable to pro-
tein markers since proteins, like antibiotic resistance markers,
can be expressed in the host organism after vector transfection,
or horizontally transmitted to host bacteria. Noncoding RNA
markers are also very small (< 200 basepairs) which decreases
the overall vector size; this is advantageous since vector trans-
fection efficiency is inversely related to vector size,126-128 per-
haps because smaller vectors are more resistant to delivery
associated shear forces129 and may have improved nuclear
localization since they are more motile in the cytoplasm.130

Additionally, some bacterial region protein marker genes have
been shown to dramatically reduce vector expression. For
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example, the TN5 derived NPT-II kanamycin resistance marker
(kanR) gene in the pVAX1 vector bacterial region significantly
reduces transgene expression. Three groups have demonstrated
that pVAX1 bacterial region mediated repression of transgene
expression can be alleviated by replacement of the kanR gene
with either a tRNA RNA selection marker, the RNA-OUT anti-
sense RNA selection marker, or the endogenous pUC origin
RNAI antisense RNA selection marker.131-133 Consistent with
this, removal of the pVAX1 bacterial region in a minicircle vec-
tor improved humoral and cellular immune responses up to 3-
fold compared with a pVAX1 vector control.134

DNA vaccine vectors with dramatically higher transgene
expression have recently been developed through identification
of novel bacterial region and eukaryotic region vector configu-
rations. Pioneering work by Mark Kay’s laboratory at Stanford
University demonstrated that bacterial regions larger than 1
kbase silenced transgene expression in quiescent tissue such as
the liver, likely due to untranscribed bacterial region mediated
heterochromatin formation that spreads to the eukaryotic
region and inactivates the promoter.135-137 Minicircle vectors,
in which the bacterial region is removed by the action of a
phage recombinase during production, alleviated this silenc-
ing.135,136,138 However, production of minicircle vectors is low
yield and poorly scalable due to the required in vivo or in vitro
recombination during manufacture.139 In an effort to create
alternative short bacterial region vectors that could be

efficiently manufactured, the Mini-Intronic Plasmid (MIP) and
NanoplasmidTM vector plasmid platforms were developed.
MIP vectors incorporate a RNA-OUT selection marker-pUC
origin bacterial region within a 30 UTR intron. In this configu-
ration the bacterial region is within the transcription unit and
the downstream polyA signal is linked to the eukaryotic pro-
moter without an intervening selection marker or replication
origin. NanoplasmidTM vectors are RNA-OUT selection
marker vectors in which the large pUC bacterial replication ori-
gin is replaced by a small R6K bacterial replication origin. In
this configuration, the < 500 basepair (bp) bacterial region sep-
arates the polyA signal and the eukaryotic promoter. Unlike
minicircles, both MIP and NanoplasmidTM RNA-OUT selec-
tion vectors can be efficiently manufactured in gram/liter yields
without antibiotic selection.140

As expected, both vector platforms alleviate gene silencing in
quiescent tissues similarly to minicircle vectors.141,142 However,
unexpectedly both MIP and NanoplasmidTM vectors dramati-
cally improve overall gene expression up to 10-fold compared
with plasmid and minicircle vectors in quiescent (liver) and
non-quiescent tissues.141,142 The improved expression level
after ID and IM delivery has application to improve DNA vac-
cination since increased expression level is correlative with
improved humoral and cellular immune response.62

Another approach to improve DNA vaccines is to engineer
the vector to increase innate immune activation. DNA vaccines
are potent triggers of innate immunity. Various studies have
determined several innate immune pathways are activated by
DNA vaccination (Fig. 2). Most of the intrinsic adjuvant effect
of DNA is mediated by cytoplasmic innate immune receptors
that nonspecifically recognize B DNA and activate Sting or
Inflammasome mediated signaling,53,143 but unmethylated
CpG sequences specific for TLR9 activation may also be impor-
tant for priming CD8 T cell responses.144,145 Along these lines,
DNA vaccine vectors may be sequence modified to introduce
immunostimulatory xxCGxx TLR9 agonists into the vector to
increase innate immune activation. This approach has been
used to improve DNA vaccine immunogenicity,58,59,146 but the
results are variable. Some of the variability may be due to unin-
tended inhibition of the eukaryotic promoter expression result-
ing from integration of CpG motifs into non-permissive sites
in the vector.125 As well, certain DNA delivery methods may
not transfer DNA to the endosome as effectively as other
deliveries (e.g. liposomes), preventing unmethylated CpG inter-
action with, and activation of, TLR9. Part of the complexity is
that optimal TLR9 activating xxCGxx motifs are species-spe-
cific; different xxCGxx agonist motifs differentially modulate
the immune response147 and many xxCGxx motifs are
immunosuppressive.

