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We introduce a new motor parameter imagery paradigm using clench speed and clench force motor imagery.The time-frequency-
phase features are extracted from mu rhythm and beta rhythms, and the features are optimized using three process methods:
no-scaled feature using “MIFS” feature selection criterion, scaled feature using “MIFS” feature selection criterion, and scaled
feature using “mRMR” feature selection criterion. Support vector machines (SVMs) and extreme learning machines (ELMs) are
compared for classification between clench speed and clench force motor imagery using the optimized feature. Our results show
that no significant difference in the classification rate between SVMs and ELMs is found. The scaled feature combinations can get
higher classification accuracy than the no-scaled feature combinations at significant level of 0.01, and the “mRMR” feature selection
criterion can get higher classification rate than the “MIFS” feature selection criterion at significant level of 0.01.The time-frequency-
phase feature can improve the classification rate by about 20%more than the time-frequency feature, and the best classification rate
between clench speedmotor imagery and clench forcemotor imagery is 92%. In conclusion, themotor parameter imagery paradigm
has the potential to increase the direct control commands for BCI control and the time-frequency-phase feature has the ability to
improve BCI classification accuracy.

1. Introduction

Brain computer interface (BCI) is an emerging technology in
the last decades due to its ability to enable people to control
devices using thought directly, such as computer cursors,
robotic limbs, and prosthetic devices [1–3]. Furthermore,
researchers have shown that the brain-to-brain interface
(BBI) makes it possible for a human volunteer to control a
rat’s tail movement according to his/her intention [4].

Many cognitive tasks can modulate brain activities, such
asmotor imagery, mental calculation, andmental singing [5].
Brain activities caused by external stimulations can also be
used for BCI, including steady state visual evoked potentials

(SSVEP) [6] and P300 [7]. Among these approaches, motor
imagery is widely used due to its convenience and no external
stimulations [8]. Studies have shown that motor imagery
presents similar brain activities as real movement [9].

The modulated brain signals for BCI control can be
acquired by both invasive and noninvasive methods [10].The
mostly used noninvasive brain signal is electroencephalog-
raphy (EEG) due to its high sampling frequency and low
cost. The functional near-infrared spectroscopy (fNIRS) is
another noninvasive approach to acquire cognitive related
brain signals [11]. Also, EEG can be acquired with fNIRS
simultaneously to obtain enhanced performance because
the two approaches acquire cognitive related brain signals
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through both electrophysiology and hemodynamic aspect
[12].

Before being used to control a device, the brain signals
must be decoded first [13, 14]. Most researchers use time,
spatial, and frequency features for mental decoding [15–
19], but little attention is focused on phase feature. Lachaux
et al. researched phase synchrony in brain signals using
a statistical measure of phase locking value (PLV) for the
first time in 1999 [20]. Gysels and Celka investigated phase
synchronization for recognition of mental tasks for BCI in
2004, and their results showed that phase feature is useful for
spontaneous EEG classification during mental tasks [21]. Li
and Zhang compared PLVwith phase interval value (PIV) for
classification of motor imagery for BCI applications in 2009
and found that PIV performed better than PLV [22]. Some
researchers also apply empiricalmode decomposition (EMD)
and multivariate extensions of empirical mode decompo-
sition (MEMD) to obtain phase information for BCI and
get good results [23]. However, MEMD is time consuming
in situations of large channel number and high sampling
frequency.

In this paper, we investigate the classification accuracy of
different combinations of time-frequency feature and time-
frequency-phase feature for motor parameter imagery classi-
fication using support vector machines (SVMs) and extreme
learning machines (ELMs). Two feature selection criteria
are also compared in the paper: the mutual information
feature selection (MIFS) criterion and the max-relevance
min-redundancy (mRMR) criterion. The Hilbert transform
is applied on the mu and beta band EEG signal to get
instantaneous phase (IP), as well as instantaneous amplitude
(IA) and instantaneous frequency (IF). The band power
(BP) feature is compared with these three features and their
combinations. Our results show that IP performs best at
a classification accuracy of 0.83 when used independently
among these four feature types. The classification rate can
be improved to 0.92 when the four feature types are used
simultaneously. The performances of SVMs and ELMs are
similar to each other, and the “mRMR” feature selection
criterion performs better than the “MIFS” criterion.

