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Abstract: The high-throughput quantitation of cannabinoids is important for the cannabis industry.
As medicinal products increase, and research into compounds that have pharmacological benefits
increase, and the need to quantitate more than just the main cannabinoids becomes more important.
This study aims to provide a rapid, high-throughput method for cannabinoid quantitation using
a liquid chromatography triple-quadrupole mass spectrometer (LC-QQQ-MS) with an ultraviolet
diode array detector (UV-DAD) for 16 cannabinoids: CBDVA, CBDV, CBDA, CBGA, CBG, CBD,
THCV, THCVA, CBN, CBNA, THC, ∆8-THC, CBL, CBC, THCA-A and CBCA. Linearity, limit of
detection (LOD), limit of quantitation (LOQ), accuracy, precision, recovery and matrix effect were
all evaluated. The validated method was used to determine the cannabinoid concentration of four
different Cannabis sativa strains and a low THC strain, all of which have different cannabinoid profiles.
All cannabinoids eluted within five minutes with a total analysis time of eight minutes, including
column re-equilibration. This was twice as fast as published LC-QQQ-MS methods mentioned in the
literature, whilst also covering a wide range of cannabinoid compounds.

Keywords: cannabis; cannabinoids; LC-QQQ-MS; quantitation; high-throughput quantitation; analysis

1. Introduction

The use of cannabis has gained popularity as a therapeutic alternative in recent times,
with many countries around the world legalising its use for medicinal purposes. In 2016,
Australia legalized the use of cannabis for medicinal use, with the potential of legalisation
for recreational use under investigation. As a medicinal agent, it is essential to identify the
cannabinoid compounds present to understand the mechanisms of action. Currently, over
550 compounds have been identified in cannabis with 144 different cannabinoids isolated
from cannabis [1]. The ever-growing cannabis industry has resulted in the development
of more cultivars, all with different chemical compositions. Therefore, a need for a rapid,
accurate and high-throughput method for chemical analysis, that can be used to determine
the concentration of as many components as possible, is essential.

The main pharmacological compounds currently of interest are cannabidiol (CBD)
and delta-9-tetrahydrocannabinol (THC), the two major phytocannabinoids present in
cannabis buds, depending on the cultivar. CBD, a low psychoactive compound, has been
proven to have beneficial health outcomes for epileptic individuals that suffer from Dravet
syndrome, Lennox-Gastaut syndrome or tuberous sclerosis complex [2,3]. THC, although
highly psychoactive, has been used as an analgesic for individuals suffering from multiple
sclerosis, and as a treatment for urinary incontinence and spasticity symptoms [4]. Some of
the conditions best suited to cannabis use as a medicinal agent exclusively effect children,
such as Dravet syndrome. As such, the use of a cannabis resin, or oil, with no or negligible
amounts of THC and elevated levels of CBD would be the ideal vehicle for administration.
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While CBD, THC and their precursors, cannabidiolic acid (CBDA) and tetrahydro-
cannabinolic acid (THCA-A), respectively, are the major cannabinoids present in most
cultivars, the minor cannabinoids have also been shown to have pharmacological ben-
efits for various medical conditions [4,5]. Cannabinol (CBN), cannabigerol (CBG) and
cannabichromene (CBC) have been shown to exhibit anti-inflammatory properties for
various medical conditions, including irritable bowel syndrome [6–10]. There is also
evidence to suggest that cannabigerolic acid (CBGA) and cannabidivarin (CBDV) have anti-
convulsant properties and they may be useful in the treatment of epilepsy in conjunction
with CBD [10,11]. Additionally, preliminary animal studies have shown that tetrahydro-
cannabivarin (THCV) may be useful in delaying the onset of neurodegenerative disorders,
such as Parkinson’s disease [12]. Other cannabinoids that may be of interest include
delta-8-tetrahydrocannabinol (∆8-THC), cannabinolic acid (CBNA), cannabichromenic
acid (CBCA), tetrahydrocannabivarin acid (THCVA), cannabidivarin acid (CBDVA) and
cannabicyclol (CBL), which are generally found in trace amounts in cannabis; therefore,
there is little research on the clinical effects of these compounds.