An alternative strategy is to encode immunostimulatory RNA
within the plasmid to increase innate immune activation. This
approach has the potential advantage that additional innate
immune pathways not normally stimulated by DNA alone are
activated, resulting in polyvalent activation of multiple innate
immune pathways to enhance immune activation.148,149 Like
TLR9 for DNA, several innate immune TLRs for RNA are endo-
somal.150 Activation of these receptors requires motif introduc-
tion into an expressed RNA, as well as cytoplasmic RNA
shuttling into the endosome by autophagy. For example, 30UTR

Figure 2. Molecular mechanisms of DNA vaccines. Transfected double stranded B
DNA (dsDNA) is sensed by cytoplasmic DNA receptors such as interferon-inducible
protein 16 (IFI16), DEAD (Asp-Glu-Ala-Asp) box polypeptide 41 (DDX41) and the
cGAMP synthase (cGAS), each of which can activate the STINGI TBK1I IRF3 path-
way to induce type 1 interferon production.143 An additional cytoplasmic innate
immune pathway activated nonspecifically by transfected dsDNA is the cyto-
plasmic AIM2 inflammasome.157 Other dsDNA receptors and innate immune acti-
vation pathways exist,143 including a recently identified STING/IRF7 signaling
pathway required for DNA vaccine immunogenicity.158 By contrast, the endosomal
innate immune receptor TLR9 recognizes specific unmethylated CpG DNA motifs
in DNA vaccines. To improve innate immune activation, addition of optimized
immunostimulatory CpG motifs in the vector backbone may be used to increase
TLR9 activation. Immunostimulatory RNA expressed from the vector may be used
to activate alternative RNA sensing innate immune receptors such as RIG-I using
an additional RNA Polymerase III RNA expression cassette117 (plasmid backbone
adjuvant) or incorporation of RNA recognizing TLR agonist motifs such as CpG RNA
into the 30 UTR.152 Due to limited transgene expression after DNA vaccination in
large animals, vector modifications (e.g., <500 bp bacterial region NanoplasmidTM

vectors; intronic bacterial region MIP vectors) and deliveries (e.g., Electroporation)
that improve transgene expression also improve adaptive immunity.62,125,159

Adapted under a Creative Commons Attribution license from Williams, 2013.160
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incorporation of a 20 bp immunostimulatory ssRNA encoding D
type CpG upstream of a 28 bp hairpin dsRNA resulted in a
4-fold increase in antigen reactive IgG titers,151 and a 2-fold
increase in IFN-g secreting CD4C and CD8C T cells.152 More-
over, several RNA-sensing innate immune receptors such as
RIG-I, MDA5 and DDX3 are cytoplasmic.143 DNA vaccine
expressed RNA can be used to target these receptors directly,
without autophagy. Of these, RIG-I is of particular interest since
RIG-I agonists have demonstrated adjuvant properties to
improve the humoral response,153 humoral and CD4C T cell
response,154,155 and CD8C T cell response153 to co-administered
antigens.156 In addition, RIG-I is ubiquitiously expressed in most
tissues (expression of TLRs typically is restricted to immune cell
subtypes) and certain RIG-I agonists that can be expressed in
DNA vaccines (e.g., a blunt dsRNA with a 30 triphosphate) are
structurally conserved between humans and mice. A DNA
vaccine vector that co-expresses with antigen a RIG-I dsRNA
agonist in a vector backbone encoded RNA Polymerase III tran-
scription unit (Fig. 2) enhanced the humoral and CD8C T cell
response after DNA vaccination.117

DNA vaccines encoding immunostimulatory sequences
that selectively improve CTL responses to encoded antigen
may have niche application in vaccines for intracellular
pathogens or cancer. Innovations that increase transgene
expression may be used to improve the performance of
immunomodulatory molecular adjuvant plasmids, in addi-
tion to traditional antigen expressing DNA vaccine plas-
mids. Collectively, vector design innovations that improve
transgene expression level and innate immune activation
are complementary to improved mechanical and non-
mechanical DNA vaccine delivery platforms. Combining
improved vectors with liposome or polymeric particle non-
mechanical delivery, or with needle free injector device
delivery, has the potential to increase immunogenicity with
these well tolerated, safe, delivery platforms.

Conclusion

While DNA vaccination provides several advantages over
more conventional vaccination strategies, further optimiza-
tion is necessary before it becomes the predominant strategy
in human patients. Despite initial setbacks, significant prog-
ress has been made in overcoming the problem of low
immunogenicity in humans. A clearer understanding of the
immune mechanisms governing DNA vaccine immunoge-
nicity has illuminated several pathways that may be useful
in further improving DNA vaccine efficacy. A large catalog
of cytokines, chemokines, adhesion molecules, and tran-
scription factors are in the process of being tested as molec-
ular adjuvants, although it is likely that each will need to be
carefully assessed for safety and tolerability. Likewise, con-
tinued development of vaccine delivery methods appears
promising. New formulations exploiting sustained vaccine
delivery methods, such as slow-releasing micropatches or
multilamellar vesicles, are on the horizon. The strong appeal
of needle-free injection and mucosal delivery, the ease of
design, and the recent clinical successes with DNA vaccines
suggests that this approach is on the precipice of redefining
the field of vaccinology.
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