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Abstract: Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on 
tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as 
both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated 
macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages 
using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. 
Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated 
through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also 
become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the 
development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment 
of various malignants. 
Keywords: engineered macrophages, nanomedicine, cancer therapy, anti-tumor immunity

Introduction
Macrophages, serving as the fundamental component in innate immune responses, are prevalent throughout all tissues, 
which is capable of clearing pathogens, cellular debris, tumor cells or other external substances through phagocytosis. 
They play a pivotal role in different biological processes including maintaining homeostasis, inflammatory responses, 
and wound healing.1–3 However, the relationship between macrophages and cancers is complex and multifaceted.4 On the 
one hand, some macrophages activate tumor immunity by releasing inflammatory cytokines, phagocytosis, and antigen 
presentation, thereby eliminating malignant cells. On the other hand, macrophages, as an integral part of leukocyte 
infiltration within tumor tissues, can readily transition into tumor-associated macrophages (TAMs) in the tumor micro
environment (TME), exerting profound effects on cancer progression and distant metastasis.5 The abundance of TAMs is 
tightly associated with poor clinical prognosis in various cancers.6 A deep understanding of the dual role of macrophages 
in tumors not only provides new targets for cancer immunotherapy but also offers the possibility of modifying 
macrophages as tools for targeted killing cancer cells and other applications in cancer therapy.

The high plasticity of macrophages has paved the avenue for new methods of cancer treatment, which have shown 
promising results in basic research and clinical trials.7,8 TAMs originated from bone marrow-derived or tumor-resident 
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precursors have already become the focus of therapeutic interventions.9,10 Current research focuses on inhibiting 
macrophage recruitment, depleting TAMs residing in tumor tissues, reprogramming TAMs, and enhancing their 
phagocytosis.11 Meanwhile, with the rapid progress of cell engineering, new strategies centered on engineered macro
phages have led to various innovative therapeutic methods by enhancing the macrophage’s abilities of intrinsic 
phagocytosis and tumor targeting.12–14 Engineered adoptive macrophage and macrophage membranes have been 
designed as therapeutic drugs, living sensors and vehicles of drug delivery for cancer diagnosis and treatment, achieving 
remarkable results in vitro experiments.

The swift advancement of nanotechnology in biomedical applications has led to the approval of various nanomedi
cines for routine clinical use.15 In macrophage-based tumor immunotherapy, novel multifunctional immune nanomedi
cines, with their unique advantages on nanoscale drug delivery platforms, can more effectively deliver 
immunomodulators to TAMs, thereby promoting adaptive immune responses to eradicate tumor cells.16–18 Moreover, 
macrophages possess a prolonged half-life in the circulating system and specifically binding to tumor tissues for 
phagocytosis and antigen presentation.7 Therefore, combining the characteristics of nanomedicine with those of macro
phages, we can engineer macrophages to achieve new breakthroughs in improving the effect of tumor treatment in 
combination with other therapeutics. In conclusion, designing appropriate nanomedicines is crucial for augmenting the 
effectiveness of macrophage-based cancer treatment approaches.19

This article highlights the dual role of macrophages as therapeutic targets and agents in nanotechnology-facilitated 
tumor treatment. Initially, we discuss the macrophage’s properties and roles within the TME. Subsequently, we delve into 
the potentials of macrophages as therapeutic targets in tumor immunotherapy, encompassing the strategies like inhibiting 
macrophage recruitment, depleting TAMs, reprogramming TAMs, and enhancing phagocytic capacity, and analyze the 
role of nanotechnology in these processes. Furthermore, we discuss the applications of engineered macrophages utilizing 
nanotechnology in drug delivery, cell therapy, phototherapy, tumor bioimaging, and other cancer treatments (Figure 1). 
The objective of this article is to provide a thorough insight into the status and applications of nanomedicine-engineered 
macrophages in cancer therapeutics.

Macrophage and Its Role in Cancer Biology
Macrophages, which are treated as the core of innate immune system, are prevalent in various tissues and form the 
primary component of the mononuclear phagocytic system (MPS).20 Within the bloodstream, a subset of monocytes with 
high C-C motif chemokine receptor 2 (CCR2) and Ly6C expression are recruited to certain tissues, where they 
differentiate into mature macrophages, particularly in response to external invasion, inflammation, crucial for immune 
surveillance, tissue repair, and homeostasis maintenance.21–23 Contrary to the traditional view that macrophages merely 
originate from bone marrow, recent studies have reported that certain tissue-resident macrophages arise from some yolk 
sac precursors, independent of circulating monocytes.24 Furthermore, self-renewal of macrophages has been observed in 
many tissues.25 Therefore, the origin of macrophages in tissues remains an unresolved question.26

Macrophages are classified into two primary types according to their distinct functions: M1, usually activated by 
pathogens, and M2, activated by anti-inflammatory signals.27,28 M1 macrophages mount a strong immune response 
against pathogens and cancer cells upon stimulation by pathogenic substances.28 Following phagocytosing, they process 
and present exogenous antigens via the major histocompatibility complex (MHC) while secreting an abundance of 
proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1 (IL-1). This process attracts various 
kinds of leukocytes to inflammatory sites and generates oxidative and reactive products, thereby enhancing immune 
response.28 Conversely, M2 macrophages, activated by cytokines like IL-4, promote the repair of damaged tissues and 
wound healing by releasing cytokines such as platelet-derived growth factor (PDGF) and transforming growth factor-β 
(TGF-β).29 They also exert immunosuppressive effects and prevent the excessive proinflammatory effects of M1 
macrophages, thus preventing chronic inflammation and immune system self-attack. The M1/M2 balance is vital for 
immune homeostasis. However, due to the co-presence of numerous proinflammatory and anti-inflammatory signals in 
the tissue microenvironment,30 the state of macrophages recruited to specific tissues is highly dynamic. Therefore, rather 
than focusing solely on the classical M2/M1 macrophage ratio, it is more appropriate to analyze the various subsets of 
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macrophages to understand their roles in specific biological processes after integrating multiple signals in the 
microenvironment.31

Macrophages that resident in the tumor microenvironment (TME) are named as tumor-associated macrophages 
(TAMs), significantly influencing the progression of cancer. Typically, M1-like TAMs are proinflammatory and facilitate 
the elimination of tumor cells, whereas a higher prevalence of M2-like TAMs in the TME correlates with more 
aggressive cancer.32–35 The complex population of M2-like TAMs can contribute to tumor malignancy from different 
aspects, including immunosuppressive TME, angiogenesis, intravascular infiltration, invasion, and metastasis 
(Figure 2).36–38 Additionally, cytokines produced by TAMs, such as VEGFA and TGF-β, as well as associated receptors, 
such as VEGFR1, CXCR3, and CCR2, are pivotal in tumor cell survival, growth, and metastasis. TAMs promote the 
angiogenesis and formation of tumoral lymphatic vessels in the hypoxic and immunosuppressive TME, and the 
recruitment of TAMs and their interactions with tumor cells are also beneficial for tumor cell’s survival and metastasis 
during the chronical inflammation in the TME.39,40 Consequently, macrophages exhibit diverse roles in tumor develop
ment with both pro- and anti-tumorigenic functions. Their unique characteristics position macrophages as crucial targets 
and tools in cancer therapy.41

The interplay between TAMs with other immune cells further modulates the immune landscape in the TME. Due to 
the plasticity and dynamic patterns, immune processes could be affected by TAMs in the TME, impacting cancer 
progression.42 For instance, Cytotoxic T Lymphocytes (CTLs) and Natural Killer (NK) cells can trigger the 

Figure 1 Function of engineered macrophages in cancer therapy as targets and tools. In cancer immunotherapy, macrophages could serve as targets to modulate tumor 
microenvironment by diminishing the immunosuppressive effect from TAMs. As tools for cancer therapy, engineered macrophages, as well as macrophages-derived 
exosomes and macrophage cell membrane, could facilitate different aspects in cancer diagnosis and treatment due to the ability of phagocytosis and tumor targeting.
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macrophage’s polarization to an M1-like phenotype using interferon-γ (IFN-γ), thereby secreting inflammatory cytokines 
to suppress tumor growth.42 C-X-C chemokine ligand (CXCL9 and CXCL10) secreted by M1-like macrophages are also 
able to recruit more Th1 cells, forming a positive feedback loop in tumor immunity.43 Conversely, the Regulatory 
T (Treg) cells, or Th2 cells, can prompt macrophages to polarize towards an M2-like phenotype, thereby promoting 
tumor progression.44 C-C motif chemokine ligand released by activated M2-like macrophages (CCL17, CCL22, CCL24) 
can further recruit Th2 cells to the TME, forming a negative feedback loop in tumor immunity.45 Additionally, the 
recruited Tregs can activate the PD-L1 receptor on macrophage surfaces, further suppressing the tumor immune response 
of macrophages.45 Similar to cellular immunity, the IL-10 and immunoglobin released by B cells can reshape macro
phages towards an M2-dominant population.46,47 M2-like macrophages can also cause the decreased the antigen- 
presenting function of Dendritic Cells (DCs).48 Given their prevalence, high plasticity and dynamism in the TME, 
macrophages can serve as global targets for regulating immunity in the TME and modulating the tumor immune 
landscape.49

Nanomedicine Enhances Anti-Tumor Immunity by Modulating 
Tumor-Associated Macrophages
The M2-like TAMs are able to suppress the antitumor immunity and exhibit a various tumor-supporting features, including 
tumor development, angiogenesis, tumor metastasis and therapeutic resistance, which could lead to poor prognosis. In 

Figure 2 The biological role of M2-like TAMs in TME. During the process of tumor progression, the malignant and stromal cells released specific cytokines or chemokines, 
like CCL2, to recruit monocytes or tissue-resident macrophages to the tumor tissues, which would further differentiate into M2-like TAMs. The predominant TAMs could 
establish a pro-tumor microenvironment through the dysfunction of anti-tumor immunity, promotion of angiogenesis and metastasis, and downregulation of therapeutic 
resistance.
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addition, TAMs also present a fully accumulated and auspicious target in the TME for cancer immunotherapy.50 

Considering the immunosuppressive TME caused by the infiltration of M2-like TAMs, the key concept of cancer 
immunotherapy targeting macrophages is reducing the influence of TAMs and activating cancer immunology. To achieve 
this, current therapeutic approaches can be divided into two primary strategies: One is to limit the presence of M2-like 
TAMs, like inhibition of macrophage recruitment to tumor sites and depletion of tumor-resident TAMs. The other is to 
transform the anti-immune macrophages into pro-immune ones by reprogramming the phenotype of macrophages or 
enhancing their phagocytosis effects (Figure 3).51 Recently, various nanoplatforms have been fabricated to target the 
macrophages and exhibit remarkable therapeutic efficacy and excellent application potential in cancer immunotherapy. The 
examples of the applications for TAM-based cancer immunotherapy are summarized in Table 1.

Design and Modification of Nanoparticles for Specific Targeting and Uptake by TAM
In general, a rational design of nanoparticles (NPs) should be able to tackle the following challenges in targeting TAMs 
specifically. Initially, the nanoscale of NPs must be optimized to prevent invading capillaries or engulfment by 
reticuloendothelial system. Second, the biosafety, bioavailability, and pharmacokinetic profiles of nanoplatforms are 
significantly influenced by the NP’s morphology and surface charge, which in turn affects cellular internalization 
processes and efficiency. Third, while the enhanced permeability and retention (EPR) effect of tumor vasculature may 
promote the accumulation of nanocarriers in tumor sites, the intricate TME may impede the uptake of TAMs. 