The paper is constructed as follows. In Section 2, we
will describe the experiment design in this research. Then,
the data analysis methods are presented in Section 3. The
results of data analysis are presented in Section 4. Finally,
we will discuss the results of this research and make some
conclusions in Section 5.

2. Experiment Design

2.1. Experiment Paradigm. Traditional BCI paradigms use
motor imagery of different limbs to modulate brain signals
and can generally obtain at most 4 or 5 direct control
commands [24, 25]. In our research, we adopt the motor
parameters imagery paradigm (Figure 1). Three levels of
clench speed motor imagery of the right hand and three
levels of clench force motor imagery of the right hand are
used in the experiment. Subjects exercise right hand clench
movement at the speeds of 0.5Hz, 1Hz, and 2Hz according
to a metronome. The maximum clench force (MF) of every

Base time Cue Task Rest

Time (s)
−12 −2 0 10 20∼22

Figure 1: The experiment paradigm used in the research.

subject is measured, and then subjects practice to clench their
right hand at the levels of 20%, 50%, and 80%MF. During the
experiment, subjects are required to recall the feeling of real
movements. In this paper, we only investigate the possibility
of discrimination of clench speedmotor imagery from clench
force motor imagery. The reason for using three levels for
clench speed and clench force motor imagery is to eliminate
the effects of different task intensities. The advantage of
our paradigm is the potential ability to provide more direct
control commands for BCI applications.

We acquired EEG and fNIRS signals simultaneously. The
analysis results of fNIRS signal have been presented in paper
[26], and, in this paper, we only analyze the EEG signals.
The analysis of enhanced BCI performance of EEG-fNIRS
combined feature will be discussed in the future.

Taken into the consideration of time lag in fNIRS
response to motor imagery [27], the duration of a single
trial is much longer than traditional EEG paradigms. In our
experiment, a single trial comprises four parts: 10-second
base line period, 2-second cue period, 10-second task period,
and 10∼12-second rest period. Subjects are told not to blink
their eyes during the motor imagery period. Every subject
takes part in 3 sessions, and each session consists of 60 trials.
To avoid subject fatigue, the trial number in a session is much
less than traditional EEG paradigms. So we adopt the 5-fold
cross-validation approach to reduce the effects of small trial
number.

Six right handed healthy subjects (three males and three
females, average age: 26.8 years) participate in the exper-
iment. Three of them are trained three times before the
experiment, and the others take part in no training course.
All the subjects give written informed consent to participate
in the experiment. Also, the experiment is approved by the
Ethical Committee of the Shenyang Institute of Automation
(SIA), Chinese Academy of Sciences (CAS).

2.2. Data Acquisition. 21 Ag/AgCl electrodes above the pri-
mary motor cortex and the supplementary motor cortex are
used in the experiment, as shown in Figure 2. A1 is used as
the reference, and Fpz is used as the ground. Neuroscan
synamps2 is used to acquire EEG signals from all the channels
at a sampling frequency of 1000Hz.The electrode impedance
is reduced to 5K Ohms before the experiment. The Elec-
trooculogram (EOG) is also recorded to ensure that no EOG
artifacts exist during the motor imagery task period.

3. Data Analysis Methods

The original EEG data are low-passed at a cutoff frequency
of 125Hz and then down sampled to 250Hz to decrease the
computation cost. Then, the frequencies from 5Hz to 45Hz
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Figure 2: The electrodes used in the experiment.

are extracted for the following analysis. To improve the spatial
resolution of the EEGdata, a small Laplacian filter [28] is used
as in

𝑉

Lap
𝑗 = 𝑉𝑗 −

1

𝑁

∑

𝑘∈𝑆𝑗

𝑉𝑘, (1)

where𝑉𝑗 is the 𝑗th channel, 𝑆𝑗 is the surrounding channel set
of 𝑉𝑗,𝑁 is the size of 𝑆𝑗, and 𝑉𝑘 is the 𝑘th channel in 𝑆𝑗.