To ensure high-throughput sample analysis and processing, a rapid method to quan-
tify the cannabinoids present in individual samples is necessary. One potential issue is the
structural similarity of some cannabinoids. For example, ∆8-THC, is a structural isomer
and derivative of ∆9-THC, which has an identical molecular weight, similar fragmentation
ions and retention time, with the only difference being a shift in the position of the double
bond [13]. Due to the higher abundance of ∆9-THC in some cultivars, rapid methods of
analysis may result in co-elution, making it difficult to accurately determine the concentra-
tion of ∆8-THC. Additionally, the concentration of ∆8-THC tends to be in low abundance,
such that quantitation software may include ∆9-THC peaks in ∆8-THC peaks. Many
cannabinoids that have been discovered; however, the majority of them lack fully validated
analytical methods for quantitation, and most studies at present validate methods for the
major cannabinoid compounds [14]. Accurate quantitation of all the compounds present
in a sample is essential in understanding the pharmacological benefits of using cannabis
extracts containing multiple cannabinoids as a medicine; however, there are limitations,
as not all isolated cannabinoids are commercially available. The quantitation of the 16
commercially available cannabinoids validated in this study are the main focus of many
current studies in the literature.

Current methods for the quantitation of cannabinoids and secondary metabolites
use either gas chromatography (GC) or liquid chromatography (LC), in tandem with a
mass spectrometer (MS) and/or a diode array detector (DAD). High-performance liquid
chromatography with a diode array detector (HPLC–DAD) has been used to quantify
cannabinoid compounds in both cannabis oils and cannabis plant material [15], but this
lacks the selectivity to distinguish between structurally similar, coeluting compounds.
GC and GCMS is a more specific method of cannabinoid analysis, where all cannabinoid
analytes are eluted in less than 20 min [14], with more recent methods optimised to reduce
the analysis time to 7 min [16]. GCMS is used to quantify both terpenes and cannabinoids,
but the limitation is that the operating temperature of the injection port may decarboxylate
all acidic cannabinoids into their neutral derivatives [17].

LC is the alternate method of analysis for volatiles compounds as they can remain in-
tact, and preparation steps are often easier, as derivatisation is not required [18]. Elkins et al.
developed a validated method for 6 cannabinoids (CBD, THC, CBDA, THCA-A, CBN
and CBC) in 20 min that was suitable for Good Manufacturing Practice environments
and adhering with the Food and Drug Administration and the International Council for
Harmonisation test methods using a UHPLC–DAD. The method allowed good separation
but lacked a mass spectrometer that would have provided superior identification and selec-
tivity [19]. Liquid chromatography triple quadrupole mass spectroscopy (LC-QQQ-MS),
targeting specific cannabinoids, was used by Grauwiler et al. to detect four cannabinoid
compounds—CBD, CBN, THC and THCA-A—in human plasma with all compounds elut-
ing in 25 min [20]. This was recently improved by McRae et al., where the authors used a
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LC-QQQ-MS to quantitate 17 cannabinoids in 15 min [21]. QQQ-MS is effective for targeted
analysis due to its selectivity but is unable to identify untargeted compounds [18].

Supercritical fluid chromatography (SFC) has been used due to its ‘green nature’,
where the mobile phase is carbon dioxide rather than methanol or other organic sol-
vents [22]. SFC can reduce the use of alcohol-related solvents, whilst still being able to
achieve adequate separation, comparable to HPLC [14,21]. Wang et al. employed SFC to
separate 11 cannabinoids in less than 10 min [22]. In addition, carbon dioxide supercritical
fluid extraction is an effective method of extracting cannabis resin (primarily cannabinoids)
from cannabis buds [21]. It does this by pressurising the carbon dioxide until it reaches su-
percritical conditions and is then able to extract cannabis resin whilst the plant matter is left
behind, allowing for a cannabinoid-rich product for analysis. This process has limitations,
since highly polar solutes are insoluble in carbon dioxide supercritical fluids.

Nuclear magnetic resonance (NMR) is often used for the identification of novel cannabi-
noids but can also be used for quantitation. Hazekamp et al. was able to quantify THCA-A,
THC, CBD, CBDA and CBN in plant extracts and semi-pure, cannabinoid rich fractions
within five minutes [23]. NMR is rapid, non-destructive and can characterise different
regioisomers, but lacks sensitivity compared with mass spectrometry [24].

While there are many methods available to identify and quantify different cannabinoid
compounds, many are either too slow (15–25 min), or not cost effective for high-throughput
research. Our method uses an LC-QQQ-MS method, where we accurately quantitate 16
cannabinoids with a total analysis time of less than 8 min. This is a significant improvement
on current industry standard methods for high-throughput screening, reducing overall
analysis time while increasing the number of compounds analysed and still achieving high
resolution and baseline separation.