Figure 3 TAMs-based strategies in cancer immunotherapy. The TAM-targeting therapeutic methods aiming at reshaping anti-cancer immunity could be assessed in the 
following ways: (A) The recruitment of macrophages/monocytes could be inhibited through (1) chemokine inhibitors and (2) inorganic NPs by modulating the spatial and 
physical conditions in TME; (B) The tumor-resident TAMs could be depleted by chemical agents inducing apoptosis or other anti-cancer drugs with macrophage-targeting 
NPs; (C) Reprogramming TAM towards proinflammatory phenotype could be done through (1) macrophage-targeting NPs loading drugs regulating inflammatory signaling 
pathways in macrophages and (2) NPs capable of relieving the anaerobic and hypoxia environment in TME; (D) Blocking the CD47-SIRPα interactions between TAMs and 
tumor cells could restore phagocytosis effect of macrophages through nano antibodies and nanovesicles with larger capacity.
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Table 1 Examples of Different TAM-Based Cancer Immunotherapy Strategies Based on Functional Nanomedicine

Strategy Nanomaterial Drugs and Agents Therapeutic Effects Cancer Type Reference

Inhibition of external 

macrophages/monocytes 

recruitment

SA modified nanocomplexes IBR SA targets and blocks myeloid cell recruitment and IBR induces BTK 

downregulation in TAMs

Sarcoma [52]

Cationic polymeric NP siCCR2 siCCR2 inhibits CCR2 expression in monocytes to block TAMs 

recruitment

Breast cancer [53]

Depletion of TAMs Pt prodrug-conjugating polymeric 

NP

BLZ-945 BLZ-945 blocks CSF1R to eliminate TAMs Breast cancer, 

Colon cancer

[54]

DSPG/Cholesterol CLO CLO blocks mitochondrial adenine translocase to induce TAMs 

apoptosis

Breast cancer [55]

Polysaccharide BSP NP ALN TAMs deleted through apoptosis by ALN Sarcoma [56]

Au NP siVEGF Eradicate TAMs by siVEGF actively silencing VEGF pathway Lung cancer [57]

Clodronate-cationic nanoliposomes Gemcitabine and R837 Depletes TAMs by activating APCs and reshaping TME Breast cancer, 

Cervical cancer

[58]

DMPC/DSPE-PEG2000/Cholesterol 

oleate

siCD115 Inhibit CSF1-CSF1R pathway by siCD115 with α-peptide/M2pep 

targeting TAMs

Melanoma [59]

Reprogramming TAM’s 

phenotype

Cholesterol/PEG-DMG BisCCL2/5i mRNA Neutralize CCL2 and CCL5 to induce polarization of M1-like 

macrophages

Liver cancer [60]

PEG-PLGA NP ICG and TiO2 Activate MAPK and NF-κB pathways by photo-triggered ROS Breast Cancer [61]

PLGA NP Methotrexate Block STAT3 and NK-kB pathways to transfer phenotypes of 

macrophages

Breast Cancer [62]

CL4H6-LNPs STAT3/HIF-1α siRNAs Silence STAT3 and HIF-1a in TAMs to repolarize M2 macrophages Renal cell 

carcinoma

[63]

Mannosylated liposomes CHA CHA activates STAT1 and suppress STAT6 in TAMs to induce M1 

transformation

Glioblastoma [64]

Polysaccharide NP R837 Activate M1-TAMs through TLR7 by R837 Breast cancer [65]

Liposome modified by PD-L1 

antibody and mannose

Rapamycin Block mTOR pathway to reprogram M2-like TAMs incorporating with 

anti-PD-L1 effects

Colon cancer [66]

Fe3O4 NP N/A Fe3+ activates inflammatory signals of IRF5 Breast cancer [67]

3D-printed co-axial scaffold 

composed of PLGA-sodium 

alginate

SR-717/ MK-2206 SR-717 activates STING pathway, and MK-2296 inhibits AKT 

phosphorylation to reprogram TAM

Melanoma; Liver 

cancer; Breast 

cancer

[68]

Liposome Cabozantinib and IDO-IN-7 IDO-IN-7 inhibits Indoleamine 2,3-dioxygenase and cabozantinib 

promoted TAM transformation and infiltration of T/B cells

Breast cancer [69]

Organo-silica BSA/PEI/PEG MCT-4 siRNA Inhibit the lactate efflux between tumor cells by MCT-4 silencing Melanoma [70]

4T1/U87MG based supramolecular 

membrane vesicle

ICG, R848, 1-methyl- 

tryptophan

ICG and 1-methyl-tryptophan promote tumor ablation and R848 

reprograms TAMs

Breast cancer [71]

Fe-based magnetic NPs modified 

with hyaluronic acid

N/A Magnetic NPs promote the effect of magnetic hyperthermia by M1- 

polarization and formation of multinucleated giant cells

Breast cancer [72]
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CD47-SIRPα pathway inhibition CaCO3 NP Anti-CD47 antibody aCD47 bind CD47 to block CD47-SIRPα axis Melanoma [73]

Polymeric NP Cas9/sgRNA of aCD47 and 

pIL-12 plasmids

Knockdown the SIRPα and produce IL-12 by CRISPR-Cas9 editing Melanoma [74]

Liposome SHP2 and CSF1R inhibitors Dual blocking CD47-SIRPα and CSF1-CSF1R axis to restore 

proinflammatory functions

Breast cancer [75]

DBP metal-organic framework Imiquimod, anti-CD47 

antibody

Reform the phagocytosis ability of macrophages in combination with 

anti-PD-L1 effects

Colon cancer [76]

Mannose-PEG-PAEMA-PDPA R848 and cGAMP Repolarize TAMs and downregulate SIRPα expression by STING 

pathway activation

Melanoma [77]
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Consequently, modifying NPs with various TAMs-specific targeting ligands can augment cellular targeting and uptake 
efficiency. Finally, the development of stimulus-responsive NPs that respond to specific cues, either from external or 
internal environments, can enhance drug accumulation and controlled release at tumor sites.78

Upon overcoming the physical and chemical barrier of human body, NPs interact with the outer cell membrane and 
then be internalized.79 Endocytosis is the primary process for NP internalization, which involves the invagination of cell 
membrane and the formation of endocytic vesicles.80 The endocytosis could be divided into two major classes: 
pinocytosis and phagocytosis.81 Pinocytosis, associated with fluid-phase uptake, has been reported in the context of 
NP internalization by macrophages.82,83 Phagocytosis, predominantly occurring in specific phagocytic cells like macro
phages, DCs, and monocytes, is the process of engulfing larger particles such as bacteria and cellular debris.84 For NPs in 
nanoscale, it is hypothesized that phagocytosis often takes place following their aggregation through opsonization,85,86 

which means that those NPs dispersed in physiological fluid are able to adhere certain proteins onto their surface, like 
albumin,87,88 and then be recognized by the receptors on the cell membrane, leading to NP internalization subsequently.89 

Moreover, macrophages also possess non-opsonic receptors, including mannose and scavenger receptors, which facilitate 
interactions with molecular groups on NPs and the following engulfment.89,90

The composition and conformation of the molecules on the NP surface affect the phagocytosis mediated by 
macrophage surface receptor,91 potentially impacting inflammatory responses or macrophage phenotype shift.85 For 
instance, silica NPs of specific sizes (eg, 50 and 100 nm) have been shown to induce inflammation in macrophages 
through scavenger receptor activation, while other sizes (eg, 10 and 1000 nm) do not.92 The receptor-mediated 
phagocytosis is capable of leading to a series of cascade reactions upon cell-NP interplays, including actin filament 
polymerization, membrane cup-shaped extensions and the internalization of NPs.93 Apart from the molecules in NPs, the 
physiological properties of NPs, such as size, shape, surface charge, and functionalization, also influence receptor- 
mediated phagocytosis in macrophages.94

The passive accumulation of NPs around tumors, facilitated by the EPR effect due to the leaky vasculature and 
dysfunctional lymphatic system in tumor sites, leads to the increased concentration of these NPs around tumors.95 Yet, 
this accumulation does not guarantee specific and efficient delivery to the targeted cells, owing to the complex TME. 
Therefore, the active delivery based on ligand–receptor interactions exhibits superior advantages over passive accumula
tion, and the incorporation of TAMs-targeting ligands onto the NPs could not only significantly increase drug concentra
tions inside the TAMs via ligand–receptor interactions but also decrease systemic side effects with higher selectivity.96 

Additionally, the uptake of NPs by TAMs has been viewed as an hurdle in the tumor-targeting nanomedicine because the 
NPs loaded with drugs are predominantly engulfed by TAMs in tumor sites,97–99 but the TAMs could be regarded as 
a target for immunotherapy conversely to reverse the immunosuppression TME. Hence, it is reasonable to develop ideal 
nanoplatforms for targeted delivery towards M2-like TAMs to regulate the TME, which also holds the promise in 
synergy of cancer immunotherapy.11

In general, the specific TAMs-targeting modifications on the surface of NPs could be classified into the 
following categories: First, for carbohydrate ligand, mannose receptors (CD206) are overexpressed in M2-like 
TAMs, and the mannose and Bletilla Striata polysaccharide ligand can promote the selective targeting for immune 
modulators towards TAMs.61,100,101 Besides, other carbohydrate ligands like dextran and carboxydetran could also 
be used for drug delivery and TAM imaging.102,103 Second, for protein and peptide ligand, M2pep, an M2- 
macrophage binding peptide, and α-peptide, a scavenger receptor B type 1 (SR-B1) targeting peptide, are covalently 
modified on various NPs due to their properties of targeting TAMs preferentially.59,104,105 Albumin could also be 
internalized by TAMs as the source of amino acids through albumin-binding proteins, such as SPARC, and the 
modification of NPs with albumin and other ligands could lead to the specific targeting of M2-like TAMs and the 
reprogramming of TAMs.106 Third, the organic acid ligands, such as sialic acid (SA) and folate (FA), have been 
utilized for enhanced drug delivery for anti-cancer immunotherapy with the specific binding to the overexpressed 
receptors, like SA-binding immunoglobulin-type lectins (Siglecs) and FA receptor.107,108 Finally, the specific 
molecules on M2-like TAM’s surface could also be served as the target for NP.109 For example, anti-PD-L1/anti- 
HER2 antibodies and legumain could be designed as ligands or adjuvants for specific TAM-targeting solely or 
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incorporated with other modifications for nanocarriers, enabling the precise delivery of therapeutic agents for 
effective TAM elimination.66,110,111

Considering the complex TME and different treatment methods, it is reasonable to combine stimuli-responsive groups 
with therapeutic NPs to trigger effective anti-cancer immune process. In TAM-based immunotherapy, designing NPs in 
response to either internal microenvironment or external stimuli could facilitate drug delivery and therapeutic effects 
through the targeted accumulation and timely release of therapeutic agents. Among the internal microenvironment, the 
acidic TME is the main factor, and the NPs composed of pH-sensitive materials, including O-carboxymethyl-chitosan, 
modified poly-β aminoesters and ZnO,100,112,113 are able to achieve the rapid release of carried drugs in tumor sites. 
Glutathione has also been broadly applied for drug release in the redox-responsive TME. The introduction of disulfide 
bonds to NPs could be served for specific drug delivery aiming at the glutathione and release in TAMs due to the high 
redox conditions with the M2-like TAMs.70,114 As for the external stimuli, the physical stimulus caused by anti-tumor 
therapies could be utilized for the response of NPs. For example, hyperthermia triggered by external heat, magnetic field 
or light could promote the drug release.115 Photo, from another perspective, is also usually used by certain inorganic NPs 
with optical or electronic properties, including gold or iron relevant NPs.116 Photodynamic therapy applies photosensi
tizers to react with oxygen to produce chemically active singlet oxygen and some reactive free radicals in tumor tissues 
under lights. These products interact with biomolecules, disrupting the structure and function of cells and organelles, 
thereby selectively killing tumor cells directly or modulating TME and inducing anti-cancer immunity. The photo- 
sensitive nanomaterials are capable of depositing drugs in a specifically spatiotemporal manner and promoting the precise 
targeting of phototherapy while exposed to lights with certain wavelengths.117

Inhibition of Macrophages Recruitment
Peripheral monocytes are drawn to tumors by chemokines emanated from tumors, including CCL2 and Colony 
Stimulating Factor 1 (CSF1), and evolve into different phenotypes with the induction of specific signals in TME. 
Therefore, specific targeted therapies against these signal molecules have demonstrated the ability to impede the 
aggregation of TAMs in the TME.8 In the basic research and clinical studies, various inhibitors, such as CSF1/CSF1R, 
CCL2/CCR2, and Vascular Endothelial Growth Factor (VEGF), have demonstrated the efficacy in restraining the 
accumulation of macrophages and promoting cancer development.

