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Abstract

Oncogenic and tumor suppressing miRNAs have emerged as key regulators of gene expression in 

many types of cancer including melanoma. We utilized quantitative in situ hybridization (qISH) to 

evaluate the tumor suppressing properties of miRNA, miR-205 in a population of human tumors. 

We hypothesize decreased miR-205 would be associated with more aggressive tumors. 

Multiplexing miR-205 qISH with immunofluorescent assessment of S100/GP100 allowed us to 

quantitatively evaluate miR-205 expression using the AQUA method of quantitative 

immunofluorescence. The specificity of the assay was validated using blocking oligos and 

transfected cell lines as controls. Outcomes were assessed on the Yale Melanoma Discovery 

Cohort consisting of 105 primary melanoma specimens and validated on an independent set of 206 

primary melanomas (Yale Melanoma Validation Cohort). Measurement of melanoma cell 

miR-205 levels shows a significantly shorter melanoma specific survival in patients with low 

expression. Multivariate analysis shows miR-205 levels are significantly independent of stage, 

age, gender and Breslow depth. Low levels of melanoma cell miR-205 expression as quantified by 

ISH show worse outcome, supporting the role of miR-205 as a tumor suppressor miRNA. The 

quantification of miR205 in situ suggests potential for the use of miRNAs in future prognostic or 

predictive models.
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MicroRNAs (miRNAs) are a class of short noncoding RNAs of 18–25 nucleotides which 

regulate gene expression by promoting transcript degradation or inhibiting translation of 

target mRNAs (1). miRNAs can be expressed at levels as high as 50,000 copies per cell and 

with over 1500 human miRNAs it has been estimated that they regulate 30–60% of all 

mRNAs (2–4). miRNAs play key roles in proliferation, apoptosis, and differentiation in 
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normal physiology, and their improper regulation has been attributed to cancer with scores 

of papers indicating miRNAs as functioning oncogenes or tumor suppressors (5).

miR-205 is one such miRNA often implicated in a tumor suppressing role where it is 

downregulated or lost in transformation (6–9). In melanoma specifically, it is downregulated 

in tumor samples compared to nevi and decreases cell proliferation when overexpressed in 

melanoma cell lines (6, 9, 10). miR-205 expression is currently used clinically by Rosetta 

Genomics to distinguish squamous cell carcinoma from adenocarcinoma of the lung (11) but 

its role as a tumor suppressor has not been evaluated in populations of primary melanoma. 

Here we attempt to validate the tumor suppressor function by association with outcome in 

two independent cohorts.

Most miRNA measurement methods require total RNA extracts which lack spatial 

information and are subject to assessment of tumor and stroma in unknown mixtures. 

Measurement of miRNA by in situ hybridization (ISH) allows for the visualization of 

miRNA expression within individual cells providing the means by which to determine 

expression level in malignant as well as stromal and normal cells. This method also allows 

large scale specimen analysis on tissue microarrays (TMAs) with the previously described 

advantages related to standardization. In this study we evaluate the levels of miR-205 in two 

melanoma cohorts by quantitative ISH (qISH).

Materials and Methods

Patients and Tumor Samples

The Yale Melanoma Discovery Cohort and TMA construction have been described 

previously (12). The Yale Melanoma Discovery Cohort consisted of 158 white patients who 

underwent resection of a primary invasive cutaneous melanoma at Yale-New Haven 

Hospital between 1959–1994 where the specimen was not exhausted and follow-up 

information existed The array also contained 301 metastases, lymph node metastases, or 

visceral metastases occurring in patients diagnosed with cutaneous melanoma and surgically 

removed at Yale-New Haven Hospital from 1959–1994 or 1995–2002. The Yale Validation 

Cohort consisted of 315 white patients with invasive cutaneous malignant melanoma with 

excisions from 1995–2005 at Yale-New Haven Hospital; the array also contained 19 

metastatic melanoma control spots. Clinical data was comprehensively obtained for the 

primary melanomas after review of medical records, the archives of the Connecticut Tumor 

Registry, and the State of Connecticut Vital Records. This study was approved by the Yale 

Human Investigations Committee. 100% inclusion of patients was not attained in all 

analyses due to attrition of sample, diagnostic tissue exhaustion, obscuring lymphocyte 

infiltration, technical failure, or missing clinical information. Clinicopathological 

characteristics of the cohorts are shown in Table 1.

miRNA in situ hybridization

miRNA ISH was performed as previously described (13). In brief, formalin fixed paraffin 

embedded (FFPE) tissue microarrays are first melted at 60°C for 10 minutes then 

deparaffinized in three exchanges of xylene, followed by rehydration in an ethanol gradient. 
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Then slides are treated with 20 μg/mL proteinase K (Roche Diagnostics, Indianapolis, IN, 

