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Multivalent state transitions shape the intratumoral
composition of small cell lung carcinoma
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Mohamed E. Abazeed1,5*

Studies to date have not resolved how diverse transcriptional programs contribute to the intratumoral hetero-
geneity of small cell lung carcinoma (SCLC), an aggressive tumor associated with a dismal prognosis. Here, we
identify distinct and commutable transcriptional states that confer discrete functional attributes in individual
SCLC tumors. We combine an integrative approach comprising the transcriptomes of 52,975 single cells, high-
resolution measurement of cell state dynamics at the single-cell level, and functional and correlative studies
using treatment naïve xenografts with associated clinical outcomes. We show that individual SCLC tumors
contain distinctive proportions of stable cellular states that are governed by bidirectional cell state transitions.
Using drugs that target the epigenome, we reconfigure tumor state composition in part by altering individual
state transition rates. Our results reveal new insights into how single-cell transition behaviors promote cell state
equilibrium in SCLC and suggest that facile plasticity underlies its resistance to therapy and lethality.
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INTRODUCTION
The use of nongenetic means to diversify phenotypes provides or-
ganisms with the ability to adapt quickly to environmental changes
(1). This diversity can promote survival, especially in the context of
extreme environmental shifts (2). Similarly, cancers maintain stable
proportions of cells in several distinct transcriptionally defined
states categorized on the basis of developmental programs (e.g.,
“stem”-like, epithelial, mesenchymal, neural, and neuroendocrine)
or additional undefined gene expression states (3, 4). Within indi-
vidual tumors, cell state transitions could be modulated by environ-
mental cues, cell-cell signaling, and/or stochastic switches in gene
expression programs (5), with the potential to skew state propor-
tions, at least transiently. Critically, anticancer therapies appear to
preferentially kill specific cancer cell states, resulting in predictable
changes in phenotypic proportions (4, 6, 7). Despite some prelim-
inary observations regarding cell-cell switches and state equilibrium
in some cancers, very little is known about the regulation of the pro-
portions of cancer cells in the various cell states, the types and rates
of transitions across and within cancer types, and if multistate
tumors can be modulated to enhance the prospect of a tumor’s ex-
tinction (8).

Small cell lung carcinoma (SCLC) is an aggressive disease that
accounts for ~15% of all lung cancers and affects ~200,000 patients
annually worldwide (9). A diagnosis of SCLC is typically associated
with a dismal prognosis, with most patients succumbing within 1
year and a 5-year survival rate of only 6%. First-line treatments

include the combination of cisplatin and etoposide alone or with
radiotherapy (10). Although most patients respond to first-line
therapy, most patients also experience disease recurrence. In con-
trast to other types of lung cancer, there have been nomajor advanc-
es in the use of targeted therapies, and the benefits of
immunotherapy have been modest (11–13). New paradigms and
approaches focused on advancing therapeutic strategies in patients
with SCLC are urgently needed.

Large-scale sequencing of SCLC has not revealed consistent
cooccurrence or mutual exclusivity of genetic alterations, frustrat-
ing efforts to stratify patients on the basis of the genome (14). On
the other hand, there are indications of transcriptionally distinct
subtypes of SCLC (15–20). These studies have indicated at least
three transcriptional clusters, with the largest representing an
ASCL1high NEUROD1low subtype, the second largest representing
a NEUROD1high subtype, and a small number of tumors expressing
low levels of both ASCL1 and NEUROD1, but high levels of YAP1.
ASCL1 is a basic helix-loop-helix (bHLH) transcription factor (TF)
that is a marker of neuroendocrine differentiation (21). NEUROD1
is also a bHLH TF that is required for neural development (18).
YAP1, a regulator of transcription that is inhibited by the Hippo
growth signaling pathway, is expressed in mesenchymal cells but
is undetectable or low in most SCLC cell lines (22). A fourth TF,
POU2F3, was recently identified as defining a previously unappre-
ciated tuft cell variant of SCLC (23). Despite a proposed quaternary
taxonomy (16, 24), some immunohistochemical (IHC) analyses
have not confirmed a Yap1 subtype (25). Therefore, SCLC tran-
scriptional classification remains, at least in part, discordant and
incomplete.