The CCL2-CCR2 signaling axis is a primary controller of macrophage recruitment in tumors, which is responsible for 
the survival, invasion and migration of CCR2+ cancers.118 CCL2-CCR2 axis is helpful to maintain the homeostasis 
through its constitutive expression in different cell types in normal condition, while under pathological condition, such as 
cancers, CCL2-CCR2 axis is able to attract CCR2+ cells, including TAMs, myeloid cells, Tregs and tumor cells, to 
promote chronical inflammation and cancer extravasation.119 Targeting this axis to weaken monocyte function and 
thereby reduce the production of bone marrow-derived TAMs is feasible. Specific therapeutic approaches targeting this 
axis, including small-molecule inhibitors or antibodies, have demonstrated superior efficacy in preclinical and clinical 
trials.118,120 CCR2-siRNA (siCCR2) is also considered a promising targeting reagent for blocking monocyte recruitment. 
For instance, Shen et al engineered siCCR2-encapsulated cationic poly ethylene glycol-poly lactate NPs that effectively 
target monocytes in breast cancer treatment, notably suppressing the CCR2 expression in monocytes and the recruitment 
of bone-marrow derived TAM, thereby ameliorating the immunosuppressive TME and enhancing anti-tumor and anti- 
metastasis efficacy.53 In addition, pathological angiogenesis induced by CCL2 has also facilitated TAM’s recruitment and 
impeded drug delivery.118 To address this, Möckel et al developed a liposome loaded with CCL2 L-RNA aptamer to 
inhibit the CCL2-CCR2 axis, which further increased blood vessel maturity, reduced TAM’s infiltration and improved 
drug delivery and therapeutic effects of chemotherapy agents.121

Additionally, overexpressed Bruton’s tyrosine kinase (BTK) in TAMs promotes bone marrow cell recruitment to 
tumors and tumor growth by polarizing the immunosuppressive M2-like TAM.122,123 BTK inhibition may consequently 
represent a strategy to inhibit TAM recruitment to foster anti-tumor immunity.124 For instance, ibrutinib (IBR) encapsu
lated in sialic acid-modified nanocomplexes was used as a possible TAM modulator for sarcoma immunotherapy.52 These 
nanocomplexes exhibit high loading capacity, extended circulation time, and a compact radius, delivering IBR to tumor 
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sites. The internalized NPs by TAM release IBR and inhibit the immunosuppressive effects caused by M2 TAM, which 
are able to impede tumor progression without significant systematic cytotoxicity.

Some inorganic NPs have also been demonstrated to prevent macrophage migration to tumor tissue. Gd@C82(OH) 22, 
for instance, constrained macrophage migration through the collagen matrix by suppressing the expression of matrix 
metalloproteinase-9 to inhibit the breakdown of extracellular matrix.125 Oxidized multiwalled carbon nanotubes 
(o-MWCNT) can not only competitively recruit macrophages from other tissues but can also enhance the phagocytosis 
ability of tumor- resident macrophages, diminishing the number of macrophages and the density of blood vessels 
surrounding the tumor tissues.126 Additionally, Chen et al discovered the antitumor effects of hydroxyapatite by 
inhibiting the accumulation of TAMs. The macrophages treated by hydroxyapatites demonstrated a great tendency to 
gather around those inorganic NPs with elevated protein level of STXBP6, which can induce the apoptosis of TAMs and 
the formation of multinucleated giant cells to reduce the presence of monocytes and TAMs in tumor tissues.127 These 
inorganic inhibitors can reduce the enrichment of TAMs in the TME by physical and biochemical methods and suppress 
tumor progression.

Depleting the Tumor-Resident TAMs
Resident TAMs within tumors have a propensity to transition towards an immunosuppressive M2 phenotype, triggering 
immune evasion mechanisms in various malignancies.128 Studies have demonstrated that M2 TAMs induce dysfunction 
in DCs and CTLs while releasing an array of growth factors, cytokines, and proteases that suppress tumor-specific 
immune responses.129 Consequently, current research on nanotherapeutic strategies for antitumor treatment focuses on 
reducing the numbers of M2 TAMs, aiming to reshape the immunosuppressive microenvironment and enhance anti- 
tumor immunity.

As an important pathway, CSF1-CSF1R axis is responsible for regulating the whole lifetime of macrophages and 
polarizing TAMs towards an immunosuppressive phenotype.75 Molecularly targeted inhibitors, such as anti-CSF1R 
antibodies, BLZ-945, and CSF1R-siRNA, directly suppress CSF1R to inhibit cell growth or survival and significantly 
eliminate TAMs in the TME, thereby activating CD8+ T-cell-mediated antitumor immune responses.130,131 For example, 
Shen et al designed tumor acidity-sensitive dendrimeric NPs spatially target TAMs and tumor cells through hydrophobic 
interactions and covalently bound platinum prodrugs for cancer chemo-immunotherapy. These NPs are sensitive to the 
low pH condition around tumors and facilitate the absorption of BLZ-045.132 Xie et al also created a nanovaccine with 
bioactivity, loading BLZ-945 and effectively suppressing M2-like TAMs and ultimately reshaping the immunosuppres
sive TME to enhance immunotherapy outcomes.133 Li et al developed alginate hydrogels carried with ponatinib- 
encapsulated NPs to eliminate M2 TAMs.134 Additionally, the exhaustion of TAMs is also capable of facilitating the 
binding to PD-1 antibody. Qian et al engineered a liposome NP, functionalized by M2-macrophage binding peptide 
(M2pep) and α-peptide for targeting both TAMs and tumor cells, to carry anti-CSF1R siRNA (siCD115) and deliver them 
to tumor cells in melanoma models. The siCD115-loaded NPs not only remarkably reduced the population of TAMs by 
inhibiting the CSF1-CSF1R pathway but also decreased the PD-L1 expression on M2 TAMs.135

Liposomal clodronate analogues have also been formulated as immunogenic nanotherapeutics to target the depletion 
of M2 macrophages.136–138 Sousa et al employed liposomes (distearoylphosphatidylglycerol (DSPG) and cholesterol at 
2:1 ratio) encapsulating clodronate (CLO), exhibiting high cytotoxicity towards macrophages to significantly eliminate 
TAMs by inducing the apoptosis through the inhibition of mitochondrial adenine nucleotide transferase.55 Zhan et al 
designed a conjugate of bisphosphonate alendronate-dextran (ALN-BSP) that depletes TAMs, thereby reducing blood 
vessel density around tumors, reactivating surveillance in the immune system, and inhibiting tumor growth in an S1800A 
tumor-bearing mouse. They prepared poly(lactic-co-glycolic acid) (PLGA) NPs reactive with matrix metalloproteinase-2 
(MMP-2) to engulf the ALN-BSP, and resulting from MMP-mediated decomposition, these immune nanomedicines can 
effectively accumulate and release ALN-BSP at the tumor site to deplete TAM.56

The depletion of TAMs can also be synergistically integrated with some anti-cancer drugs to achieve the suppression 
of cancer cells and augment therapeutic efficacy. Zhao et al designed an NP, which is composed of disulfiram/copper and 
regorafenib coated with mannosylated albumin, which concurrently targets both drug-resistant tumors and immunosup
pressive TAMs, thereby reducing the resistance to therapies in mouse models carrying drug-resistant tumors.139 Deng 
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et al used an engineered liposome, which can target TAMs and respond to MMP-2, to load Doxorubicin (DOX) against 
breast cancer.107 Similarly, Wang et al designed hemoglobin (Hb) and PCL-composed hollow nanovesicles loaded with 
chemotherapy drug DOX for TAMs-targeted cancer immunotherapy, achieving the depletion of intra-tumoral M2 
macrophages by the combination effects of the affinity of Hb-binding globing to CD163 to target M2 TAMs and the 
oxygen released by Hb, which also decreased the ratio of M2 macrophages by alleviating tumor hypoxia.140 The 
cytotoxicity of chemotherapeutic drugs towards TAMs could also be paralleled with the biological reactive agents. 
A liposome loaded with sonosensitizer, hematoporphyrin monomethyl ether, and zoledronic acid was generated for TAM 
depletion. With the implementation of ultra sound and sonotherapy, the integration of the generated reactive oxygen with 
drug-loaded liposome, which was highly affinitive to TAMs, effectively exhausted M2-like TAMs in the TME to 
normalize tumor vasculatures, alleviate tumor hypoxia and increase proinflammatory cytokines, which facilitated the 
reshape of immunosupportive TME and the inhibition of tumors.141

Reprogramming the Phenotype of TAMs
The reprogramming the phenotype of TAMs to an antitumor one using immunotherapeutic nanomedicines has been 
emerging as a widely explored strategy.142 This reprogramming is associated with modulation of distinct signaling 
pathways by NPs carrying agents targeting specific molecules. The γ isoform of Phosphatidylinositol 3-kinase (PI3K-γ), 
which is highly expressed in myeloid cells, regulates macrophage programming.143 Hybrid nanomicelles were engineered 
to transport a PI3K-γ inhibitor and CSF1R siRNA to synergistically enhance TAM repolarization and antitumor immune 
responses.105 There is also evidence implicating that M1 polarization is associated with the Signal Transducer and 
Activator of Transcription (STAT) expression.144 Shobaki et al utilized a pH-sensitive cationic lipid NP loaded with 
siRNA to silence STAT3 and Hypoxia-Inducible Factor 1α (HIF-1α) in TAMs, achieving M2 repolarization and reversal 
of the immunosuppression in TME.63 In addition, an alginate-based hybrid hydrogel, loaded with STAT3 siRNA and 
lidocaine hydrochloride, was developed for non-small cell lung cancer surgery, which could not only induce the apoptosis 
of cancer cells and repolarization of TAMs but also be beneficial for pain relief and NK cell activation. This combination 
effectively inhibited tumor growth and significantly reduced the volume of malignant pleural effusion and postoperative 
pain.145 Mechanistic Target Of Rapamycin Kinase (mTOR) signaling plays a pivotal role in M2 macrophage polarization 
by upregulating p-STAT3 and IL-10 expression.146 Chen et al employed rapamycin to inhibit the activity and function of 
mTOR and designed it as a TAM-targeted liposomal nanomedicine to stimulate immune M1 polarization by inhibiting 
mTOR signaling.66 Additionally, the Fe-doped carbon dots could also activate anti-tumoral macrophages through IL-10/ 
Arg-1 axis and exhibit promise assisting tumor immunotherapy.147

Activating Toll-Like Receptor (TLR)-related pathways in macrophages, through the application of specific agonists 
such as CpG,148,149 Imiquimod (R837),65,67 and Resiquimod (R848),150,151 have become a standard therapeutic strategy 
to re-educate TAMs and reform their anti-tumor activity. As an immunomodulator, TLR9-specific unmethylated CpG 
oligodeoxynucleotides could be internalized by antigen-presenting cells, including macrophages, to release various 
cytokines for the initiation of cascade immune responses, which is proven to be effective in inhibiting tumor growth 
and metastasis.152 A multifunctional biomimetic NP loaded with baicalin and CpG was designed to activate TLR9, 
repolarizing TAMs towards M1 phenotype with tumoricidal activity. This conversion significantly reversed tumor 
immunosuppression and simulated specific anti-tumor immunity in melanoma.104,153 A small lipid NP loaded with 
CpG enhanced macrophage’s phagocytosis and tumor antigen presentation ability by reprogramming the TAM’s 
phenotype, which eradicated most of tumor cells and induced a long-term anti-tumor immunity.154 A CaCO3 NP loaded 
with CpG and tumor cell lysates achieved the TAM reprogramming in the acidic TME. The CaCO3 NP neutralized the 
lactate in the hypoxic TME and the CpG triggered the further immune responses, which both increased the proportion of 
the M1/M2 macrophages and the infiltration of effective immune cells in the TME.155