USA) for 10 minutes at 37°C, fixed with 4% formaldehyde (Thermo Scientific, Rockford, 

IL, USA) in PBS, rinsed twice in 0.13M 1-methylimidazole (Sigma-Aldrich, St. Louis, MO, 

USA) and refixed with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC, Thermo 

Scientific) as described previously (14). Next endogenous peroxidases are blocked in 1% 

H2O2 for 30 minutes, and slides are prehybridized at the hybridization temperature (50°C) in 

a hybridization oven (Advanced Cell Diagnostics, Hayward, CA, USA) for 30 minutes in 

hybridization buffer with 500 μg/mL yeast tRNA (Invritrogen, Carlsbad, CA, USA), 50% 

formamide (American Bioanalytical, Natick, MA, USA), 5× SSC (American Bioanalytical), 

50 μg/mL Heparin (Sigma-Aldrich), 0.1% Tween 20 (Sigma-Aldrich), adjusted to pH 6. 

Slides are hybridized for 1 hour with 200 nM double Digoxigenin (DIG) LNA modified 

probes(Exiqon, Copenhagen, Denmark) for miR-205 (sequence: 

CAGACTCCGGTGGAATGAAGGA) and scrambled probe (sequence: 

GTGTAACACGTCTATACGCCCA), and 25 nM 5′DIG labeled U6 probe (sequence: 

CACGAATTTGCGTGTCATCCTT). Slides are then stringently washed in 2× SSC (once at 

hybridization temperature, then twice at room temperature for 5 minutes each), blocked with 

2% BSA (Sigma-Aldrich) for 30 minutes and incubated with Anti-DIG-POD, Fab fragments 

from sheep (Roche Diagnostics) diluted 1:100, rabbit polyclonal anti-S100 (Z0311, Dako 

Corp. Carpinteria, CA, USA) diluted 1:100 and rabbit polyclonal anti-GP100 diluted 1:25 

(ab27435, Abcam, Cambridge, MA, USA) for 1 hour at room temperature. Slides are then 

washed twice with 0.1% Tween-20 PBS (PBS-T) and once with PBS for 5 minutes each. 

Then the miRNA signal is detected with the TSA Plus Cyanine 5 system (Perkin Elmer, 

Norwalk, CT, USA), the slides are washed with PBS-T and PBS as above, and the S100/

GP100 is detected with Alexa 546-conjugated goat anti-rabbit secondary antibody 

(Molecular Probes, Eugene, OR, USA) diluted 1:100 in block for 1 hour. The slides are 

washed in PBS-T and PBS then mounted with Prolong mounting medium containing 4′,6-

Diamidino-2-phenylindole (DAPI, Molecular Probes). Serial sections of control index arrays 

consisting of 20 nevi, 20 primary and 20 metastatic melanoma specimens are simultaneously 

run to assess reproducibility. In addition, negative control scrambled probe and positive 

control U6 probes are run with each experiment. The miR-205 blocking oligo (sequence: 

TCCTTCATTCCACCGGAGTCTG) and mutated blocking oligo (sequence: 

TCCTACATTCGACCGGTGTCTG) were preincubated at 4 fold excess (800 nM) with the 

DIG labeled miR-205 probe for 1 hour at the hybridization temperature prior to 

hybridization on the TMA.

Quantitative Immunofluorescence (qIF)

The AQUA technology for qIF to measure biomolecules within subcellular compartments 

has been described previously (15). In brief, a series of monochromatic in and out of focus 

images are obtained for each histospot using the signal from the DAPI, S100/GP100-Alexa 

546, and the Cy5 (miRNA/U6) channel by the PM-2000 microscope. A tumor “mask” is 

created from the S100/GP100 signal to distinguish stromal from tumor area. This tumor 

mask is based on an intensity threshold set upon visual inspection of each histospot. AQUA 

scores of miR-205 are calculated by dividing the signal intensity (scored on a scale from 0–

255) by the area of the tumor mask.
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For statistical analysis, AQUA scores were averaged for individuals with multiple histospots 

on any array before analysis. miR-205 qISH was performed on two builds (redundant cores 

from different areas of same tumor specimens) of both the Discovery cohort and Validation 

cohort. The AQUA scores from the two cores were normalized and averaged for analysis. 

Averaged scores from the two cohorts were then median normalized to compare a single 

cutpoint on both cohorts. Any specimen containing less than 0.17 mm2 tumor area was 

excluded from analysis.