Further confounding the attempts to stratify SCLC tumors into
discrete categories are suggestions of intratumoral heterogeneity.
Morphologically different cell types have been noted in a number
of SCLC cell lines, including some with mixtures of cells in suspen-
sion in combination with variably adherent monolayers (26). Ex-
pression profiling of these distinct populations suggests that the
suspended cells are more likely to have neuroendocrine features,
whereas the adherent population adopts a less neuroendocrine,
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more mesenchymal expression profile. Mesenchymal cells, express-
ingVIM,CD44, and YAP1 have a reduced proliferative rate, relative-
ly greater chemoresistance, and support the survival, growth, and
migration of the neuroendocrine subtype of cells within admixed
tumors (27, 28). Additional data support a role for Notch signaling,
generally suppressed in the predominant ASCL1high subtype, in in-
ducing a neuroendocrine to mesenchymal fate switch in both
mouse and human SCLC cells (29–31). Studies conducted in genet-
ically engineered mouse models of SCLC and driven by heterolo-
gous MYCT58A demonstrate a unidirectional transition from one
cell fate (ASCL1) to another (YAP1), resulting in ultimately homo-
geneous populations of cell types (32, 33). Recent work using circu-
lating tumor cell–derived xenografts suggests increased
intratumoral heterogeneity following treatment resistance, attribut-
ed to subtype switching, in human SCLC (34, 35). Overall, these
results, combined with a recent single-cell atlas of 21 SCLC
tumors, provide indications that distinct cell types can exist
within the same SCLC tumor. However, the extent of this heteroge-
neity in treatment naïve tumors (i.e., not induced by therapeutic
stress), the direct observation of subtype switching, the frequency
and single-cell kinetics of state transitions, the functional specializa-
tion of additional subpopulations, and the impact of tumor state
proportions on clinical outcomes have yet to be thoroughly exam-
ined. Here, we characterize the proportions and single-cell dynam-
ics of distinct intratumoral subpopulations in SCLC and use
epigenetic modifiers to reconfigure tumor composition, with the
aim of advancing new therapeutic strategies to improve clinical
outcomes.

RESULTS
Distinct gene coexpression networks and the taxonomy of
SCLC cell lines
To find categories of SCLC in established cell lines, we performed k-
means clustering using gene expression data from 53 SCLC cell
lines. Four groups were robust to sampling variability (Fig. 1A
and fig. S1). We identified differentially expressed genes and gene
sets in each group (data S1 and S2). Consistent with the previous
identification of some SCLC subtypes (15, 36, 37), we found differ-
ential expression of fate-determining TFs (Fig. 1B). Namely,ASCL1,
ISL1, NEUROD1, INSM1, and YAP1 either individually or in aggre-
gate differentially marked each cluster. We selected representative
cell lines based on silhouette scores from each group and assessed
the concordance between transcript levels and protein levels
(Fig. 1C).We found that protein expression was generally associated
with gene transcript levels across the representative cell lines.

We posited that gene modules within groups conferred distinct
phenotypic traits and morphologies. First, we assessed the propor-
tion of samples within cluster that adhered to the plate. The vast
majority of cell lines contained cells that were either adherent or
in suspension, with only a few (mainly in cluster II) retaining bipha-
sic growth capacity. Cluster III cells were significantly more likely to
grow in suspension compared to cluster I or IV (Fig. 1D). Light mi-
croscopy of representative cell lines showed distinct morphology
and growth patterns (Fig. 1E). We examined invasion into Matrigel
of the same representative cell lines and showed that DMS114
(cluster IV) and, to a lesser extent, H446 (cluster II) had the capacity
to invade a complex extracellular environment (Fig. 1F). These
results suggested that cell lines were distinct not only in

transcriptional states but also in morphology and functional roles
(i.e., invasion).

We combined the cellular morphologies and phenotypes of the
cell lines with the ontology of differentially expressed genes (indi-
vidual cluster versus all others) to identify four group-defining
characteristics: (i) loosely adherent neuroepithelial cells, (ii) semi-
adherent groups of cells with neural-like projections, (iii) suspend-
ed, neuroendocrine hormone-producing cells, and (iv) tightly ad-
herent mesenchymal cells that had the capacity to invade matrix
and required enzymatic digestion to effect dissociation. Network
analyses revealed hubs organized by cell fate–defining TFs, edges
that linked dissonant gene expression hubs (i.e., mutually exclu-
sive), and an overall topology that suggested coordinated activity
of conserved ontogenetic programs (Fig. 1G and fig. S2). Each
network represents the top 100 ranked gene that differentially rep-
resent the indicated cluster versus all others. The correlation (linear
association) and mutual information (nonlinear measure of associ-
ation) is between the gene coexpression values within the top genes.
Linking the diversity within SCLC with non–small cell lung cancer
(NSCLC), some of the genes represented in the mesenchymal
cluster were more likely to be expressed by NSCLC cells, suggesting
the presence of SCLC groups/states that more closely approximate
NSCLC (fig. S3). Therefore, SCLC cell lines cultured in vitro signif-
icantly diverged on the basis of distinct gene network activity, ap-
peared to be regulated by individual TF expression, and contained
distinct morphologies and phenotypes.