Additionally, TLR7/8 agonist-loaded nano emulsions could also induce TAM repolarization toward M1 macrophages 
in different cancer models.156,157 Zhao et al engineered NPs composed of mannose precursor glycopeptides, R848 and 
CD40 antibodies. The upregulated MMP-2 under hypoxia transferred the precursor glycopeptides on the NP surface into 
abundant mannose to bind the mannose receptors on TAM membrane. The precursor glycopeptides’ high diffusivity and 
weak affinity to the perivascular TAMs enabled the accumulation of these NPs in the TME and strong interactions with 
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tumor-resident TAMs, which promoted the efficiency of R848 to repolarize TAM towards an inflammatory phenotype.158 

The applications of TLR7/8 agonist could also enhance anti-tumor efficacy through the activation of the antigen 
presenting cells to reprogram the TAM’s phenotype to recruit and activate T lymphocytes, transferring the TME from 
a “cold” to a “hot” immune state.153 The liposomes loaded with R848 and oxaliplatin were capable of reducing the 
resistance of oxaliplatin in colorectal tumor by reprogramming the TAM’s phenotype and increasing the T cell infiltration 
to promote the immunogenic cell death (ICD) in the TME.159 Chen et al utilized a chimeric peptide engineered 
bioregulator (ChiP-RS) to repolarize TAMs and restore their phagocytosis ability. After internalization by TAMs, the 
loaded R848 repolarized the TAMs towards an inflammatory phenotype, and the Src homology 2 tyrosine phosphatase 2 
(SHP-2) inhibitor SHP099 promoted the phagocytosis ability of macrophages after reprogramming, which would also 
activate the T cell-mediated anti-tumor immunity.160 Meanwhile, Zhang et al developed a multifunctional nanoplatforms 
containing the TLR7/8 agonist motolimod, catalase and PD-L1 siRNA, achieving the repolarization of TAM and 
maintaining the anti-tumor function of T lymphocytes in the TME by hydrolyzing the excessive reactive oxygen species 
(ROS) produced by reprogrammed TAMs and decreasing the expression of PD-L1.161 The application of these nano 
emulsion also elicited a response against PD-L1 in a TC-1 cervical tumor model with combination, offering a new 
prospect for clinical anti-PD-L1 therapy.58

The cyclic GMP-AMP (cGAMP) synthase (cGAS) and stimulator of interferon genes (STING) pathway is crucial to 
activate the innate immune responses, and as an important component in innate immunity and TME, macrophages are 
regarded as an optimal target for cGAS-STING activation to trigger the cascade antitumor immune activities after 
reprogrammed by STING agonist through the selectively phagocytosis by TAMs, which could be further facilitated by 
nanotechnologies to improve the specific intakes and amplify the cGAS-STING signals in TAMs.68,162,163 Liu et al 
developed responsive NPs containing STING and TLR-4 agonists to repolarize the TAMs into M1-like phenotype and 
decrease the proportion of Tregs through the increased IFN-β and other proinflammatory cytokines by augmented STING 
activation, which demonstrated a complete tumor rejection effect and prolonged antitumor memory in either inflamed or 
noninflamed cancer models.164 In addition, the STING agonist could be integrated with CCR2 antagonist to establish an 
immunosupportive TME through the repolarization of tumor-resident TAMs and the inhibition of bone marrow-derived 
monocyte recruitment synergistically in a co-delivery nano system based on gemcitabine-conjugated polymer.165 To 
avoid the off-target effects, a liposome vesicle loaded with STING agonist MSA-2 was engineered for intravenous 
administration, which exhibited better immune stimulatory capacity than merely drugs with elevated proinflammatory 
cytokine level in tumor sites and lymph nodes and very limited systematic cytotoxicity.166 Chen et al also designed 
a nano system with self-resembled DNA modules through base pairing to achieve the specific uptake by TAMs and 
programmable activation of cGAS-STING. This system included 4 distinct parts: 1) a selective uptake module with 
macrophage scavenger receptor; 2) an endosomal escape module for effective release; 3) an ATP-responsive modules for 
dsDNA dissociation; 4) a STING activation module, which reshaped the immunosuppressive TME with the increased 
infiltration of M1-like TAMs and CD8+ T cells, and also showed an enhanced antitumor effect in combination with anti- 
PD-L1 therapies in colorectal cancer and melanoma.167

Modulating the microenvironment is also a considerable approach to reprogram the phenotype of TAM. Hypoxia 
mediates TAM generation and accumulation in solid tumors, thus NPs which can produce oxygen are capable of 
reversing TAM’s phenotype. For instance, Yang et al synthesized hollow MnO2 NPs that effectively repolarize M2 
TAMs by producing oxygen and relief the hypoxia condition within the TME, which can also be paralleled with immune 
checkpoint blockade (ICB) therapy.168 A core-satellite nanoplatform composed of different metal ion NPs was developed 
to deeply penetrate tumors and enhance cancer therapy. The nanoplatform would disintegrate into the TME and then 
produce oxygen and release TGF-β inhibitors to reprogram TAMs, which would facilitate the ICB therapy and cytotoxic 
Ag+ mediated metal-ion therapy.169 A novel ZnS NP was engineered to consistently provide hydrogen and oxygen in 
tumor sites with highly effective sonocatalysis, inducing the M2-to-M1 reprogramming and relieving the suppression of 
CD8+ T cell’s function to demonstrate the immunological co-activation capability and anti-tumor effect in deep hypoxic 
tumors.170 The alleviated TME with in-situ generated oxygen could also further promote the consumption of chemother
apy agents and apoptosis of tumor cells by photothermal effect, reshaping anti-tumor activity.171 Concurrently, lactate 
generated by aerobic glycolysis in the hypoxic TME also engages in the transformation of TAM’s phenotype and 
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dysfunction of CD8+ T cells.172 Li et al utilized an intelligent organic silica-based nanoplatform to transform anti-MCT-4 
siRNA (siMCT-4), hindering lactate efflux from tumors through monocarboxylate transporters MCT-4 silencing, leading 
to a phenotypic shift of TAM’s state and reactivation of CD8+ T cells.70 A nanoenzyme carrier loading lactate oxidase 
(LOD) and hypotensor syrosingopine (Syr) was also utilized to restore the anti-tumor immunity. Syr blocked the lactate 
efflux by inhibiting MCT1/MCT4 functions, and the excessive intracellular lactate was then catalyzed by LOD to 
produce abundant hydrogen dioxide and ROS, which further increased M1 TAMs in the TME, promoted the release of 
proinflammatory cytokines and restored the function of cytotoxic T and NK cells.173 The inhibition of lactate efflux in the 
TME could be accompanied with phototherapy. A photodynamic regulator CASN was composed of photosensizier 
Chlorin e6 (Ce6) and MCT-1 inhibitor AZD3965, and the inhibition of MCT-1 reduced the immunosuppressive TME by 
recruiting CTLs and repolarizing TAMs, which synergized the ICD caused by phototherapy.174

ROS is able to mediate the repolarization of TAMs to a proinflammatory phenotype by lipopolysaccharide 
recognition, serving as a pivotal regulator of macrophage function.175 Therefore, NPs spontaneously producing 
ROS, like metal oxides or ions, could re-educate the TAM’s phenotype primarily through the disruption of mitochon
drial oxidative respiratory chain.176–178 Fe3O4 NPs or Fe3+ chelated NPs15,179,180 could induce phenotypic shifts of 
TAMs from supporting tumors to against tumors by stimulating TLR inflammatory responses or activating NF-κB 
signaling, enhancing macrophage-modulated cancer immunotherapy. In addition, the ferroptosis induced by Fe3+ NPs 
could also promote ICD, antigen-presenting ability and proinflammatory effect of immune cells in the TME through 
released ROS, cytokines and tumor cell lysates, including macrophages.181,182 Xu et al constructed a nanocoordinator 
with silica-based imprinting layer coated on the iron oxide core (Sia-IMNPFe). The external magnetic field and 
tumor-targeting sialic acid on the surface facilitate Sia-IMNPFe’s fast accumulation and precise targeting to the tumor 
cells, and the silica and iron matrix-generated cytokine and ROS promoted the TAM’s repolarization towards M1 
phenotype after Sia-IMNPFe taken up by tumor-resident TAM, activating their immunotherapeutic efficacy.177 Apart 
from metal ions, NPs containing photosensitizers, which can also release ROS under phototherapy, could also 
repolarize TAMs towards an M1-like phenotype.183,184 The combined nano system of glutaminase inhibitor C968 
and photosensitizer Ce6 reformed antitumor activity from tumor metabolism and immunity: C968 inhibited glutamine 
metabolism in tumor cells and preserved the abundant ROS generated by phototherapy from exhaustion by 
glutathione, enhancing the intra-tumoral oxidative stress of the ICD effects. Meanwhile, the blockage of glutamine 
metabolism and excessive ROS remodeled the TAM’s phenotype to proinflammatory one and recruit and activate the 
CTL in the TME.185

The restored antitumor immunity after the repolarization of TAM is beneficial for cancer immunotherapy, thus 
integrating TAM reprogramming with different immunotherapies could be regarded as an applicable strategy against 
immune evasion and potential therapeutic resistance in conventional ICB therapies.69,71,186,187 An engineered milk 
exosome modified with M2pep and epidermal growth factor receptor (EGFR) antibodies was able to specifically deliver 
the PD-L1 siRNA to TAMs, repolarize TAMs and reshape the TME, achieving a significant tumor inhibition after 
systematic administration in EGFR cancer models.188 Furthermore, a complicated immunosuppressive TME was con
structed by tumor cells and various immune cells, including M2-like TAMs, myeloid-derived suppressor cells (MDSCs) 
and Tregs, which requires a multiple-targeting regulation towards different immunosuppressive cell types for effectively 
establishing anti-tumor immunity. Lee et al engineered a hyaluronic acid-bilirubin NP encapsuling SC144, an inhibitor 
blocking IL-6/gp130/STAT3 pathway, to selectively accumulate in tumor cells and MDSCs, which induced the ICD of 
tumor cells, further increasing the M1/M2 ratio of TAMs, decreasing the proportion of MDSCs and Tregs, and holding 
a promise to eliminate tumor cells effectively in combination with anti-PD-L1 therapy in ICB-resistant tumors.189 Yan 
et al constructed a complex nano system composed of a micelle named BEM and the scavenger receptor A (SR-A) ligand 
dextran sulfate (DXS), which decomposed in acidic TME and released DXS to repolarize TAMs by inhibiting SR-A on 
TAMs. The co-loaded MDSC inhibitor, entinostat, and the ICB agent, BMS-1, in BEM inhibited MDSC and blocked the 
PD-1/PD-L1 pathway separately, leading to rejuvenated immune responses in the TME and providing a possible 
approach for improving the effect of cancer immunotherapy through a multi-targeting strategy.190 Additionally, the 
tumor vaccines loading different immune agents could also manipulate the TME from different perspectives to conquer 
the immune evasion with a long-term immune memory.191,192 For instance, a polyoxazoline-mannose (POx-Man) 
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nanovaccine loaded with peptide-antigens, adjuvants and TGF-β regulators was capable of repolarizing M2-like TAMs, 
activating CD8+ T cells, and blocking PD-L1 synergistically, which demonstrated a great potential in treating solid 
tumors.193

In addition to immunotherapy, TAM reprogramming could also be combined with other cancer treatments to 
overcome the therapeutic resistance and improve their treatment effects, including chemotherapy, radiotherapy, photo
therapy, and magnetic hyperthermia.71,72,194–197 Chen et al reported a nanodrug-delivering-drug leveraging 2D stanene- 
based nanosheets and a small molecule anticancer drug β-Elemene (ELE), which was able to elevate the proportion of 
M1-like TAMs, CD4+/CD8+ T cells and mature DCs in the TME, cooperating with ELE to improve chemotherapeutic 
effects against melanoma.198 A biomimetic nanoimmunoregulator utilized ICD effect caused by phototherapy to promote 
the PD-L1 inhibition and TAM reprogramming by 2 distinct parts: PM@RM-T7 and PR@RM-M2 (metformin/R837 
encapsulated by red blood cell membrane embedded with T7/M2 peptide, carried by biocompatible mesoporous 
polydopamine). PM@RM-T7 enhanced the ICD effects via the photothermal effects by targeted NIR, impeded immune 
evasion through the degradation of PD-L1 by metformin, while PR@RM-M2 specifically targeted TAMs via M2pep 
reprogrammed them into M1-like phenotype and broke the immunosuppressive TME, of which the integration sig
nificantly inhibited the growth of primary and metastasis tumor cells.199 In addition, Liu et al also prompted the strategy 
to combine the chimeric peptide-engineered TAM repolarization with photosensitizer Ce6 and trigger ICD of tumors 
through phototherapy, which not only re-educated the TAM reprogramming to activate the CTL-dependent antitumor 
activity but also released High Mobility Group Box 1 (HMGB1) and exposed calreticulin, providing an approach for 
metastatic cancer treatment.200

Enhancing Phagocytosis Effects
CD47, a ubiquitously expressed transmembrane protein, is highly expressed on naive erythrocytes and most cancer cells.201 

CD47 generally interacts with SIRPα in most of cells to keep the homeostasis, especially to suppress macrophage’s 
phagocytosis. Elevated CD47 expression is closely associated with poor prognosis in solid tumors. As a transmembrane 
protein expressed in multiple immune cells, SIRPα recognizes CD47 and initiates a protective signal, which may be 
regulated by super-enhancers,202 preventing SIRPα-expressing macrophages from engulfing tumor cells with overexpressed 
CD47. Interference with the CD47-SIRPα axis holds promise in restoring the antitumor function of TAMs.