Cell Culture

Cell culture conditions have been previously described (15). Mel-501 cells were obtained 

from Dr. Steven Rosenberg, Surgery Branch, National Cancer Institute (Bethesda, MD) and 

A431 cells were purchased from ATCC. The A431 cells were transfected with 30 nM 

miR-205 mirVana miRNA inhibitor (an antagomir or anti-sense RNA for miR205) or 

negative control miRNA inhibitor (Ambion, Austin, TX, USA) and the Mel-501 cells were 

transfected with 30 nM miR-205 mirVana miRNA mimic or mimic negative control 

(Ambion) with Lipofectamine RNAi Max (Invitrogen) following manufacturer's instructions 

and incubated for 30 hours before performing ISH on coverslips or preparing RNA extracts. 

RNA extracts were prepared using the mirVana miRNA Isolation Kit (Ambion) following 

the manufacturer's instructions. In performing ISH on coverslips, cells were washed twice 

with PBS, fixed for 10 minutes with 1% formaldehyde (Thermo Scientific) in PBS for 10 

minutes, washed with PBS, permeabilized with 0.2% Triton X-100 (American 

Bioanalytical) for 20 minutes on ice, washed with PBS on ice, refixed with 4% 

formaldehyde in PBS for 10 minutes at room temperature, then peroxidase blocked with 3% 

H2O2 for 10 minutes. Coverslips were then prehybridized at 40°C for 30 minutes, 

hybridized with double DIG 100nM miR-205 or scrambled probe, or 50 nM U6 probe 

5′DIG labeled (Exiqon) for 1 hour, washed with 2× SSC at hybridization temperature twice 

then once at room temperature, blocked with 2% BSA-PBS for 30 minutes, then incubated 

with sheep anti-DIG-POD, Fab fragments from sheep (Roche Diagnostics) diluted 1:100 in 

block for 1 hour. The miRNA signal is detected with the TSA Cyanine 5 system (Perkin 

Elmer) and the coverslips were mounted with Prolong Gold-DAPI (Molecular Probes).

miRNA qRT-PCR

RNA concentrations were determined by the NanoDrop 2000 (Thermo Scientific), then 

reverse transcribed using the TaqMan microRNA Reverse Transcription Kit (Applied 

Biosystems, Foster City, CA, USA), and real-time PCR using the TaqMan microRNA assay 

kit for miR-205 or RNU6B (Applied Biosystems). RT-PCR was performed using the CFX96 

machine (BioRad, Hercules, CA, USA). Reactions were done in triplicate along with no 

template control reactions.

Statistical Analysis

All values shown are mean ± s.d. unless otherwise stated. Box plots show standard box and 

whisker plots where the error bars represent the 90th and 10th percentiles. Survival curves 

were generated by Kaplan-Meier analysis and tested for significance using the Mantel-Cox 

log rank test. The prognostic significance for miR-205 was also determined using the Cox 
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proportional hazards model. To test for differences between groups p-values were calculated 

by ANOVA analysis. All statistical analysis was done using Statview 5.0 (SAS Institute).

Results

miR-205 has been independently shown to act as a tumor suppressor in melanoma where its 

expression was decreased in melanoma specimens compared to nevi (6, 9, 10). To confirm 

this observation using in situ methods and to determine its prognostic value, we validate a 

method of qISH in which the miR-205 ISH is multiplexed with S100/GP100 and DAPI in 

order to apply the AQUA measurement technology. This co-localization based approach 

uses the S100/GP100 signal to establish a tumor mask and allows for the measurement of 

miR-205 expression within the tumor mask resulting in an AQUA score directly 

proportional to the number of molecules per unit of area within melanoma cells(15). In 

evaluating nearly 600 melanoma specimens there was a large dynamic range in signal 

intensity, and expression was exclusively cytoplasmic in the majority of primary and 

metastatic melanoma cases (Figure 1). There was also substantial stromal expression in 

some cases, but stromal expression is excluded from measurement by the masking using 

S100/GP100. The U6 positive control probe revealed strong nuclear staining, and the 

scrambled negative control probe resulted in no signal (Figure 1 and data not shown). To 

determine reproducibility, the assay was performed on redundant cores of the discovery and 

validation cohort with R2> 0.5 and serial sections of the validation cohort with an R2= 0.86 

representing acceptable reproducibility considering heterogeneity of different cores (Figure 

2).