2. Methods
2.1. Reagents and Standards

All reagents, water with 0.1% formic acid (mobile phase A), acetonitrile with 0.1%
formic acid (mobile phase B), and methanol were HPLC grade and obtained from Fisher Sci-
entific (Fair Lawn, NJ, USA). Primary standards for cannabidiolic acid (CBDA) tetrahydro-
cannabinolic acid (THCA-A) in acetonitrile, cannabidivarin acid (CBDVA), cannabidivarin
(CBDV), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabidiol (CBD), tetrahydro-
cannabivarin (THCV), tetrahydrocannabivarin acid (THCVA), cannabinol (CBN), cannabi-
nolic acid (CBNA), tetrahydrocannabinol (THC), delta-8-tetrahydrocannabinol (∆8-THC),
cannabicyclol (CBL), cannabichromene (CBC), and cannabichromenic acid (CBCA) in
methanol, at 1000 µg/mL, were commercially purchased from Novachem Pty Ltd. (Hei-
delberg West, Australia) as distributor for Cerilliant Corporation (Round Rock, TX, USA).
Purity of standards were >98% according to the individual certificate of analysis.

In total, 2 separate mixed standards were prepared: 1 working standard at 100 µg/mL
CBDA, CBD, CBN, THC, CBC and THCA-A in methanol; and the other 100 µg/mL
CBDVA, CBDV, CBGA, CBG, THCV, THCVA, CBNA, ∆8-THC, CBL and CBCA in methanol.
A 100 µg/mL standard was required for UV analysis; therefore, 2 separate standard
preparations from the individual 1000 µg/mL neat stock were required. The working
standard concentrations were 0.001, 0.01, 0.1, 0.25, 0.5, 1, 2.5, 5, 10, 50 and 100 µg/mL
prepared as serial dilutions from their respective 100 µg/mL working standard. All
standards were stored at −80 ◦C until required for analysis.

2.2. Sample Preparation and Extraction

Briefly, dried and ground cannabis inflorescences were obtained from the Victorian
Government Medicinal Cannabis Cultivation Facility. Samples used were CannBio-2 (CB2),
CannBio-3 (CB3), CannBio-4 (CB4), CannBio-5 (CB5) and an unnamed low THC strain.
Samples were placed in liquid nitrogen for 1 min and ground to a fine powder using a
SPEX SamplePrep 2010 Geno/Grinder for 1 min at 1500 rpm. This sample preparation
and extraction was performed as described in a paper by Elkins et al. [19]. After grinding,
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10 mg of each sample was weighed into 2 mL Axygen microtube and extracted with 1 mL
of methanol, vortexed for 30 s, sonicated for 5 min and centrifuged at 13,000 rpm for 5 min.
The supernatant was transferred to a 2 mL amber HPLC vial and diluted 1 in 10 to ensure
responses were within the quantitative range of the instrument.

2.3. Pre-Extraction Spike Preparation

Recovery samples were prepared by spiking 10 mg of sample with 100 µL of 100 µg/mL
standard and then prepared to 1 mL in methanol. A 1:10 dilution of the extract was per-
formed to achieve a concentration of 1 µg/mL. The high spike (HS) was prepared by adding
500 µL of 100 µg/mL standard and followed the steps mentioned previously to achieve
concentrations of 5 µg/mL. Samples were sonicated, vortexed and transferred into 2 mL
amber HPLC vials as previously described. A further 1 in 2 dilution was required to ensure
all cannabinoids fit within the calibration curve, making the total dilution 1 in 20. Final
spikes concentrations were 0.5 µg/mL (low spike, LS); and 2.5 µg/mL (high spike, HS).

2.4. Post-Extraction Spike Preparation

To determine matrix effect, samples were extracted with methanol as outlined in
Section 2.2, 100 µL of the extract was transferred to a 2 mL amber HPLC vial, spiked with
10 µL of 100 µg/mL standard and made to a final volume of 1 mL with methanol to achieve
a concentration of 1 µg/mL. The HS used 50 µL of 100 µg/mL standard and was prepared
as described to achieve a concentration 5 µg/mL. A further 1 in 2 dilution was required to
ensure all cannabinoids fit within the calibration curve, making the total dilution 1 in 20.
Final spike concentrations were 0.5 µg/mL (LS) and 2.5 µg/mL (HS).

2.5. Instrumentation Parameters

Analysis was performed on an Agilent Triple Quadrupole Mass Spectrometer 6460
coupled with an Agilent high-performance liquid chromatography 1290 Infinity II LC
System equipped with a degasser, binary pump, temperature controlled autosampler,
column compartment and UV-DAD. Agilent Mass Hunter Data Acquisition Version 10
was used for instrument control. The column used was a Phenomenex Luna Omega C18
150 × 2.1 mm × 1.6 µm column with an injection volume of 5 µL. The mobile phases
consisted of (A) water with 0.1% formic acid and (B) acetonitrile with 0.1% formic acid.
Separation was achieved using the following gradient parameters: 0–5 min, 70% B; 5–7 min;
100% B, 7–7.1 min 70% B. This was followed by equilibration to initial conditions at a flow
rate of 0.4 mL/min. The total runtime was less than 8 min with all compounds eluted in
less than 5 min. The autosampler was maintained at 15 ◦C with the column temperature
maintained at 40 ◦C. The UV-DAD was set up to acquire spectra at wavelengths of 280 nm
and 214 nm. The QQQ-MS parameters were as follows: the gas temperature was set at
300 ◦C; the gas flow at 5 L/min; the nebuliser pressure at 45 psi; the sheath gas temperature
at 250 ◦C; the sheath gas flow at 11 L/min. The ion spray voltage was at 3500 V at the
capillary and 500 V at the nozzle.