The deployment of nanoplatforms serving as transportation vehicles can block the “do not eat me” signaling, 
significantly enhancing the in vivo therapeutic effect of anti-CD47 agents and overcoming biological barriers.203 A pH- 
dependent CD47 antibody has been developed to accumulate in acidic TME and targeted tumors specifically with a long- 
term antitumor memory and unobvious off-target inflammatory responses.204 Nanobodies (Nbs), owing to their com
parative small radius, optimistic affinity, and stability, are considered as innovative drug building blocks superior to 
traditional antibodies.205,206 Ma et al identified CD47-specific Nbs utilizing phage display and engineered HuNb1-IgG4, 
a hybrid protein fused with those Nbs, which enhances tumor cell clearance without erythrocyte agglutination in vitro 
experiments and demonstrates enough security in the circulating system of cynomolgus monkeys.207 CD47/SIRPα 
inhibitors also enhance antitumor responses by potentiating antibody-dependent cellular phagocytosis (ADCP). The 
nanoplatforms loaded with calcium channel inhibitor (TTA-Q6) and CD47 inhibitor (RRX-001) were sensitive to acidic 
TME. TTA-Q6 inhibited tumor’s consumption of Ca2+ and presented the calreticulin to macrophages and DCs to 
activate their antitumor immunity, while the decreased CD47 level in tumors by RRX-001 further impeded the potential 
immune evasion by diminishing the interaction between CD47 and SIRPα and enhancing macrophage’s phagocytosis.208 

Chen et al also utilized core-shell albumin NPs responsive to ROS, loaded with anti-CD47 (aCD47) and anti-PD1 (aPD1) 
complex, initially releasing aCD47 and inhibiting the “do not eat me” signal, followed by aPD1 release to elevate the 
lymphocytes infiltration surrounding tumors.209 Moreover, the implementation of paclitaxel (PTX) hydrogel with aCD47 
stimulated the antitumor immunity in TME and augment the aCD47-triggered macrophage’s phagocytosis of tumor cells, 
inhibiting the recurrence of glioma with minimal side effects.210

As a special method to rejuvenate the proinflammatory and antitumor function of TAM, it is an ideal strategy to 
integrate the CD47- SIRPα blockage with TAM repolarization for the amplification of TAM’s phagocytosis capability.161 

Li et al engineered a polymetric nano system loaded with R848 and 2’,3’-cGAMP to achieve the cascade reaction from 
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TAM’s repolarization to enhanced phagocytosis. The co-delivery of R848 and cGAMP activated the TLR and STING- 
mediated phenotypic transformation of TAMs towards an M1-like one. Furthermore, the activation of STING pathway 
deregulated the expression of SIRPα through the oxidation metabolism of fatty acids in TAMs, and the further 
implementation of aCD47 synergized the blockage of CD47-SIRPα axis, which promoted the phagocytosis ability of 
tumor-resident macrophages, significantly inhibited the lung metastasis and prolonged the survival rate in TNBC with the 
integration of aPD1.77 Additionally, ROS generated by phototherapy and the application of SHP099, the inhibitor of 
SHP-2, could also restore the phagocytosis and antitumor activity of TAMs and promote the CTL infiltration through 
a TAM-targeting albumin NP.211

Exosome, or other extracellular vesicle (EV), has been explored to disrupt the CD47-SIRPα interaction loading 
different modulating agents.209 Koh et al developed exosome variants bearing SIRPα analogs to trigger enhanced tumor 
phagocytosis and stimulate potent antitumor activities of T cells.212 However, poor cargo encapsulation and targeting 
capability of exosomes may limit their potential.213 To address this, hybrid membrane nanovesicles or biomimetic 
nanovesicles received attention. By combining exosomes or cell membrane vesicles with liposomes, the latter are 
endowed with biogenesis capabilities, creating hybrid nanovesicles.214,215 Cheng et al utilized genetically modified 
exosomes fused with drug-loaded thermosensitive liposomes to generate CD47-overexpressing hybrid nanovesicles, 
combining photothermal therapy with immunotherapy to achieve antitumor effects.216 Researchers have also prompted 
different strategies to modify the EVs for longer circulation time, better biocompatibility and phagocytotic effects of 
macrophages. Zheng et al created a nanoplatform termed ARMFUL for a multifunctional EV. The hybrid membrane 
fused by M1 macrophage membrane and liposomes inserted an aCD47-modified coat onto the NP’s surface to enhance 
the macrophage’s phagocytosis, while the loaded BLZ945, a CSF-1R inhibitor, was also working against the immuno
suppressive polarization of tumor-resident macrophages along with the CD47-SIRPα blockage.217 Gong et al also 
engineered a small EV with the 7D12 (an anti-EGFR Nb) and humanized aCD47 modification on its surface, which 
improved the macrophage’s phagocytosis of malignant cells and better targeting ability to EGFR+ tumors.218 The 
applications of those engineered exosomes and EVs demonstrate a feasible approach for restore macrophage’s phago
cytosis in TME and hold a promise in the future clinical practice to facilitate cancer therapy.

Engineered Macrophages Facilitate Cancer Therapy
Considering the pivotal functions of macrophages in the TME, especially the tumor-targeting and cancer cell phagocytic 
abilities of inflammatory M1 macrophages,219 researchers have been exploring the utilization of macrophages as tools to 
facilitate various kinds of cancer therapy.220 The homing ability of M1 macrophages stems from their cell membrane 
proteins, enabling their derived exosomes to inherit this trait. The functions of surface markers on macrophage cell 
membrane and their corresponding receptors or ligands could be classified into the following 3 categories: 1). CD47- 
SIRPα axis prevents immune clearance of macrophages;202 2). The CCR2-CCL2 interaction recruits macrophages and 
results in inflammation;118 3). The selectins or integrins on the macrophage cell membrane promote cell–cell adhesion. 
For example, α4β1 integrin-vascular cell adhesion molecule-1 (VCAM-1) axis increases the macrophage uptake in 
VCAM-1+ metastatic cancer, and αMβ2 integrin-intercellular adhesion molecule-1 (ICAM-1) facilitates macrophages’ 
adhesion to endothelium to cross blood–brain barrier (BBB) and migrate towards tumor sites.221,222 Furthermore, 
isolating macrophage membranes and applying them as coatings on diverse NPs can further enhance targeting capabil
ities. The macrophages can be manipulated by cell engineering, gene editing and nanotechnology, and they can serve as 
both the capture or killer of tumor cells and supporting characters in drug delivery, phototherapy, cancer imaging and 
other theranostics (Figure 4). Examples of the adoptive engineered macrophages and cell membranes in the applications 
of cancer treatment are outlined in Table 2.

Drug Delivery
These macrophage-derived drug carriers not only circulate in the bloodstream but also selectively adhere to VCAM-1 
present on the cell membrane of cancer cells through α4 and β1 integrins, allowing tumor tissue targeting.223 

Macrophages directly loaded with drugs can be fabricated through incubation with the lived macrophages. For instance, 
Fu et al utilized RAW 264.7 macrophages to load DOX for treating metastatic 4T1 tumors.223 However, to enhance the 
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drug loading capability and minimize toxicity to macrophage carriers, most delivery systems adopt an indirect approach, 
where macrophages are loaded with drug-containing NPs. M1 macrophages loaded with NPs exhibit superior advance
ment to target tumors compared to NPs alone, which are extensively applied in cancer therapy.255 Tao and his team 
utilized bone marrow-derived macrophages to load PTX for the treatment of gliomas.224 Additionally, these cells can 
target hypoxic tumor regions and even cross the BBB.226,256 Injection of NP-containing apoptotic bodies in vivo can also 
form NP-loaded macrophages. In a study conducted by Zheng et al, they applied apoptotic bodies loading gold-silver 
nanorods with the modification of CpG (AuNRs) and entered the tumor in the form of AuNR-loaded macrophages 
through phagocytosis by inflammatory monocytes.257

To enhance targeting or confer multifunctionality, three approaches can be used to modify macrophages: 1) incor
poration of lipid-ligands, lipid-proteins, or NPs into the cell membrane through incubation; 2) chemical conjugation to 
the cell membrane surface, such as amine ligand or NP coupling; 3) genetic engineering through transfection with gene 
plasmids or gene editing techniques.258–262 For instance, the Gambir team259 developed genetically modified macro
phages capable of detecting tumor cells as small as 50 mm3. Macrophages can also be engineered to boost their 
immunological activity through genetic manipulation or chemical conjugation. Ray et al knocked out the SIRPα in 
macrophages by arginine NPs loaded with gRNA and Cas9 protein to enhance their capabilities of enhanced 
phagocytosis.260 In a work completed by Guo et al, the lipopolysaccharide-anchored macrophages loaded with DOX 

Figure 4 Application of engineered macrophages in different cancer therapy. (A) The M1-like macrophages membrane/exosome can (1) carry chemotherapy and 
immunotherapy drugs; (2) release cytokines facilitating cancer immunotherapy; (3) capture metastatic tumor cells via α4β1 integrins/VCAM-1 interaction; (4) load 
photosensitive/sonosensitive materials and mediate phototherapy/sonotherapy; (5) load imaging agents and track tumor state in human bodies. (B) The M1-like macrophages 
could be engineered by (1) incubating drugs or NP-loaded drugs; (2) chemical conjugation on membrane for tumor-targeted drug delivery; (3) CAR engineering to target and 
kill tumors; (4) genetic manipulation to massively produce anti-cancer molecule.
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Table 2 Various Nano Systems Engineered by Macrophages, Macrophage Cell Membrane and Exosomes for Cancer Diagnosis, Therapy, and Theranostics

Applications Macrophages Nanomaterials Cargoes Cancer Models Outcomes Reference

Drug delivery Raw 264.7 macrophages N/A DOX Ovarian carcinoma cell (1) Better inhibition of tumor invasion than lipo
some-DOX

(2) No significant affection on macrophage targeting 
and viability

[223–225]

Bone-marrow derived 

macrophages

PLGA/ Pluronic P123 NP 

loaded drugs

PTX/DOX Glioma U8 7 tumor cell and 

mouse model

(1) Better tumor targeting effects and inhibition of 

tumor development

(2) Better treatment than DOX-loaded M1 
macrophages

(3) Able to cross blood–brain border

[224,226]

Macrophages Cooperate with Fe3O4 

NPs
Oncolytic 
adenovirus

Prostate tumor mouse 
models

(1) Targets hypoxic areas of tumor

(2) Abolish growth of primary tumors before radio- 
and chemotherapy

(3) Better tumor targeting with magnetic field

[227–229]

Modified Macrophages Lipopolysaccharide- 
anchored

DOX Mouse orthotopic lung 
cancer model.