Specificity of the assay was first established using a miR-205 specific unlabeled blocking 

oligo as well as a mutated blocking oligo with three nucleotide changes to compete for 

hybridization with the miR-205 probe. As expected hybridization in the presence of the 

specific blocking oligo resulted in no detectable signal and in the presence of the mutated 

oligo did not significantly alter the signal (figure not shown). Specificity was further 

evaluated using Mel-501 cell lines transfected with miR-205 mimic because Mel-501 cells 

express low levels of miR-205. In addition, A431 cells were transfected with miR-205 

inhibitor (Figure 3) as A431 cells express high levels of miR-205. The concomitant increase 

or decrease in expression was then assessed using qISH and qRT-PCR as illustrated and 

quantified in Figure 3 A–D. While variability was detected with each method, there was a 

similar increase in expression as measured by both techniques in Mel-501 cells transfected 

with the miR-205 mimic and a similar decrease in expression in A431 cells transfected with 

miR-205 inhibitor.

In order to evaluate the prognostic value of miR-205 we first used the Yale Melanoma 

Discovery Cohort TMA. Similarly to Dar et al. we found that miR-205 expression was 

decreased in metastatic and primary melanomas compared to nevi (Figure 4A). The 110 

primary melanomas with sufficient tumor area for analysis and complete follow up data 

were divided into tertiles based on expression of miR-205. The top two tertiles were 

overlapping so they were combined into a single group. The lowest tertile was compared to 

the upper two tertiles revealing a significantly shorter disease specific survival for the lowest 

expressing group (Figure 4B). This cut-point between high and low expression was also 
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significant in univariate and multivariate analysis (Table 2) independent of age, sex, stage, 

and Breslow depth (n=105 with all clinicopathological variables).

The same AQUA score cut-point between high and low expression was then applied to the 

validation cohort consisting of 206 evaluable primary melanoma specimens with follow up 

data (after median normalizing the scores on both cohorts for translation of the AQUA 

score). Again the low expressing group had a statistically significant shorter disease specific 

survival (Figure 4C) that is also significant by univariate and multivariate analysis (Table 2). 

Interestingly when the primary melanoma patients are stratified according to miR-205 status 

and Breslow thickness, patients with Breslow greater than 2mm and low miR-205 

expression had a significantly shorter melanoma specific survival compared to the other 

patients including those with thick Breslow and high miR-205 (Figure 5).

Discussion

While several studies have demonstrated the utility of miRNA ISH in FFPE specimens using 

DIG labeled LNA modified probes (14, 16, 17), most studies have been descriptive, semi-

quantitative, or performed on small cohorts. Here we show the utility of investigating 

miRNAs as tissue biomarkers in large patient TMA cohorts using quantitative ISH. This 

method allows the visualization and measurement of miRNA expression in individual cells 

unlike most miRNA detection methods which require total RNA extracts and lack critical 

spatial information. This spatial information can be important to understanding the 

biological function of cancer biomarkers. As illustrated in a study by Sempere and 

colleagues, deregulation of miR-126 and miR-155 as suggested in several cancer types may 

be confined to endothelial and immune cells respectively and not the malignant tumor cells 

as previously suggested using RT-PCR and microarray studies (17). miR-205 has been 

shown to be expressed in the stroma of mouse mammary tissue and we found stromal 

expression as well (18). However, the AQUA technology allows the measurement of 

expression in the malignant melanocytic cells as determined by coexpression with S100/

GP100, thus validating the contribution of miR-205 specifically in the malignant cells. The 

loss or significant decrease in expression in the most aggressive tumors is supportive of the 

role of miR205 as a tumor suppressor miRNA.

As with any new technology, the assay must be validated to prove reproducibility and 

specificity. In this study, we validated reproducibility on serial sections and redundant cores 

with R2= 0.8 and >0.5 respectively. In addition, serial sections of control index arrays are 

ran alongside as quality control measures (data not shown). Specificity of the assay is 

supported by specific and mutated blocking oligos and cell lines transfected with a miR-205 

mimic and a miR-205 inhibitor.

Although the role of miR-205 in cancer is controversial, it has been shown to be upregulated 

in lung, bladder, and ovarian cancer (19–21), while downregulated in breast, prostate, and 

melanoma (6, 8, 9, 22) suggesting a tissue type dependent role in cancer. However, the 

miR-205 targets include such oncogenes as ErbB3, E2F1, VEGFA, and PKCε (6, 8, 23, 24) 

which support its role as a tumor suppressor. It is also involved in regulating the epithelial to 

mesenchymal transition by downregulating Zeb1 (7). In melanoma, miR-205 has been 
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shown to be downregulated in primary and metastatic melanoma compared to nevi by qRT-

PCR and microarray analysis (6, 9, 10). Here we confirm those observations using a third 

method. Although the difference seen here between nevi, primary and metastatic melanoma 

specimens as measured by qISH appears less than that detected by qRT-PCR, we believe 

this is due to a decreased dynamic range of qISH compared to qRT-PCR. Furthermore, 

when overexpressed in melanoma cell lines, miR-205 suppressed tumor growth in vivo, 

induced senescence, and reduced the proliferative capacity of cells by means of 

downregulating E2F1. Overall, we believe that the bulk of the evidence supports a tumor 

suppressor role for miR205.