As former researches show that mu rhythm and beta
rhythm are effective for BCI control, the signals of 8–12Hz
and 18–25Hz are extracted, respectively, for further analysis
[29].

3.1. Hilbert Transform. Two methods can be used to get the
phase information of a signal. The first one is the Hilbert
transform method, and the other one is the complex wavelet
convolution method [20]. Researches show that the results of
the two methods are comparable [30]. We adopt the Hilbert
transform method in the research.

The Hilbert transform of a signal 𝑥(𝑡) can be gotten by
convolution with the function ℎ(𝑡) = 1/𝜋𝑡,

𝑦 (𝑡) = 𝑃∫

∞
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where 𝑃 is the Cauchy principal value. The analytic signal of
𝑥(𝑡) can be gotten by (2). Consider

𝑧 (𝑡) = 𝑥 (𝑡) + 𝑖𝑦 (𝑡) = 𝐴 (𝑡) 𝑒

𝑖𝜃(𝑡)
, (3)

where 𝑖 is the imaginary unit, 𝐴(𝑡) = sqrt(𝑥(𝑡)2 + 𝑦(𝑡)

2
) is

the instantaneous amplitude (IA), and 𝜃(𝑡) = arctan𝑦(𝑡)/𝑥(𝑡)

is the instantaneous phase (IP). The value range of 𝜃(𝑡) is
[−𝜋 𝜋]. The instantaneous frequency (IF) can be gotten
by 𝑤(𝑡) = 𝑑𝜃(𝑡)/𝑑(𝑡). To get the correct instantaneous
frequency, 𝜃(𝑡) must be unwrapped by adding multiples of
±2𝜋 when absolute jumps of more than 𝜋 happen between
consecutive elements.

3.2. Feature Extraction. Four feature types are researched in
the paper: the power, the instantaneous amplitude (IA), the
instantaneous phase (IP), and the instantaneous frequency
(IF). The latter three features can be gotten from Hilbert
transform.

To decrease the feature dimensions and improve the
classification stability, the original features are averaged using
an 0.5 s moving window with the step width of 0.125 s. Four
window length and stepwidth combinations are tested (0.5 s–
0.125 s, 0.5 s–0.2 s, 1 s–0.125 s, and 1 s–0.2 s), and we find that
the 0.5 s–0.125 s combination performs the best of all. The
0.5 swindow length is reasonable taken into the consideration
of the varied nature of EEG signals, and the 0.125 s step
width is enough for fluent BCI device control. The averaged
feature points between the time range of [−0.5 0.5] of all the
channels are combined into a vector, and the different feature
vector types are normalized and merged into a single vector
according to the feature type combination situations.

In our research, we compared four different feature types
and four different feature combination types.The four combi-
nation types are power-phase combination, amplitude-phase
combination, amplitude-phase-frequency combination, and
power-amplitude-phase-frequency combination.

3.3. Normalization. Due to the value range of the four feature
types differing significantly from each other, normalization
is essential to eliminate the degradation of the classifier
performance and get better classification accuracy using the
merged feature. In our paper, the feature vector of different
types is normalized to the range [−1 1] using (4), and the
normalized feature vectors are merged into a single vector for
the following feature optimization and classification:

Featurenorm = (

Feature −min (Feature)
max (Feature) −min (Feature)

− 0.5) × 2.

(4)

3.4. Feature Optimization. The original feature space may
contain much redundant information, which may reduce the
classification accuracy significantly. Feature optimization is
the key to improve the discriminative performance of a
classifier. Principle component analysis (PCA) is one type of
feature optimization techniques that project the original
feature space to another one [31]. The disadvantage of PCA
is that the converted feature space is hard to understand.
Feature selection is another type of feature optimization
methods. This method selects a subset of features from the
original feature space according to some criteria. Depending
on whether the classifier is included in the selection process,
feature selection methods can be grouped into “wrapper”
methods and “filter” methods [32]. Generally speaking, the
“wrapper”methods take the classifier’s classification accuracy
as the feature selection criterion, thus getting better classi-
fication rate. However, its generalization ability is poor and
its computational burden is much harder. In our research,
we choose the “filter” method and compare two information
based feature selection criteria: the mutual information fea-
ture selection (MIFS) criterion [33] and the max-relevance
min-redundancy (mRMR) feature selection criterion [34].
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The MIFS criterion uses the following equation to score
the potentially usefulness of a feature or feature subset:

𝐽MIFS (𝑋𝑘) = 𝐼 (𝑋𝑘; 𝑌) − 𝛽 ∑

𝑋𝑗∈𝑆

𝐼 (𝑋𝑘; 𝑋𝑗) , (5)

where 𝐼(𝑋𝑘; 𝑌) is the mutual information [35] between
feature 𝑋𝑘 and class label 𝑌, which is used to ensure feature
relevance; 𝐼(𝑋𝑘; 𝑋𝑗) is the mutual information between
feature 𝑋𝑘 and features already selected in the currently
selected feature set 𝑆, which is used as a penalty to enforce
low correlations.The value of𝛽depends on the independence
level between 𝑋𝑘 and 𝑋𝑗. A zero value means a full belief
of the independence relations, and a one value means a full
belief of the dependence relations.

ThemRMR criterion uses the following equation to score
the potentially usefulness of a feature or feature subset:

𝐽mRMR (𝑋𝑘) = 𝐼 (𝑋𝑘; 𝑌) −

1

|𝑆|

∑

𝑋𝑗∈𝑆

𝐼 (𝑋𝑘; 𝑋𝑗) . (6)

The difference between MIFS criterion and mRMR criterion
is that the 𝛽 value of MIFS is set by experience, while the 𝛽

value of mRMR is set inversely proportional to the size of
the current feature set. The comparison between MIFS and
mRMR can be found in [32, 36].

3.5. Support Vector Machines. Support vector machines
(SVMs) have been used in the classification applications
extensively due to their surprising classification ability [37].
Although it is originally proposed for binary classification,
it can also be applied in multiclass classification problems
through approaches of one-against-all (OAA) and one-
against-one (OAO)methods [38]. SVMs can also be extended
to solve regression problems by the introduction of the
epsilon-insensitive loss function [39, 40]. By mapping the
input samples (vectors) into a higher dimensional feature
space using a kernel function [41] and by selecting the
samples (the support vectors) that can produce the largest
margin between two classes, SVMs demonstrate amazing
results for both linear classification problems and nonlinear
classification problems.

The decision function of SVMs has the following form:

𝑓 (𝑥) = sign(

𝑁

∑

𝑖=1

𝑤𝑖𝑡𝑖𝜙 (𝑥, 𝑥𝑖) + 𝑏) , (7)

where 𝑥𝑖 is the training sample, 𝑡𝑖 is the sample’s target
class label, 𝑤𝑖 is the weight vector used as a normal vector
to determine the classification hyperplane, 𝑏 is a bias to
adjust the location of the hyperplane for better classification
results, and 𝜙(𝑥, 𝑥𝑖) is the kernel function to map the sample
into higher feature space. In our research, the linear kernel
𝐾(𝑥𝑖, 𝑥𝑗) = 𝑥

𝑇
𝑖 𝑥𝑗 is used because it requires less parameters

to optimize and can achievemuch higher classification results
compared with other kernels when their parameters are not
optimized.

The distance between two different classes in the feature
space is 1/‖𝑤‖, so SVMs determine the classifier parameters
by solving the following optimization problem:

min
𝑤,𝑏,𝜉

1

2

𝑤

𝑇
𝑤 + 𝐶

𝑁

∑

𝑖=1

𝜉𝑖

subject to 𝑦𝑖 (𝑤
𝑇
𝜙 (𝑥, 𝑥𝑖) + 𝑏) ≥ 1 − 𝜉𝑖

𝜉𝑖 ≥ 0, 𝑖 = 1, . . . , 𝑁,

(8)

where 𝜉𝑖 is the training error and 𝐶 is a user-defined constant
parameter used to provide a tradeoff between the separating
margin and the training error.The optimization problem can
be solved by Lagrange methods [37].