(1) Stimulated microtube formation with tumors

(2) Induce secretion of TNF-α in TAMs
(3) Enhance anti-tumor effect

[230]

M1 macrophages 
exosomes

Modified by 
aminoethylanisamide- 

polyethylene glycol (AA- 

PEG) vector

PTX/DOX Lung cancer mice model, 
Nude mice bearing drug- 

resistant solid tumors

(1) High biological compatibility

(2) High loading capability
(3) Targets σ receptor in lung cancer cell

(4) Enhance anti-tumor effects on metastatic and 

drug-resistant cancer

[231–233]

M1-exosomes-mimetics 

nanovesicles

Fusion by liposome to be 

a hybrid exosome

DOX CT26 colon 

adenocarcinoma cell lines 

and mouse model

(1) Higher production and drug loading capability
(2) Able to polarize M2 to M1

(3) Higher colloidal stability

(4) Higher pH-sensitive sustained drug release 
in vitro

[234–236]

Raw 264.7 macrophages 

cell membrane

Coextrusion with 

mesoporous silica 
nanocapsule

DOX 4T1 breast cancer mouse 

model

(1) Better biological compatibility

(2) Longer blood circulation time

(3) Better targeting to tumors
(4) Cancer ablation with chemotherapy

[237]

IL-4-induced M2 

macrophages cell 
membrane

Coextrusion with 

polyfluorocarbon NPs

Cabazitaxel 4T1 and MCF-7 mouse 

models

(1) Intrinsic targeting properties to tumor

(2) Better intratumoral penetration

(3) Inhibition of tumor development
(4) Clearance of cancer stem cells

[238]

Macrophages cell 

membrane

Coextrusion with PLGA 

NPs

Gemcitabine Mouse model of pancreatic 

cancer

(1) Immune evasion properties

(2) Minimal toxicity

(3) Downregulation of PI3K/AKT and MEK/REK 
pathways

[239]

(Continued)
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Table 2 (Continued). 

Applications Macrophages Nanomaterials Cargoes Cancer Models Outcomes Reference

Therapy for 
metastatic cancers 

and CTC

Raw 264.7 macrophages 
membrane

DNA tetrahedron 
dendrimer-liposome

DOX-MPK 4T1 breast cancer mouse 
model with lung metastasis

(1) High and selective accumulation on lung meta

static sites
(2) Decreased metastatic nodes in lung tissue

(3) Better biological compatibility and drug uptake

[240]

Azide-attached 
macrophages membrane 

(with anti-EpCAM 

antibody)

Electrostatic interaction 
with Fe3O4 NPs

N/A N/A (1) Good CTCs capture ability in vitro
(2) Limited disruption from leucocytes in blood

[241]

Transformable 

macrophages (LD-MDS)

N/A Legumain 

protease

Lung metastatic tumor (1) LD-MDS can be transformed into soravtansine- 
loaded nanovesicles

(4) Nanovesicles could be internalized by 4T1 cancer 

cell

[242]

PTT Raw 264.7 macrophage 

membrane

Coextrusion with Fe3O4 

NPs

N/A MCF-7 breast cancer (1) Higher biological compatibility and macrophage 
uptake

(2) Intrinsic targeting to tumors
(3) Heat responses under NIR for cancer elimination 

in vivo

[243]

Macrophage cell 
membrane with PD-L1 

antibody

Coextrusion with hollow 
Au nanocage composites

Galunisertib CT26 colon carcinoma 
mouse model

(1) Selective intakes by tumor cells

(2) Synergism of PTT and immunotherapy
(3) Inhibition of primary and metastatic tumor 

development

[244]

Macrophage-hepatic 
cancer cell hybrid 

membrane

Sonication with CuS NP Sorafenib Hepatocellular carcinoma 
mouse model

(1) Higher biological compatibility

(2) Homotypic tumor-targeting ability
(3) Higher NIR absorption capacity for PTT ablation

(4) Synergetic effects of PTT and chemotherapy

[245]

PDT Lipopolysaccharide- 
induced M1 macrophage 

membrane

Sonication and extrusion 
with PEGylated bilirubin 

NP

IND and Ce6 4T1 breast cancer mouse 
models

(1) Longer blood circulation time

(2) Tumor targeting and codelivery of IND and Ce6
(3) Higher production of ROS with NIR

(4) Synergism of chemotherapy, anti-tumor immunity 

and PDT

[246]

Macrophages membrane Coextrusion with 

mesoporous silica 

nanocapsule and folic acid

DOX, L-menthol 

and indocyanine 

green

4T1 breast cancer mouse 

models

(1) Multitargeting properties and immune evasion 
properties

(2) Higher accumulation and intake by tumor cells in 

low pH TME
(3) Synergism of chemotherapy, PTT and PDT

[247]
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M1 macrophages 

membrane

Sonication with AIEgen PTX prodrug 4T1 tumor-bearing BALB/c 

mice

(1) Fluorescence and photoacoustic imaging of 
tumors

(2) PDT promotes ROS generation and ICD of 

tumors
(3) Oxygen exhaustion by ROS generation facilitates 

the release of PTX

(4) Better tumor targeting and biocompatibility

[248]

SDT AS1411 aptamer-modified 

macrophage exosomes

SiO2 NPs ICG and catalase Orthotopic glioblastoma 

mouse model

(1) Good ability to cross BBB and tumor targeting
(2) Alleviate hypoxia in TME by catalase and 

glutathione

(3) Exhaustion of glutathione and generated oxygen 
facilitate SDT promoting ICD of tumors

(4) Good biocompatibility and long circulation time

Cancer Imaging 
and synergistic 

theranostics

Raw 264.7 macrophage 
membrane

Coextrusion with 
liposome

N/A MCF-7 breast cancer (1) Higher biological compatibility and tumor- 
targeting ability

(2) Immune evasion properties

(3) Good performance of fluorescent UCNP and 

cancer imaging in vivo

[249]

Raw 264.7 macrophage 

membrane

Coextrusion with 

liposome

DOX and 

quaternary 

quantum dots

4T1 breast cancer mouse 

model with lung metastasis

(1) Immune evasion properties
(2) Capability of targeting metastatic tumors

(3) Fluorescent imaging, tumor targeting and elimina

tion in vivo

[250]

Macrophages membrane Sonication with silver 

nanocluster

N/A Dalton lymphoma ascites 

tumor mouse model

(1) Strong fluorescent intensity at tumor site in vivo

(2) Cytotoxicity against tumor cells in vitro
[251]

Genetic- 
engineered 

macrophages for 

cell therapy

Macrophages Mannose-conjugated poly 
ethylenimine nanocarriers

Genes expressing 
CAR and IFN-γ

Solid tumor bearing mouse 
model

(1) Generating CAR-M1 to execute tumor 
phagocytosis

(2) Decrease Tregs to improve the function of CD8+ 

T cells
(3) No significant systematic cytotoxicity

[252]

RAW264.7 macrophages Cavity-injectable NP- 

hydrogel superstructure

Anti-CD133 CAR 

plasmids (pCARs)

Orthotopic glioblastoma 

mouse model

(1) NP-hydrogel superstructure creates CAR-M sur

rounding cavity

(2) Prevent recurrence of brain tumors by eradicate 
tumor stem cells

(3) Robust tumoricidal immunity surrounding the 

postsurgical area
(4) No significant systematic cytotoxicity

[253]

RAW264.7 macrophages Dendritic-grafted 

poly(lysine) (DGL)

pDNA coding 

TRAIL molecule 
and TAT molecule

4T1 breast cancer cell line 

and mouse model

(1) Good tumor-homing ability in systemic 

circulation

(2) Long-term anti-tumor efficacy through generating 
apoptosis-inducing protein

(3) Positively charged penetrating domain endows it 

the ability of deep tumor penetration

[254]
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were found to be effective in stimulating the formation of microtube structures within tumor cells and triggering the 
release of TNF-α in the surrounding TAMs in a lung cancer mouse model.230 In addition, the engineered NPs derived 
from alpha fetoprotein (AFP)-overexpressing macrophages was applied to enhance the immunotherapy in hepatocellular 
carcinoma. M2pep-conjugated macrophages efficiently transported R848 to TAMs and repolarized them to M1-like 
phenotype due to the nature tumor tropism of macrophages and M2pep modification, and the AFP-overexpressing 
engineered macrophages served as antigen-presenting cells to activate the CTL-mediated anti-tumor immunity and 
maintain an intra-tumoral niche for CD8+T cell differentiation.263

In addition to macrophages themselves, exosomes and cell membranes derived from them can also function as 
delivery vehicles. Exosomes derived from M1-macrophages (M1-exos) retain membrane properties similar to their parent 
cells, which are also stable, pleiotropic, biocompatible and low immunogenic in vivo, and can be deployed to transport 
anticancer agents, demonstrating great potential in immunological modulation and cancer therapy.264,265 Kim et al 
utilized M1-exos loaded with PTX and demonstrated their efficacy in treating drug-resistant tumors.231 M1-exos not 
only deliver drugs but also release proinflammatory Th1 cytokines to enhance antitumor effects.266 Furthermore, M1- 
exos can be used as adjuvants for cancer vaccines and modulating the TME, which serves as both targets and tools in 
cancer immunotherapy.267 Zhen et al integrated the M1-exos and AS1411 aptamer-conjugated liposomes for better drug- 
loading capability and system stability. This combined nanoplatform was loaded with perfluorotributylamine and IR780 
for alleviating the hypoxia and immunosuppressive TME and repolarizing TAMs in TNBC.268 In addition, M1-exos 
genetically modified by sialic-acid-binding Ig-like lectin 10 (Siglec-10) was designed as a gelator. After the X-ray 
radiation and activated immunogenicity, the loaded efferocytosis inhibitor in the M1-exos promoted a series of immune 
responses to repolarize the peritoneal macrophages for treating ovarian cancer.269 Apart from M1-exos, the EV 
constructed by M1 macrophage-derived membrane could also be treated as an effective drug delivery vessel with high 
tumor-targeting ability.270 Yu et al developed a hybrid cell nanovesicles loaded with DOX (DNV) to boost antitumor 
immunity. The hybrid membrane constituted by M1 macrophage membrane and 4T1 tumor cells not only facilitated the 
accumulation of DNVs in tumor sites and lymph nodes but also promoted antitumor humoral immunity, especially 
activating the B cells and repolarizing TAMs towards an M1-like phenotype, further extending the understanding and 
application of EV in drug delivery and antitumor humoral immunity.271

Both macrophages and their derived exosomes or EVs exhibit wonderful tumor targeting capabilities and biocompat
ibilities. Consequently, applying macrophage membranes as coatings on NPs can significantly improve the efficacy of the 
NPs’ specific aggregation in tumors. Given the limited delivery efficiency of NPs in solid tumors via the elevated 
permeability and retention effect,96 macrophage membrane coating holds massive potential in drug delivery. Lu et al 
created an Fe3O4 vortex nanodrug, loaded with DOX and EZH2 siRNA and coated with M1 macrophage cell membrane, 
which showed a facilitated tumor-targeting capability even without exogenous magnetic fields, enhanced antitumor 
efficiency, and limited systematic toxicity compared to routine chemotherapy.272 A nanocomplex based on aPD1 and 
phosphorus dendrimer named AK128, coated with macrophage membrane, was engineered to facilitate the immunother
apy against orthotopic glioma. The α4 and β1integrins on the macrophage membrane possessed good stability and 
compatibility for crossing BBB, extending circulation time and accumulating in pathological sites, and the synergistic 
effects of AK128 and aPD1 restored the antitumor immunity in TME, achieving a promising strategy for glioma 
immunotherapy.273 Moreover, the therapeutic agents capable of impairing tumor metabolism could also be delivered 
to tumors via M1 macrophage membrane-derived nano systems to optimize their antitumor ability,274 and the macro
phage membrane-camouflaged nanoplatforms also play a critical role in precise drug delivery, enhancing therapeutic 
efficacy and decreasing systematic toxicity for synergistic therapies combining different cancer treatment 
strategies.275–277