Finally, we show the prognostic value of miR-205 in two independent cohorts totaling over 

300 primary melanoma specimens. In addition, miR-205 expression level was able to 

stratify patients with high Breslow thickness into high and low risk groups, however in our 

cohorts was unable to stratify patients of low Breslow thickness likely due to the small 

number of patients. While this result represents an exploratory study on two retrospective 

cohorts, it suggests potential value for stratification of melanoma outcome. As other 

miRNAs are examined, it is possible that they may be valuable for inclusion in melanoma 

diagnostic tests that predict recurrence or response to therapy in melanoma.
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AQUA Automated Quantitative Analysis
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qIF Quantitative immunofluorescence
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Figure 1. 
A, Example of a primary melanoma specimen with high miR-205 expression. B, high 

magnification of inset indicated in A. C, primary melanoma specimen with low miR-205 

expression. D, high magnification of inset indicated in C. E. Example of scrambled probe 

negative control in serial section of patient tissue from A. Scale bars represent 50 μm in A, 

C, E and 25 μm in B and D.
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Figure 2. 
Reproducibility of miR-205 qISH as performed on redundant builds (different cores) of the 

A, Discovery Cohort and the B, Validation Cohort. C, Reproducibility of miR-205 qISH as 

performed on serial sections of the Validation Cohort.
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Figure 3. 
A, Representative example of miR-205 ISH (red) performed on A431 cells transfected with 

the negative control miRNA inhibitor or miR-205 miRNA inhibitor merged with DAPI 

(blue). B, Quantification of miR-205 knockdown by qISH from 24 random fields. C, 

Quantification of miR-205 knockdown by qRT-PCR normalized by U6. D, Representative 

example of miR-205 ISH performed on Mel-501 cells transfected with the mimic negative 

control or miR-205 mimic. E, Quantification of miR-205 overexpression by qISH from 24 

random fields. F, Quantification of miR-205 overexpression by qRT-PCR normalized by 

U6. Scale bars represent 25 μm.

Hanna et al. Page 12

Lab Invest. Author manuscript; available in PMC 2013 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
A, Box plot demonstrating the distribution of miR-205 expression in nevi, primary, and 

metastatic melanoma specimens. B, Kaplan-Meier survival analysis of miR-205 expression 

on the Discovery Cohort (p-value calculated by the log-rank test). C, Kaplan-Meier survival 

analysis of miR-205 expression on the Validation Cohort using the same cutoff score 

between high and low expression as the Discovery Cohort.
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Figure 5. 
(a) Kaplan-Meier survival analysis of patients stratified by miR-205 and Breslow thickness 

where high Breslow is > 2.0 mm and low Breslow is < 2.0 mm on the Discovery Cohort 

(low 205/low Breslow n=14, low 205/high Breslow n=21, high 205/low Breslow n=27, high 

205/high Breslow n=48). (b) Kaplan-Meier survival analysis as in (a), but on the Validation 

Cohort (low 205/low Breslow n=33, low 205/high Breslow n=54, high 205/low Breslow 

n=58, high 205/high Breslow n=47). P-value calculated by the log-rank test.
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Table 1

Clinicopathological characteristics of melanoma cohorts

Characteristic Discovery Cohort, n=113 Validation Cohort, n=206

Breslow thickness, mm

mean 3.08 3.45

standard deviation 2.25 4.61

Age at diagnosis, years

mean 58.24 63.43

standard deviation 14.43 16.80

Sex

Male 58 (50.5%) 80 (38.8%)

Female 54 (49.5%) 126 (61.2%)

Stage at diagnosis

Localized 89 (82.4%) 169 (82%)

Regional 11 (10.2%) 33 (16%)

Distant 8 (7.4%) 4 (1.9%)

Ulceration

Absent 67 (59.3%) 67 (52.3%)

Present 46 (40.7%) 61 (47.7%)

Microsatellites

Absent 86 (76.1%) 71 (83.5%)

Present 27 (23.9%) 14 (16.5%)

Received any therapy

No 90 (81.1%) 153 (81.4%)

Yes 21 (18.9%) 35 (18.6%)
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