Intratumoral heterogeneity in human SCLC
We collected multiregional fine-needle aspirate biopsies (four to six
passes) from patients with SCLC at diagnosis (i.e., treatment naïve)
and developed 64 patient-derived xenografts (PDXs). The cancer
stage distribution of this cohort closely approximated those found
in most clinical practices (Fig. 2A and fig. S4). We performed k-
means clustering using bulk RNA sequencing (RNA-seq) data
from the first passage of the generated PDXs and identified four
transcriptional clusters. Nearest centroid correspondence of cell
line and PDX-derived clusters showed some associations between
clusters across the two cohorts (cell lines versus PDXs) (Fig. 2B).
Directed analyses of cluster-defining TFs showed similar patterns
in associated groups (Fig. 2C versus Fig. 1B). For example, ASCL1
levels were highest in PDX clusters I and III (associated with cell line
clusters I and III, respectively); NEUROD1 levels were highest in
both cell line and PDX cluster II; PDX cluster I (associated with
cell line cluster I) was marked by high ASCL1 and low YAP1 expres-
sion and, conversely, for cluster IV (associated with cell line cluster
IV). Despite these similarities, PDX clusters were more likely to
express more than one fate-defining TF in each cluster (Fig. 2C).
For example, PDX cluster III expressed moderate to high levels of
all fate-defining TFs. Moreover, silhouette width plots, representing
the likeness within each cluster, were low across the PDX clusters
(fig. S5A). In addition, the variance in the TF gene expression dis-
tribution within clusters was significantly higher in PDXs compared
to cell lines (fig. S5B). These results suggested that, although retain-
ing some similarities to cell line groups, PDXs were more
heterogeneous.

To assess the extent of heterogeneity in individual samples, we
first quantified bulk RNA and protein expression (Western blot
analysis and IHC) across six representative xenografts (Fig. 2, D
and E, and fig. S6). These results indicated that individual tumors
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express, by both RNA and protein, one or all the cluster- and fate-
defining TFs: ASCL1, NEUROD1, and YAP1. CBX163 represented
an exception, an SCLC subtype that lacked neural or neuroendo-
crine markers and was driven by POU2F3 (fig. S7). It was retained
in our analyses for completeness. To analyze intratumoral heteroge-
neity at the single-cell level, we generated 52,975 single-cell

transcriptomes from the six representative xenografts passaged ex
vivo (Fig. 2F). Before single-cell isolation, we determined the pro-
portion of mouse-derived cells by flow cytometry using the murine
major histocompatibility complex class I antibody anti–H-2K.
Mouse cellular admixture of human ex vivo tumors was very low
(0 to 0.1%; fig. S8). We excluded cells and genes with low coverage,

Fig. 1. SCLC cell lines have divergent gene regulatory networks and phenotypes. (A) Hierarchical clustering was performed using 53 SCLC cell lines. Silhouette
widths, which measure the likeness within each cluster, were calculated. j, cluster number; ni, number of samples in each cluster; aveSi, average silhouette width for
each cluster. (B) The log fold change (FC) for fate-defining TFs in the indicated cluster versus the rest. (C) Representative cell lines, with cluster membership shown in
parentheses, were profiled for cluster-defining proteins by immunoblot. WCL, whole cell lysate. (D) Proportion of adherent samples for each cluster as annotated by the
Cancer Cell Line Encyclopedia (CCLE). Bars represent the means, and the Mann-Whitney test was used for statistical analysis. *P < 0.05. (E) Phase contrast images (×20) of
representative cell lines. (F) Cellular invasion using a Boyden chamber assay. Error bars represent SEM of at least three different experiments. The student t test with
Welch’s correction was used for statistical analysis. *P < 0.05. (G) Gene networks for SCLC cluster IV demonstrate an up-regulation and concomitant down-regulation of
mesenchymal and neuroendocrine transcriptional programs, respectively. The networks contain the top 100 ranked genes. Genes are colored on the basis of expression
(repressed versus overexpressed), and the intensity of the color represents the extent of expression difference. The edge color indicates the type of coexpression between
genes (correlation versus mutual information). ASCL1, INSM1, and YAP1 are highlighted by case and color to delineate their positions in the network.
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retaining a median of 9672 and 3643, respectively, indicating the
high-quality of our dataset. The population-level controls correlated
with the averages of the single cells, Pearson r = 0.77 [95% confi-
dence interval (CI), 0.75 to 0.77; P = <0.0001] (fig. S9).