Cell Therapy
The advancements in gene editing and synthetic biology have introduced new avenues for cellular therapeutic 
strategies.278 In the paradigm of chimeric antigen receptor T-cell (CAR-T) therapy, T cells extracted from patients 
themselves have demonstrated potent tumoricidal activity through genetic reprogramming.279 Similarly, genetically 
modified macrophages have demonstrated tremendous potential in the realm of cancer therapy.
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Gill et al successfully created CAR-modified macrophages (CAR-Ms) by genetically engineering of human macro
phages using CARs, thereby enhancing their ability to phagocytose tumor cells.280 The CAR structure usually consists of 
those elements: an extracellular single-chain antibody fragment, a hinge and transmembrane domain, and intracellular 
domains for activation and co-stimulatory.281 For further optimization of CAR-M’s composition in alignment with the 
characteristics and function of macrophages, the intracellular activation and co-stimulatory domains of CAR molecules 
could be modified by (1) using domains like FcRγ or CD3ξ to elevate the ability of phagocytosis and (2) integrating the 
inflammatory signaling domains with the original CAR structure.280,282–284 Such genetic manipulations induced CAR-Ms 
to exhibit an M1-like phenotype, secreting proinflammatory cytokines that can reprogram TAMs and stimulate an anti- 
cancer condition in the TME. Vale and his team genetically modified mouse macrophages by coupling specific CARs to 
their surfaces, screening various intracellular and extracellular domains.285 In xenograft tumor models, CAR-Ms 
demonstrated precise and potent phagocytosis of cancer cells, leading to improved outcomes of survival.280

Many researchers have also engineered CAR-Ms in different ways. Zhang et al constructed CAR-iMacs, which are 
capable of selectively engulfing tumors in a manner dependent on antigen recognition.135 They further incorporated CARs into 
induced pluripotent stem cells (iPSCs) via lentiviral transduction and developed a bone marrow cell differentiation protocol to 
achieve massive production of engineered macrophages.286 Kang et al utilized macrophage-targeted mannose-conjugated 
poly ethylenimine nanocarriers targeted to macrophages to deliver genes encoding CAR and IFN-γ in vivo, producing CAR- 
M1 capable of executing tumor phagocytosis. The CAR-M1 could also assisted the function of CD8+ T cell by reducing Tregs 
abundance in TME.252 Furthermore, Chen’s group integrated macrophage-targeted CAR NPs (pCAR-NPs) with CD47 
antibodies and incorporated them into a hydrogel to treat glioblastoma and prevent recurrence by injection. The pCAR-NPs 
induced the polarization towards M1 phenotype and increased the secretion of TNF-α and IL-1β by M1 macrophages without 
significant toxicity in the mouse model.253 These studies demonstrate the broad prospects of genetically engineered macro
phages in cancer treatment and the potential of nanocomplexes to encounter the challenges of CAR-M, including facilitating 
the manufacture, enhancing the therapeutic effects and decreasing the risk in production and treatment.

Other genetically modified macrophages also excel in phagocytosing antigen-coated particles and cancer cells. Unlike 
CAR engineering methods, these cells can stably transduce at tumor sites, producing anti-immunosuppressive and immunos
timulatory cytokines, providing new avenues for cancer immunotherapy.287 Jiang et al fused tumor suppressor proteins with 
penetrable peptide genes and used macrophages as bioreactors to specifically colonize tumor sites and express antitumor 
macromolecular protein drugs, achieving significant tumor suppression and improving protein drug delivery efficiency.254

NPs coated with macrophage cell membrane have shown promise in treating metastatic tumors.288 Researchers designed 
a macrophage-like nano system named macrophage-membrane-coated emtansine liposomes that can selectively target lung 
metastatic sites, achieving efficient drug delivery, superior anti-metastatic effects, and significant inhibition of lung 
metastasis.240 Circulating tumor cells (CTCs) migrating through the circulatory system are a critical factor in tumor 
metastasis. However, their low abundance in the blood and nonspecific binding to leukocytes hinder their effective 
capture.241 To address this, researchers designed a nanoplatform utilizing electrostatic interactions to bind macrophage 
membranes with NPs, which were composed of magnetic composites with positive charge and covered with azide-coupled 
membrane carrying negative charge. This biomimetic immune magnetosome excels in recognizing EPCAM+ tumor cells. 
The macrophage membrane coating on its surface also reduces nonspecific adsorption to leukocytes in the blood.241

Phototherapy
Phototherapy is a kind of cancer therapy applying external light source, generally near-infrared light (NIR), to trigger 
heat effect or chemical reactions of materials injected into tumor sites, which can kill tumor cells with high selectivity, 
optimal efficacy, and limited side effects and toxicity in normal tissues.78 Given its features, phototherapy is not only 
utilized in treating primary tumors but also applicable in diminishing metastatic tumors and preventing cancer recurrence 
or metastasis.289,290 NPs coated with macrophage cell membranes play a crucial role in adjuvant phototherapy for 
improved biocompatibility and precise targeting to tumors. In photothermal therapy (PTT), the NP core serves as 
a photothermal agent, absorbing NIR and producing heat effect, effectively damaging tumor cells and causing their 
demises. Fe3O4 NPs are widely used in PTT due to their remarkable light absorption properties and heat generation 
capabilities.291 Recent studies have shown that coating macrophage-derived membrane vesicles on Fe3O4 NPs can 
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enhance the PTT effect on breast cancer.243 Gold nanoshells (AuNSs) also possess ideal near-infrared absorption 
capabilities, and their integration with macrophage cell membranes targeting tumors can remarkably enhance the 
treatment effects of PTT in vivo.292

Combined cancer therapy aims to achieve more significant therapeutic effects than single-modality therapy. The 
concept of combining ICD and tailoring the immunosuppressive TME is applicable in cancer therapy, thus the integration 
of PTT and immunotherapy has demonstrated synergistic therapeutic effects in treating primary and metastatic cancers 
due to the effective ICD induced by PTT.244,293 In this context, researchers have utilized macrophage-derived membrane- 
coated hollow gold nanocages loaded with galuniserib and functionalized with anti-PD-L1 antibodies to enhance 
therapeutic efficacy.244 Additionally, the combination of PTT with chemotherapy has also demonstrated significant 
efficacy in hepatocellular carcinoma from animal models.245 CuS NPs were loaded with sorafenib and coated with 
a hybrid membrane derived from macrophage-hepatoma cells. These NPs were then conjugated with VEGFR antibodies, 
resulting in the formation of NPs named CuS-SF@MCV. This combination significantly inhibited tumor growth and 
conferred immune evasion capabilities and tropism for homologous tumor cells.245 A biomimetic nano system, which 
consisted of macrophage membrane modified with angiopep-2 loading indocyanine green (ICG) and chemotherapy agent 
SN-38, was utilized to treat glioma, which demonstrated an elevated ability to overcome BBB, accumulation in tumor 
sites, and synergistic treatment effectiveness of both PTT and chemotherapy.294 In addition, NPs could also be 
internalized or attached to macrophages to be engineered as a macrophage-mediated drug delivery system through 
hitchhiking cells in vivo.295 Liu et al engineered an apoptotic body (Ab) loaded with DOX and ICG for treating glioma. 
The Abs were able to cross the BBB through the hitchhiking effect after uptaken by macrophages, and the synergized 
chemotherapeutic and photothermal effects significantly prolonged the survival time in the orthotopic glioma mouse 
model.296

Photodynamic therapy (PDT) enhances anti-tumor immunity by delivering photosensitizers to tumor sites and 
activating them under laser illumination to generate ROS (particularly singlet oxygen), inducing photooxidative damage 
to tumor cells.78,297–299 The NPs coated by macrophage cell membrane, or loaded by engineered macrophages, have been 
applied to PDT with the advantage of better tumor targeting ability. For instance, the engineered macrophages carrying 
photosensitizers and oxaliplatin prodrug were developed for primary and metastatic tumors. The engineered macrophages 
were M1-polarized to effectively target both primary and bone metastatic tumors, and the tumors were further killed 
through the PDT-mediated ICD effect, which brought the promise in combining immunotherapy for better therapeutic 
effects.300

Similar to PTT, the ROS-induced ICD through PDT makes it possible for the combined of PDT, immunotherapy, 
and chemotherapy, which provides a new synergistic biomimetic approach in augmenting the therapeutic effects and 
combating different cancers.246 For instance, NPs coated with polarized M1 macrophage cell membranes, loading 
DOX, photosensitizer CeG, and IDO1 inhibitor IND, could significantly inhibit primary tumor growth and recur
rence through the ROS-induced tumor eradication and ICD triggered by PDT and IDO1 inhibition.246 Kang et al also 
designed a nanoplatform camouflaged with macrophage cell membrane, containing aggregation-induced emission 
luminogen (AIEgen) and a hypoxia-responsive PTX, for tumor imaging and combined therapy, which not only 
accelerated the exhaustion of oxygen and the release of PTX through PDT but also induced ICD to inhibit the 
growth of primary and metastatic tumors by the released PTX and generated ROS.248 A rational design of NP could 
also allow the combination of PDT and PTT under a single NIR irradiation regardless of the difference in inherent 
excitation wavelengths of the two types of phototherapy.293 For instance, NIR-absorbing CuS, in combination with 
PTX and M1 macrophage membrane coating, can form NPs named as PTX@CuS@MM, achieving triple combina
tion therapy of chemotherapy, PDT, and PTT, effectively destroying and eliminating metastatic breast cancer 
cells.301 This integrated treatment approach demonstrates the tremendous potential and promise of nanomedicine 
in cancer therapy.

Cancer Bioimaging and Other Theranostics
Precise localization prior to cancer treatment is crucial, and tumor imaging is a pivotal approach in achieving this 
objective.302 Currently, techniques like magnetic resonance imaging (MRI) and fluorescence imaging are extensively 
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employed in cancer diagnosis. Materials like upconversion NPs (UCNPs) have garnered attention due to their unique 
optical properties, good photostability, limited toxicity and deep penetration capabilities in tissues. However, a major 
challenge faced by these technologies is the lack of tumor-specific targeting and local delivery capabilities of contrast 
agents in vivo.249 To overcome these challenges, NPs coated with cell membranes have been extensively explored as 
biomimetic nano messengers for delivering imaging agents to certain pathologic locations, facilitating local and 
metastatic tumor bioimaging.302,303 In an innovative research, macrophage-derived membrane vesicles were used to 
encapsulate UCNPs, resulting in macrophage cell membrane-coated UCNPs (MMUCNPs). Compared to uncoated 
UCNPs, MMUCNPs demonstrated superior tumor cell uptake, biocompatibility in vivo, prolonged persistence time, 
and improved fluorescence intensity in tumors. These results implicate that imaging nanoprobes mimicking macrophages 
have great potential in optimizing in vivo fluorescence imaging of tumors.249 Additionally, a microfluidic mixing 
platform was developed to produce macrophage membrane-derived nanovesicles, with high loading capability of ICG 
and better tumor targeting ability for tumor imaging in brain and glioma.304

Despite radiotherapy and phototherapy, sonodynamic therapy (SDT) is another emerging therapeutic method utilizing 
external energy to activate antitumor efficacy by producing bioactive species, such as ROS, and it could deeply penetrate 
into tumor sites by ultrasound with negligible damage to normal tissues and lower cost, which is especially suitable for 
tumors with significant difficulties in drug delivery and surgical process like glioma. The macrophage membrane coating 
nano systems enables the targeted transportation of sonosensitizers to tumor sites to overcome the BBB and hypoxic 
condition in TME with higher biocompatibility and prolonged half-life of circulation. The nanoplatforms encapsulated by 
macrophage membrane or M1-exos were discovered to be able to release chemical agents after delivered to tumors, like 
HIF-α siRNA or catalase, to alleviate tumor hypoxia and improve SDT efficiency in glioma.305,306 Moreover, Shan et al 
integrated SDT and ICB by developing a biomimetic NP cloaked with macrophage membrane and loaded with both Ce6 
(sonosensitizer) and JQ1 (an inhibitor to down-regulate PD-L1 expression). The ROS produced by SDT could not only 
directly damage malignant cells but also could trigger the immunogenic death of tumors, which served as a cooperation 
with JQ1 for elevated antitumor immunity to achieve a cascade effect of SDT and immunotherapy.307