3.6. Extreme LearningMachines. Extreme learning machines
(ELMs) are types of single-hidden layer feedforward neural
networks (SLFNs) [42], which can be used for both regression
and multiclass classification [43]. Unlike other feedforward
neural networks that use gradient-based learning algorithms
to tune all the network parameters iteratively, ELMs choose
the inputweights randomly anddetermine the outputweights
of SLFNs using an analytical approach. The advantages of
ELMs contain extremely fast learning speed, the smallest
training error, and better generalization performance. Huang
et al. have rigorously proved that the input weights and
hidden layer biases of SLFNs with infinitely differentiable
activation functions can be randomly assigned [44].

For a training set ℵ = {(𝑥𝑖, 𝑡𝑖) | 𝑥𝑖 ∈ 𝑅

𝑛
, 𝑡𝑖 ∈ 𝑅

𝑚
, 𝑖 =

1, . . . , 𝑁}, standard SLFNs with activation function 𝑔(𝑥) and
a hidden node number𝑁 are mathematically modeled as

𝑁

∑

𝑖=1

𝛽𝑖𝑔𝑖 (𝑥𝑗) =

𝑁

∑

𝑖=1

𝛽𝑖𝑔 (𝑤𝑖 ⋅ 𝑥𝑗 + 𝑏𝑖) = 𝑡𝑗 𝑗 = 1, . . . , 𝑁,

(9)

where 𝑤𝑖 is the input weight vector that connects the input
nodes and the 𝑖th hidden node, 𝛽𝑖 is the output weight vector
that connects the 𝑖th hidden node and the output nodes, and
𝑏𝑖 is the bias of the 𝑖th hidden node.

Equation (9) can be written in a compact format as

𝐻𝛽 = 𝑇, (10)

where

𝐻 =
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...
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]

]
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Figure 3:The topography of four different mu feature types of a subject session.Themean feature value during [0 0.5] period is used for the
plot. (a) The topography of power. (b) The topography of the instantaneous amplitude (IA). (c) The topography of the instantaneous phase
(IP). (d) The topography of the instantaneous frequency (IF).

When the input weight 𝑤𝑖 and the bias 𝑏𝑖 are given, the
hidden layer output matrix 𝐻 can be calculated, and then
the output weight 𝛽 can be calculated using the following
equation:

𝛽 = 𝐻

†
𝑇, (12)

where𝐻† is theMoore-Penrose generalized inverse of matrix
𝐻 [45].

3.7. Common Spatial Patterns. To validate the advantage of
our method, we also classify clench speed and clench force
motor imageries using the method of common spatial pat-
terns (CSP). CSP is first applied to discriminate movement-
related patterns by Müller-Gerking et al. in 1999 [46], and it
has become a very popular method with many variants for
motor imagery classification [47–49]. This method performs
a weighting of the electrodes to maximize the difference
between two different motor tasks, and the channel variance
of the filtered signal is used for the classification in the
following steps. The details of the algorithm can be found in
[18].

In our research, the original EEG data are down sampled
to 250Hzfirst and then filtered in an 8–30Hz band.NoLapla-
cian filter is used to avoid zero eigenvalue when calculating
the CSP model. Only two most important CSP patterns are
used to get channel variance features; then SVMs and ELMs
are used to classify these features, respectively.

4. Results

The topographies of the four different feature types are shown
in Figure 3. While topographies of power feature and IA
feature show little difference between clench force motor
imagery and clench speed motor imagery, the topographies
of IP and IF feature show significant difference between
the two motor imagery tasks, which means that phase
feature and its derivative contain some different information
compared to the amplitude feature and power feature for
motor parameters imagery.

The classification results of SVMs and ELMs using three
different feature extraction methods (no-scaled with MIFS
feature selection criterion, scaled withMIFS feature selection
criterion, and scaled with mRMR feature selection criterion)
and eight different feature types/combinations are shown
in Table 1 and Figure 5. No significant difference between
the classification rates between SVMs and ELMs for all the
conditions can be found at the confidence level of 0.01 using
𝑡-test.