2.6. Data Processing

Limit of detection (LOD) and limit of quantitation (LOQ) were determined using the
LINEST function of excel and data from the Agilent Mass Hunter Quantitative Analysis
where a signal ratio of 3.3:1 from baseline was used for LOD and LOQ was determined
using signal ratio of 10:1 from baseline. R2 values and equations were calculated using
Agilent Mass Hunter Quantitative Analysis software, where the calibration curve fit origins
were forced through zero.
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3. Results and Discussion
3.1. Method Validation

Method validation was evaluated for the following parameters: linearity, LOD, LOQ,
accuracy, precision, matrix effect (ME) and recovery (RE). This was carried out in accordance
with guidelines detailed by Peters et al. [25].

3.2. Compound Separation

The analysis was performed using LC-QQQ-MS. The precursor, quantifier, qualifier
ions and collision energies are detailed in Table 1, with all compounds eluted within
8 min. Baseline separation for all cannabinoids was achieved except for compounds which
exhibited the same retention time and molecular weight, which were ∆8-THC, ∆9-THC
CBC and CBL, but these could be characterised and quantified using different product ions
(Figure 1). Refer to Figures S1–S16 for MRM of scans of individual cannabinoids, including
quantifier and qualifier ions.

Table 1. Retention time, precursor, qualifier, quantifier ions and collision energy of each respective
cannabinoid compound.

Compound RT (min) Precursor (m/z)
[M + H]+

Quantifier
(m/z) CE (eV) Qualifier

(m/z) CE (eV)

CBDVA 2.35 331.2 313.1 10 191 26
CBDV 2.49 287.2 123 18 165 35
CBDA 2.95 359.2 341 10 219 30
CBGA 3.08 361.2 219 15 343 22
CBG 3.15 317.3 193 10 123 35
CBD 3.24 315.2 193.1 18 123 30

THCV 3.35 287.2 123 30 165 18
THCVA 3.79 331.2 313.1 10 191 30

CBN 3.91 311.2 208 34 195.1 22
CBNA 4.23 355.2 337.1 10 235.1 30
THC 4.30 315.2 217.2 22 165.1 22

∆8-THC 4.30 315.2 119 35 159.7 30
CBL 4.56 315.2 235.1 20 165 26
CBC 4.63 315.2 259 20 217 18

THCA-A 4.73 359.2 219 6 233 26
CBCA 4.90 359.2 219 15 233 22Molecules 2022, 27, x FOR PEER REVIEW 6 of 12 
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imately 0.1 µg/mL and from 0.08 to 0.71 µg/mL, respectively. The R2 values for each can-
nabinoid were 0.990 or better (Table 2), this is equivalent to the correlation coefficient cri-
teria of McRae et al. [26], and is achieved whilst improving runtime to 8 min, compared 
with McRae’s 21 min total runtime [26]. Due to the high abundance of CBDA and THCA-
A in samples UV-DAD was used for quantitation which is accurate up to 250 µg/mL ac-
cording to Elkins et al. [19]. 

Table 2. Linear concentration range, correlation coefficient, limit of detection and limit of quantita-
tion for cannabinoid standards tested. 

Compound Concentration Range (µg/mL) Equation R2  LOD 
(µg/mL) 

LOQ 
(µg/mL) 

CBDVA 0.1–5 y = 14,085 × x 0.998 0.10 0.24 
CBDV 0.1–5 y = 786 × x 0.999 0.05 0.10 
CBDA  0.1–10 y = 23,687 × x 0.999 0.05 0.16 

CBDA * 1–100 y = 12 × x 0.997 0.10 0.24 
CBGA 0.1–5 y = 5237 × x 0.995 0.10 0.08 
CBG 0.1–5 y = 2516 × x 0.999 0.10 0.20 
CBD 0.25–10 y = 1841 × x 0.995 0.12 0.35 

THCV 0.25–2.5 y = 1103 × x 0.998 0.13 0.40 
THCVA 0.1–2.5 y = 12,252 × x 0.999 0.10 0.25 