With the continuous advancement of cell-mimetic nanotechnology, macrophage cell membrane-coated NPs have emerged as 
multifunctional nanocarriers for therapeutics. They can integrate both diagnosis and treatment into a mere nano system.308 

Recently, notable advancements have been achieved in the development of therapeutic nanoplatforms capable of simultaneously 
achieving tumor imaging and treatment, which successfully transport therapeutic and imaging agents to certain tumor sites.309,310 

Various nanoplatforms based on macrophage membrane were developed to combine cancer imaging with different treatment 
strategies, such as chemotherapy and phototherapy.311–313 Furthermore, utilizing the principles of biomimetic therapeutic nano 
systems, scientists have also engineered a multifunctional NP resembling macrophages to deliver both therapeutic drugs and 
imaging agents. The objective is to monitor the status of tumor cells and to prevent lung metastasis in real-time and in vivo.250

Conclusion and Perspective
Over the past decades, macrophage-mediated therapies have undergone impressive development for various disease with 
extensive inflammatory components, including cancer. Macrophages have been strategically employed in cancer therapy, 
primarily through two approaches: one uses TAMs as immunotherapy targets, and the other utilizes adoptive engineered 
macrophages and membranes as biological products and drug delivery tools in tumor therapy. Nanotechnology has 
promoted the development of macrophage-mediated tumor therapy in many aspects, such as macrophage modification, 
drug delivery assistance, and coordination of multiple therapeutic methods. Despite the considerable progress in basic 
research, some challenges remain to be addressed for the widespread clinical application of macrophage-based therapies 
in cancer. The following discusses the challenges and future prospects of macrophage-based cancer therapy.

Despite the promising anti-tumor advantages of macrophage-based strategies documented in various researches, the impact 
of macrophages on tumors remains controversial, primarily because of the intricacy of the TME, the highly dynamic distribution 
of TAMs and perhaps the limited understanding of the intrinsic characteristics during the whole life of macrophages. It is still 
a crucial area of inquiry to clarify the underlying mechanisms of macrophage’s diversity, activity and evolution across various 
tissues including tumors. Further fundamental studies on the molecular and single cell level can elucidate the effects of 
macrophages on tumors, providing new perspectives for the development of macrophage-directed strategies.30,314

International Journal of Nanomedicine 2024:19                                                                                   https://doi.org/10.2147/IJN.S491573                                                                                                                                                                                                                       

DovePress                                                                                                                      
13637

Dovepress                                                                                                                                                                 Li et al

Powered by TCPDF (www.tcpdf.org)

https://www.dovepress.com
https://www.dovepress.com


In clinical settings, numerous investigations have corroborated the close association between TAMs and resistance to 
diverse cancer treatment modalities. Specifically, TAMs have been found to contribute to chemotherapy resistance across 
various types of cancer,315,316 while the polarization and presence of M2 macrophages may significantly undermine 
patient’s benefits after radiotherapy.317 Furthermore, TAMs maintain an immunosuppressive environment through 
impeding the infiltration of cytotoxic T cells, meanwhile sustaining the functionality of MDSCs and Tregs, thereby 
being intricately related to intrinsic/adaptive resistance to immunotherapy.318 Therefore, we propose TAM-targeting 
immunotherapy as a complementary approach rather than an independent treatment. On the one hand, macrophage- 
mediated tumor immunotherapy alone is insufficient to eliminate tumors. On the other hand, rectifying the dysfunction of 
TAMs to reconstruct the TME can offer a combined effect to overcome treatment resistance, especially through the 
amplification of ICD effect. This approach requires meticulous design of combination therapies tailored to their 
characteristics and the dynamics of the TME to achieve synergistic effects and minimize severe side effects.319–323

The high off-target effect caused by non-specific macrophages poses a major obstacle for macrophage-targeted immunother
apy. While reprogramming inducers can repolarize TAMs in the TME towards a proinflammatory population to promote 
inflammatory responses, these agents may also induce M1 macrophage infiltration in normal tissues, leading to undesired 
excessive autoimmune responses. Macrophages expressing specific receptors are present in other normal tissues, and some M2 
macrophage phenotypic markers are also shared with dendritic cells or other cells in the immune system, complicating the 
precisely targeting of TAMs for nanodrugs. Moreover, the complex immune microenvironment and the extracellular matrix in 
tumor tissues affect the transportation of nanodrugs within tumors and the approachability of TAMs.324 The rational design of 
nano systems to precisely target and regulate TAMs with high efficacy for cancer immunotherapy is paramount, which requires 
more consideration of nanomaterial properties and the molecular mechanisms for drugs targeting TAMs to improve pharmaco
kinetics, enhance delivery stability and accuracy, achieve effective accumulation around tumors, and minimize systemic 
toxicity.325–327

The use of engineered macrophages in therapeutic applications has shown considerable promise for clinical applications,42 

yet two major challenges remain to be overcome for clinical translation: the establishment of large-scale production with 
stringent quality control and potential biosafety concerns during production and clinical use. To enable widespread clinical 
use, it is imperative to prompt techniques for large-scale production of macrophages, while maintaining quality control for 
human macrophages remains a big challenge. The absence of standardized protocols for macrophage selection, extraction and 
purification can result in inconsistent batch-to-batch outcomes, necessitating the development of reliable detection techniques 
to assess macrophage characteristics.328–331 In addition, a long-term conservation of engineered macrophage’s or macro
phages cell membrane’s biological activity, along with reduced toxicity of loaded drugs to macrophage transporter and the 
maintenance of M1-like phenotype, is a big concern while designing the macrophage-engineered therapeutic agents.331 The 
properties of macrophage membranes also bring safety concerns. The presence of immune-related molecules, like MHCs, on 
macrophage membranes can easily lead to immune rejection and safety issues. Therefore, macrophages should be auto
logously derived from each patient and genetically modified to exclude side effects by editing genes related to immune 
responses.221,332 From another perspective, during the preparation of engineered macrophage membranes, the membranes are 
prone to damage, potentially leading to loss of membrane protein functions and strong immune responses from damaged 
membrane markers. The development of optimized protocols for macrophage cell membrane coating is a critical procedure 
towards the clinical application of those biomimetic nano systems.333 Consequently, future developments in these nano 
systems will focus on enhancing their ability to target tumor cells with prolonged circulation time, better cellular interactions, 
smoother drug release, and limited systematic cytotoxicity in vivo, and addressing those mentioned limitations is very 
essential before they can be successfully integrated into clinical practice.221,261

Following the successful implementation of CAR-T therapy in clinical settings, CAR-engineered macrophage therapy 
also holds significant anticipation for clinical translation. Despite promising results demonstrated by CAR-M therapy in 
recent years, the generation of modified therapeutic macrophages remains a challenging task. CAR-Ms exhibit remark
able phagocytic activity and tumor killing ability in vitro, but they often have comparative limited effects on tumor 
progression in vivo. Intravenous injection of CAR-Ms at limited cell doses often results in limited infiltration of 
macrophages into tumor sites due to organ sequestration, such as in the liver, kidney, and lung, indicating their limited 
ability of expansion and potential off-target cytotoxicity in vivo.252,280,334 Additionally, CAR-M’s inhibitory effect on 
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metastatic tumors is not satisfactory. Ongoing research efforts are being directed towards ameliorating the composition 
and structure of CAR molecules to bolster their mechanical strength and anti-tumor ability.335 There is evidence 
suggesting macrophages derived from iPSC enable large-scale production of therapeutic cells. Since pluripotent stem 
cells are commonly amenable to genetic modifications, optimizing the core molecules of CAR-M effects by gene editing 
can facilitate the advancement of innovative therapies.336,337 In addition, monocytes, macrophage’s precursor, are being 
considered in some projects instead of using macrophages directly in CAR engineering.338 Considering the synergy of 
innate and adaptive anti-tumor immunity, it is reasonable to develop CAR-Ms in conjugation with CAR-Ts. Macrophages 
can primarily reduce the toxicity of cytokines released by CAR-Ts, including IL-6, and exhibited the ability to undermine 
the possibility of cytokine storms.339 Meanwhile, CAR-T cells produce IFN-γ and demonstrate their potent ability to 
transmit co-stimulatory signals and activate macrophages, laying the foundation for a potential combination of engi
neered cell therapy in the future.340 Moreover, the potential of integrating CAR-M with conventional therapies, like 
radiotherapy, chemotherapy, or other targeted drugs, is also worth exploring. Finally, there are some clinical and pre- 
clinical trials about CAR-M in recent years (Table 3). Most of them are in the early stages, and the consequences of some 
trails starting earlier are not ideal. Therefore, there is still significant progress required for the clinical application of 
CAR-Ms. With advancements in tumor immunology and CAR technology, the clinical landscape will witness the 
development of next-generation CAR-M therapies with more sophisticated design, construction, and evaluation.

Generally, there are a variety of promising outcomes from macrophage-based cancer therapies in basic research, but 
only a few of these have been approved for clinical applications. To overcome the obstacles in the clinical practice of 
macrophage-based cancer treatment, more considerations are required. To a large extent, the translation of a technique 
from laboratory to clinical settings, and even commercialization, relies on its feasibility for large-scale treatment, clinical 
application to production, along with a clear understanding of underlying mechanisms and robust evidence of clinical 

Table 3 Overview of Current Clinical Studies Related to CAR-Macrophages

Product 
Names

NCT 
Number

Study Type Macrophage 
Sources

Tumor Type Molecular 
Targets

Location Initial 
Year

Status

MCY-M11 NCT03608618 Clinical Trial 

(Phase I)

Peripheral blood 

mononuclear cells 

(PBMC)

Refractory/relapsed 

ovarian cancer and 

peritoneal 

mesothelioma

Mesothelin United 

States

2018 Terminated

CT-0508 NCT04660929 Clinical Trail 

(Phase I)

Autologous 

monocyte-derived 

macrophages

HER2 overexpressing 

solid tumors

HER2 United 

States

2021 Active, not 

recruiting

CT-0525 NCT06254807 Clinical Trail 

(Phase I)

Autologous 

monocyte-derived 

macrophages

HER2 overexpressing 

solid tumors

HER2 United 

States

2024 Recruiting

MT-101 NCT05138458 Clinical Trial 

(Phase I/II)

mRNA-engineered 

myeloid cells

Refractory/ relapsed 

peripheral T-cell 

lymphoma

CD5 United 

States

2021 Suspended

MT-302 NCT05969041 Clinical Trial 

(Phase I)

mRNA-engineered 

myeloid cells

Advanced/metastatic 

epithelial tumor

TROP2 Australia 2023 Recruiting

Human anti- 

HER2 CAR-M

NCT06224738 Clinical Trail 

(Early phase I)

Autologous 

monocyte-derived 

macrophages

HER2 positive 

advanced gastric 

cancer

HER2 China 2024 Not yet 

recruiting

N/A NCT05007379 Cohort Study N/A Against organoids 

from breast cancer 

patients

N/A France 2021 N/A

CT-1119 N/A Pre-clinical 

study

Primary human 

macrophages

Mesothelin positive 

solid tumor

HER2 United 

States

N/A Pre-clinical

CAR-iMAC N/A Pre-clinical 

study

Human iPSC- 

derived 

macrophages

Hepatocellular 

carcinoma

EGFRvIII, 

GPC3

China N/A Pre-clinical
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safety and efficacy to obtain regulatory approval. Meanwhile, nanomaterials have demonstrated their ability to deliver 
therapeutic agents, thereby enhancing the outcomes of macrophage-based therapies. Given the unique capability of 
nanomaterials to translate the signals of disease and the surrounding microenvironment into the changes of functional 
properties like sizes and conformation, the combination of nanoplatforms with the innovative technologies will be greatly 
likely to promote more intelligent, safe and effective macrophage-based cancer therapies.
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