Generally speaking, the scaled features have higher classi-
fication accuracy than the no-scaled features, and the mRMR
feature selection criterion has higher classification accuracy
than theMIFS feature selection criterion, as shown in Figures
4 and 6 and Tables 2 and 3. The feature numbers selected in
the best feature subset using MIFS and mRMR are 64 ± 83

and 114 ± 74 for SVMs and 115 ± 66 and 107 ± 102 for
ELMs. The classification accuracy of power feature and IA
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Table 1: The classification results using different feature processing methods and different feature types.

Power IA IP IF Power-IP IA-IP IA-IP-IF Power-IA-IP-IF
No-scaled-MIFS

ELMs 0.69 ± 0.02 0.71 ± 0.04 0.78 ± 0.03 0.71 ± 0.03 0.71 ± 0.02 0.74 ± 0.05 0.74 ± 0.03 0.69 ± 0.02

SVMs 0.69 ± 0.02 0.71 ± 0.04 0.78 ± 0.03 0.69 ± 0.06 0.71 ± 0.02 0.73 ± 0.04 0.74 ± 0.04 0.70 ± 0.01

Scaled-MIFS
ELMs 0.71 ± 0.03 0.71 ± 0.03 0.77 ± 0.04 0.76 ± 0.03 0.78 ± 0.03 0.79 ± 0.03 0.82 ± 0.03 0.82 ± 0.03

SVMs 0.72 ± 0.04 0.71 ± 0.03 0.77 ± 0.03 0.76 ± 0.03 0.77 ± 0.03 0.79 ± 0.03 0.80 ± 0.02 0.80 ± 0.03

Scaled-mRMR
ELMs 0.69 ± 0.04 0.71 ± 0.03 0.83 ± 0.03 0.80 ± 0.04 0.85 ± 0.02 0.85 ± 0.03 0.90 ± 0.03 0.91 ± 0.03

SVMs 0.72 ± 0.04 0.72 ± 0.04 0.83 ± 0.03 0.82 ± 0.03 0.85 ± 0.04 0.86 ± 0.03 0.91 ± 0.03 0.92 ± 0.02

Table 2: The 𝑡-test comparison between different feature processing methods using ELMs (the confidence level is 0.01).

Conditions Power IA IP IF Power-IP IA-IP IA-IP-IF Power-IA-IP-IF
No-scale-MIFS < scale-MIFS 0 0 0 0 1 0 1 1
Scale-MIFS < scale-mRMR 0 0 1 0 1 1 1 1
No-scale-MIFS < scale-mRMR 0 0 1 1 1 1 1 1

Table 3: The 𝑡-test comparison between different feature processing methods using SVMs (the confidence level is 0.01).

Conditions Power IA IP IF Power-IP IA-IP IA-IP-IF Power-IA-IP-IF
No-scale-MIFS < scale-MIFS 0 0 0 0 1 0 1 1
Scale-MIFS < scale-mRMR 0 0 1 1 1 1 1 1
No-scale-MIFS < scale-mRMR 0 0 1 1 1 1 1 1
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Figure 4: The comparison of classification accuracy using different feature selection criteria. (a) The classification accuracy using a different
number of features selected by MIFS feature selection criterion. (b) The classification accuracy using a different number of features selected
by mRMR feature selection criterion.
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Figure 5: Comparison between the classification results between ELMs and SVMs. (a) Using the original feature and MIFS feature selection
criterion. (b) Using the scaled feature andMIFS feature selection criterion. (c) Using the scaled feature andmRMR feature selection criterion.

feature shows no significant difference. For the results using
mRMR feature selection criterion and SVMs classifier, the IP
feature and IF feature both have higher classification accuracy
than power and IA feature at the confidence level of 0.01;
both “IA-IP-IF” and “power-IA-IP-IF” feature combinations
have higher classification accuracy than the other 6 features
or feature combinations at a confidence level of 0.01. No
significant difference between these two combinations is
found.