CBN 0.1–10 y = 588 × x 0.998 0.10 0.27 
CBNA 0.1–5 y = 8428 × x 0.991 0.10 0.25 
THC 0.25–10 y = 182 × x 0.990 0.23 0.71 
Δ8-THC 0.1–10 y = 88 × x 0.995 0.10 0.25 

CBL 0.1–5 y = 3369 × x 0.999 0.10 0.11 
CBC 0.025–10 y = 350 × x 0.999 0.12 0.35 

THCA-A 0.1–10 y = 2079 × x 0.999 0.02 0.07 

Figure 1. The dMRM elution profile of all 16 cannabinoids; cannabidivarin acid (CBDVA), cannabidi-
varin (CBDV), cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), cannabigerol (CBG), cannabid-
iol (CBD), tetrahydrocannabivarin (THCV), tetrahydrocannabivarin acid (THCVA), cannabinol
(CBN), cannabinolic acid (CBNA), tetrahydrocannabinol (THC), delta-8-tetrahydrocannabinol (∆8-
THC), cannabicyclol (CBL), cannabichromene (CBC), tetrahydrocannabinolic acid (THCA-A), and
cannabichromenic acid (CBCA). Standards using the LC-QQQ-MS.
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3.3. Linearity, LOD and LOQ

The calibration curves consisted of 11 working standards prepared in methanol. Limit
of detection (LOD) and limit of quantitation (LOQ) were determined to be approximately
0.1 µg/mL and from 0.08 to 0.71 µg/mL, respectively. The R2 values for each cannabinoid
were 0.990 or better (Table 2), this is equivalent to the correlation coefficient criteria of
McRae et al. [26], and is achieved whilst improving runtime to 8 min, compared with
McRae’s 21 min total runtime [26]. Due to the high abundance of CBDA and THCA-A in
samples UV-DAD was used for quantitation which is accurate up to 250 µg/mL according
to Elkins et al. [19].

Table 2. Linear concentration range, correlation coefficient, limit of detection and limit of quantitation
for cannabinoid standards tested.

Compound Concentration
Range (µg/mL) Equation R2 LOD

(µg/mL)
LOQ

(µg/mL)

CBDVA 0.1–5 y = 14,085 × x 0.998 0.10 0.24
CBDV 0.1–5 y = 786 × x 0.999 0.05 0.10
CBDA 0.1–10 y = 23,687 × x 0.999 0.05 0.16

CBDA * 1–100 y = 12 × x 0.997 0.10 0.24
CBGA 0.1–5 y = 5237 × x 0.995 0.10 0.08
CBG 0.1–5 y = 2516 × x 0.999 0.10 0.20
CBD 0.25–10 y = 1841 × x 0.995 0.12 0.35

THCV 0.25–2.5 y = 1103 × x 0.998 0.13 0.40
THCVA 0.1–2.5 y = 12,252 × x 0.999 0.10 0.25

CBN 0.1–10 y = 588 × x 0.998 0.10 0.27
CBNA 0.1–5 y = 8428 × x 0.991 0.10 0.25
THC 0.25–10 y = 182 × x 0.990 0.23 0.71

∆8-THC 0.1–10 y = 88 × x 0.995 0.10 0.25
CBL 0.1–5 y = 3369 × x 0.999 0.10 0.11
CBC 0.025–10 y = 350 × x 0.999 0.12 0.35

THCA-A 0.1–10 y = 2079 × x 0.999 0.02 0.07
THCA-A * 1–100 y = 18 × x 0.998 0.12 0.37

CBCA 0.1–10 y = 1680 × x 0.990 0.10 0.16
For full compound names, refer to Figure 1. All equations were forced through zero. * Results calculated using
UV-DAD set to 280 nm due to high endogenous levels in samples.

3.4. Accuracy and Precision

Accuracy and precision of the method was assessed by calculating the mean result of
seven injections and determining the percent relative standard deviation (%RSD) of the
repeat injections. This was performed on both standards and seven independent extracts of
each CannBio strain. Repeated injections of the 0.25, 1 and 5 µg/mL standards resulted
in a %RSD < 2.0 for all analytes that are within the linear range of the method (Table 3).
Mean cannabinoid content and %RSD for each CannBio strain was determined with values
ranging between 2 and 6% (Table 4). The precision values obtained was comparable to the
values obtained by McRae et al. [26] (1.4 to 6.1%); however, our method was able to achieve
these results in less than half the time. THCA was found to be highly abundant across all
four strains, with CBDA also prominent in even ratio strains (CB2 and CB3), as expected.
CBGA, CBG, THCVA, CBNA, THC and CBCA were found in relatively low abundance in
all four strains with CBGA, THC and CBCA showing to be the most prominent. CBDVA,
CBD and CBC were only observed in CB2 and CB3, indicating a pathway link to CBDA.
There were no cannabinoids exclusive to the high THC strains (CB4 and CB5), this is not
surprising given no high CBD lines were available during the validation. CBDV, THCV,
CBN and CBL were not observed in any samples. This is not unexpected, given the low
concentration of the acidified variant and thermal decarboxylation required to facilitate
the conversion.
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Table 3. %RSD values for 16 cannabinoid compounds in standard solution at 0.25, 1 and 5 µg/mL.

Compound RT (min) 0.25 µg/mL 1 µg/mL 5 µg/mL

CBDVA 2.35 1.70 1.97 0.99
CBDV 2.49 1.96 2.06 2.00
CBDA 2.95 1.37 2.07 1.90

CBDA * 2.95 0.58 0.63 1.37
CBGA 3.08 2.07 1.99 1.36
CBG 3.15 1.83 1.68 0.71
CBD 3.24 2.65 ** 1.71 1.33

THCV 3.35 5.07 ** 2.09 1.51
THCVA 3.79 1.29 1.95 1.10

CBN 3.91 3.67 ** 0.87 1.07
CBNA 4.23 1.81 ** 1.78 0.78
THC 4.30 6.22 ** 1.86 2.02

∆8-THC 4.30 26.5 ** 1.87 1.98
CBL 4.56 1.31 1.12 1.33
CBC 4.63 1.83 ** 1.03 1.38

THCA-A 4.73 1.89 2.08 1.54
THCA-A * 4.73 0.82 ** 0.86 1.47

CBCA 4.90 1.76 1.97 0.92
* Results calculated using UV-DAD set to 280 nm due to high endogenous levels in samples. ** Values marked are
equal or below LOQ on the MS. RT—retention time (minutes).

Table 4. The mean concentrations and (%RSD) relative standard deviations of cannabinoid content
for each CannBio sample. Concentration units (Conc.) are in µg/mL.

CannBio-2 CannBio-3 CannBio-4 CannBio-5

Compound Conc. %RSD Conc. %RSD Conc. %RSD Conc. %RSD

CBDVA 0.35 3.27 0.20 4.30 <LOQ N/A <LOQ N/A
CBDV <LOQ N/A <LOQ N/A <LOQ N/A <LOQ N/A

CBDA * 77.2 4.30 101 2.53 <LOQ N/A <LOQ N/A
CBGA 2.21 2.03 2.41 3.71 3.08 2.48 3.26 4.88
CBG 0.56 4.94 0.66 3.40 1.88 4.07 1.60 5.39
CBD 2.16 3.78 2.95 3.05 <LOQ N/A <LOQ N/A

THCV <LOQ N/A <LOQ N/A <LOQ N/A <LOQ N/A
THCVA 0.34 3.70 0.19 3.86 0.91 3.51 0.90 5.92

CBN <LOQ N/A <LOQ N/A <LOQ N/A <LOQ N/A
CBNA 0.10 3.19 0.08 5.80 0.09 4.49 0.15 4.70
THC 2.36 4.22 3.06 3.44 5.62 4.23 5.42 4.94
CBL <LOQ N/A <LOQ N/A <LOQ N/A <LOQ N/A
CBC 0.20 4.43 0.30 2.34 <LOQ N/A <LOQ N/A

THCA-A * 44.2 4.22 49.6 2.65 107 4.31 119 5.39
CBCA 5.23 3.94 5.75 2.46 5.18 2.99 5.34 3.58

* Results calculated using UV-DAD set to 280 nm due to high endogenous levels in samples.

3.5. Recovery and Matrix Effect

Working standards were used to spike samples for pre- and post-spikes to evaluate
recovery and matrix effect at 0.5 and 2.5 µg/mL concentrations. Matrix effect was de-
fined as ion suppression. Recovery (RE) and matrix effect (ME) was calculated using the
following formula:

%ME or %RE =
spiked sample − no spike sample

spike level
× 100 (1)

Pre-extraction recovery values ranged from 73.0% to 126.2% across all cannabinoids
at both spike concentrations in all CannBio samples (Table 5). The LS for CBD, THC and
CBCA yielded higher than expected results, ranging from 131.4% to 158.1%, this was not
observed for the HS and is likely due to high endogenous levels in the samples. CBDA
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and THCA-A were quantified by UV, with recovery values ranging from 71.2% to 101.0%.
Recovery values for CBDA, determined by MS for CB4 and CB5, ranged from 105% to
108.8%. This confirms that at low levels the method is robust enough to accurately quantify
samples with low concentrations of CBDA. ∆8-THC and THCA-A spiked on a separate
low THC strain to determine method efficiency. Recovery values ranged between 93.9%
and 115.5% (Table 6).