The best classification rate between clench speed motor
imagery and clench force motor imagery is 92% when
“power-IA-IP-IF” combination feature and SVMs classifier
are used. For comparison, the classification accuracies using
CSP are 0.73 ± 0.03 and 0.75 ± 0.03 using ELMs and SVMs,

respectively. This result demonstrates not only that using
motor parameters imagery for BCI applications is possible
but also that the time-frequency-phase method outperforms
traditional CSP method.

5. Discussions and Conclusions

In this paper, we present the usefulness of phase information
for BCI applications, which has been researched by few
researchers before.We also demonstrate a newmotor param-
eter imagery paradigmusing clench speed and clench force as
imagery tasks, and the results show that this paradigmhas the
potential ability to providemore direct control commands for
BCI systems.
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Figure 6: The comparison of three different feature extraction methods: the first one is no-scaled feature chosen by MIFS feature selection
criterion; the second one is scaled feature chosen by MIFS feature selection criterion; the last one is scale feature chosen by mRMR feature
selection criterion. (a) The comparison using ELMs. (b) The comparison using SVMs.

Two popular classification methods are compared in
the paper using 5-fold cross validation, and no significant
difference in the results is found between them. We only use
the linear kernel for SVMs in this paper, and other kernels
with parameter optimizationmay get better results. However,
both kernel mapping and parameter optimization process
require much computation cost. On the other hand, ELMs
calculation is much simpler and faster, and no optimization
process is needed, which is convenient for more applications.

We compare four different feature types (power, instanta-
neous amplitude [IA], instantaneous phase [IP], and instanta-
neous frequency [IF]) and four different feature combinations
(power-IP, IA-IP, IA-IP-IF, and power-IA-IP-IF). The IA, IP,
and IF features are calculated by Hilbert transform. We
should notice that the IF feature is the derivative of the IP
feature.

Three feature optimization processes are compared in
this research: no-scaled feature using MIFS feature selec-
tion criterion, scaled feature using MIFS feature selection
criterion, and scaled feature using mRMR feature selection
criterion. Generally speaking, scaled feature combinations
have higher classification accuracy than no-scaled feature
combinations at a significant level of 0.01, which means that
normalization is essential whenmerging two ormore features
together. The comparison of classification accuracy between
MIFS feature selection criterion andmRMR feature selection
criterion in Figure 4 demonstrates that the original feature
space contains much redundant and irrelevant information
for classification, and the mRMR criterion can choose the
best feature subset more efficiently. The comparison of these
two feature selection criteria can also be found in [32,
36]. The numbers selected in the best feature subset vary

between different subjects and different sessions due to
the variability of EEG signals, which means that the best
feature indices should be adjusted every time for online
applications.

When the four feature types are used independently, the
IP feature and the IF feature both have higher classification
accuracy than the power feature and the IA feature, but no
significant difference is found between the results of IP and IF
feature. When features are used in combinations, “IA-IP-IF”
and “power-IA-IP-IF” feature combinations get the highest
classification rate compared to the other 6 features/feature
combinations. No significant difference is found between
these two feature combinations, which means that the “IA-
IP-IF” feature combination is enough for BCI applications.

In our research, all the features are extracted during
the time range of [−0.5 0.5], so our feature space contains
feature of time domain. The four feature types are extracted
from the mu rhythm and the beta rhythm, so the feature
space contains feature of frequency domain. The IP feature
and the IF feature are phase domain. So the “IA-IP-IF” and
“power-IA-IP-IF” feature combinations are features of time-
frequency-phase domain. Our results show that the usage of
time-frequency-phase feature can improve the classification
accuracy by about 20% and 15% compared to the time-
frequency feature and the CSP method, respectively, which is
very useful for improvingBCI accuracy. Amplitude andphase
are two important characteristics to describe a signal pre-
cisely. So, the time-frequency-phase feature can extract more
information embedded in the motor imagery related EEG
signals than the time-frequency features. Also, our results
show that the classification between clench speed motor
imagery and clench force motor imagery is possible, and
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the motor parameters imagery paradigm has the potential to
increase the direct control commands for BCI applications.

In the future, we will analyze the EEG feature and the
fNIRS feature simultaneously and investigate whether the
multimodality method can improve the classification accu-
racy for BCI systems.
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