Table 5. Pre-extraction spikes for recovery values in four different CannBio strains.

CannBio-2 CannBio-3 CannBio-4 CannBio-5
Compound LS HS LS HS LS HS LS HS

CBDVA 88.0 99.7 94.0 97.6 99.9 102.8 101.1 101.2
CBDV 92.6 95.2 94.2 93.0 96.9 92.8 96.2 89.7

CBDA * ND 71.2 ND 91.5 84.8 91.8 88.5 90.4
CBDA N/A N/A N/A N/A 105.0 108.8 107.0 106.0
CBGA 81.7 89.1 88.7 78.8 106.4 81.5 103.7 67.9
CBG 88.4 85.1 97.5 82.0 103.5 78.3 98.8 76.8
CBD 153.7 95.0 158.1 92.0 106.4 104.4 110.8 99.4

THCV 96.5 91.4 91.6 89.5 94.3 91.7 95.1 90.1
THCVA 95.2 95.7 89.5 95.1 97.6 91.3 96.5 89.1

CBN 89.4 92.6 92.5 89.4 95.7 91.1 94.8 92.0
CBNA 90.1 93.0 77.2 89.2 76.1 ND 76.3 ND
THC 102.9 88.7 131.4 100.4 142.0 79.1 157.9 65.6
CBL 104.6 99.2 95.7 103.0 104.3 102.0 109.0 99.9
CBC 88.5 92.5 79.6 89.3 88.0 97.5 95.6 93.0

THCA-A * ND 80.9 ND 101.0 ND 91.7 ND 68.6
CBCA 80.8 83.8 95.1 81.9 103.8 97.8 121.6 100.2

LS—low spike; HS—high spike. * Results calculated using UV-DAD set to 280 nm due to high endogenous levels
in samples.

Table 6. Pre-extraction spikes for recovery for ∆8-THC and THCA-A in a low THC cannabis strain.

Low THC Strain

Compound LS HS

∆8-THC 97.0 93.9
THCA-A * 115.5 99.8

LS—low spike; HS—high spike. * Results calculated using UV-DAD set to 280 nm due to high endogenous levels
in samples.

Post-extraction values ranged from 72.5% to 120.6% across all cannabinoids at both
spike concentrations (Table 7). Again, the CBDA matrix effect was determined by MS
for CB4 and CB5, with values ranging from 98.1 to 112.1%. CBDA and THCA-A were
quantified using UV where values ranged from 85.9% to 102.4%. ∆8-THC and THCA-A
was spiked in a separate low THC strain with post extraction values ranging from 96.7%
to 115.2% (Table 8). When comparing both recovery and matrix effect values at for CBGA,
CBG, THC and THCA compounds, there was a difference of 11.2%, 15.6%, 24.3% and 33.8%,
respectively, compared with the calculated matrix effect value in the high spike of CB5,
this is likely due to endogenous levels cannabinoid, within the sample, combined with the
spike saturating the methanol, potentially resulting in an incomplete extraction and thus
lower than expected recovery values. All other values were consistent between the pre-
and post-spike samples.
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Table 7. Post-extraction spikes for matrix effect in 4 different CannBio strains.

CannBio-2 CannBio-3 CannBio-4 CannBio-5

Compound LS HS LS HS LS HS LS HS

CBDVA 84.1 96.4 92.3 93.5 97.5 92.9 89.0 92.4
CBDV 87.8 102.7 84.2 98.3 92.2 92.6 86.6 95.0

CBDA * ND 99.5 ND 107 100.8 96.0 85.9 93.3
CBDA N/A N/A N/A N/A 111.7 109.4 98.1 112.1
CBGA 73.4 88.7 82.8 77.7 125.9 89.7 99.8 79.1
CBG 78.6 95.6 88.9 92.5 123.1 93.7 100.3 92.4
CBD 100.9 91.6 102.1 82.3 85.6 98.1 83.1 102.9

THCV 91.4 103.3 94.6 99.1 99.8 99.8 92.4 96.1
THCVA 78.2 103.4 87.1 102.2 94 97.9 87.4 96.7

CBN 84.6 96.4 76.1 98.7 92.1 95.6 82.5 95.2
CBNA 112 91.7 98 85.7 85.4 70.6 90.8 79.6
THC 98.9 86.7 81.6 98.3 78.1 72.5 97.6 89.9
CBL 87.8 94.1 89.3 90.6 99.9 91.7 87.2 87.3
CBC 82.1 96.1 101.2 107.8 109.2 108.4 101.3 105.6

THCA-A * ND 99.8 ND 100.2 ND 271 ND 102.4
CBCA 85.1 88.4 89.3 79.1 120.6 104.0 97.3 90.0

LS—low spike; HS—high spike. * Results calculated using UV-DAD set to 280 nm due to high endogenous levels
in samples.

Table 8. Post-extraction spikes for matrix effect for ∆8-THC and THCA-A in a low THC cannabis strain.

Low THC Strain

Compound LS HS

∆8-THC 115.2 104.6
THCA-A * 108.1 96.7

LS—low spike; HS—high spike. * Results calculated using UV-DAD set to 280 nm due to high endogenous levels
in samples.

The extraction efficiency of the method is very good, with most of the matrix effect and
recovery samples within 10% RSD and returning values between 90 and 110%, indicative
of full extraction (excluding outlier compounds mentioned previously). CBDV, CBDA and
THCV are a few examples of a full extraction across all spikes in all four CannBio strains.
Improvement to this process may be to have additional extractions, perhaps a method using
3 extractions of 500 µL of methanol, which will likely extract any leftover cannabinoid into
the solution, resulting in a more efficient extraction at the detriment of time. However, the
aim of this study was to make the entire process as rapid as possible, so these results are an
acceptable compromise.

4. Conclusions

A rapid, high-throughput method for the quantitation of cannabinoids in neat cannabi-
noid standards was developed and fully validated for 16 compounds (CBDVA, CBDV,
CBDA, CBGA, CBG, CBD, THCV, THCVA, CBN, CBNA, THC, ∆8-THC, CBL, CBC, THCA-
A and CBCA) by LC-QQQ-MS. The method was optimised to achieve a rapid analysis time
of eight minutes per sample, significantly improving current published methods. Linearity,
limit of detection, limit of quantitation, accuracy, precision, spikes for matrix effect and
recoveries have all been evaluated to give consistent results and acceptable RSD values.
There is a limitation in the analysis of ∆8 and ∆9 THC, since these compounds co-elute
due to their structural similarity and high endogenous levels of ∆9 compared with ∆8.
This can be overcome by using longer methods of analysis or incorporating a multistep
gradient; however, these changes would be at the cost of reduced throughput. Linearity,
precision, accuracy, matrix effect and recoveries were assessed to be within acceptable
limits. The LC-QQQ-MS in tandem with a UV-DAD is a rapid, cost-effective and ideal
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method for analysing major and minor cannabinoids in high-throughput commercial or
research environments.

Supplementary Materials: The following supporting information can be downloaded online:
Figure S1: MRM of CBDVA, collision energy at 10 for product ion 313.1 m/z and collision energy at
26 for product ion 191 m/z, Figure S2: MRM of CBDV, collision energy at 18 for product ion 165 m/z
and collision energy at 35 for product ion 123 m/z, Figure S3: MRM of CBD, collision energy at 10 for
product ion 341 m/z and collision energy at 30 for product ion 219 m/z, Figure S4: MRM of CBGA,
collision energy at 15 for product ion 361.2 m/z and collision energy at 22 for product ion 219 m/z,
Figure S5: MRM of CBG, collision energy at 10 for product ion 193 m/z and collision energy at 35 for
product ion 123 m/z, Figure S6: MRM of CBD, collision energy at 18 for product ion 193.1 m/z and
collision energy at 30 for product ion 123 m/z, Figure S7: MRM of THCV, collision energy at 18 for
product ion 165 m/z and collision energy at 30 for product ion 123 m/z, Figure S8: MRM of THCVA,
collision energy at 10 for product ion 313.1 m/z and collision energy at 30 for product ion 193 m/z,
Figure S9: MRM of CBN, collision energy at 18 for product ion 193.1 m/z and collision energy at 30 for
product ion 123 m/z, Figure S10: MRM of ∆8-THC, collision energy at 35 for product ion 159.7 m/z
and collision energy at 30 for product ion 119 m/z, Figure S11: MRM of CBNA, collision energy at 10
for product ion 337.1 m/z and collision energy at 30 for product ion 235.1 m/z, Figure S12: MRM of
CBC, collision energy at 18 for product ion 217 m/z and collision energy at 20 for product ion 259 m/z,
Figure S13: MRM of THC, collision energy at 22 for product ion 217 m/z and collision energy at 22 for
product ion 165.1 m/z, Figure S14: MRM of CBL, collision energy at 20 for product ion 235.1 m/z and
collision energy at 26 for product ion 165 m/z, Figure S15: MRM of THCA-A, collision energy at 6 for
product ion 341.1 m/z and collision energy at 26 for product ion 219 m/z, Figure S16: MRM of CBCA,
collision energy at 18 for product ion 233 m/z and collision energy at 18 for product ion 219 m/z.
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