Consistent with single-cell analyses in other tumor types, most
individual cells varied more between than within individual tumors
(38). Nevertheless, there were multiple examples of cells from indi-
vidual tumors that occupied discrete regions of the Uniform Man-
ifold Approximation and Projection (UMAP) coordinate map.
Some tumors contained large groups of cells (e.g., CBX110,

CBX119, and CCX250) that were more similar to other tumors
than the within tumor population, consistent with the maintenance
of intertumoral transcriptional programs. Feature plots of mesen-
chymal, epithelial, neural, and neuroendocrine markers confirmed
that most SCLC cells comprised transcriptional programs repre-
sented by either epithelial or mesenchymal lineages (EPCAM or
VIM, respectively) that further stratified into cells that express
Ascl1, NeuroD1, or Yap1 (Fig. 2, F to H, and fig. S10). In contrast
to previous single-cell RNA-seq (scRNA-seq) data (39), two pro-
filed samples (CCX1 and CCX250) had a considerable number of

Fig. 2. The intratumoral heterogeneity of SCLC PDXs. (A) Clinical stage proportions of donor patients using a modified version of the Veterans Administration Lung
Group criteria for SCLC.“Early” represents a subset of limited-stage diseasewithout gross nodal involvement; these patients underwent surgery. (B) The association of the
cluster-specific centroids of the shared genes between the cell line and PDX clusters was measured using the 1-Pearson. (C) The log fold change for fate-defining TFs in
the indicated cluster versus the rest. (D) ASCL1, NEUROD1, and YAP1 gene expression in the designated PDXwasmeasured using RNA-seq. The corresponding PDX cluster
for each sample is as follows: CCX1 (I), CCX250 (II), CBX140 (II), CBX119 (III), CBX110 (III), and CBX163 (IV). (E) Immunoblot analysis for relative expression of each TF in the
designated PDX. (F to H) UMAP feature plots derived from scRNA-seq of the same six samples in (D) and (E) grouped by (F) sample ID, (G) Leiden clusters, and (H) the
normalized expression of the designated genes.
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YAP1-expressing cells, and another (CBX140) had some cells with
YAP1 expression, although they were fewer and more dispersed
across the UMAP space. Critically, although cells representing
each TF were present in most tumors, the relative proportion of
each marker within individual tumors was distinct across samples
(see fig. S10).

SCLC tumors have discrete cell states regulated by the
epigenome
To studyASCL1,NEUROD1, or YAP1 expressing subpopulations in
real time, we disaggregated PDX tumors and cultured derivative
cells ex vivo in low-serum medium. Ex vivo cultures retained tran-
scriptional fidelity with matched PDX across five tumors: CCX1,
CCX280, CBX41, CBX163, and CBX140 (Pearson r = 0.88 to
0.96) (fig. S11). There was sufficient primary tumor sample to
assess transcriptional fidelity of CCX1 primary tumor with
matched PDX and ex vivo cells. CCX1 PDX and ex vivo samples
were highly correlated with the transcriptome of the primary
tumor (Fig. 3A). Relevant to themaintenance of subpopulation pro-
portions ex vivo compared to in vivo, ASCL1, NEUROD1, YAP1,
and associated gene expression were significantly correlated across
five matched PDX and ex vivo cells (Pearson r = 0.74) (Fig. 3B).
These results indicated that SCLC TF states were fundamentally
preserved compared to in vivo tumors.

Bright-field microscopy of cells derived from CCX1 (Fig. 3C)
and other ex vivo samples (fig. S12) demonstrated distinct cell
types in strata. Live-cell imaging of the ex vivo culture indicated
substantial interactions between the distinct compartments and pu-
tative cell type switches (movies S1 to S3). Strata of CCX1 were ame-
nable to fractionation using physical and enzymatic means (see
Materials and Methods). We compared protein expression of fate-
determining TFs across the fractionated layers of CCX1 (Fig. 3D).
Ascl1, NeuroD1, Yap1, and their associated genes were differentially
expressed across each layer. The strata mirrored some of the molec-
ular characteristics of established cell lines across distinct clusters
(Fig. 1). The intratumoral subpopulations of CCX1 included (i) sus-
pended aggregates (S++) of small cells expressing Ascl1, (ii) semi-
adherent groups of cells (S+) expressing NeuroD1 that appeared
to give rise to S++ aggregates, (iii) pleiomorphic adherent cells
with neural-like projections (A+), and (iv) tightly adherent mesen-
chymal-like cells growing as a monolayer (A++) and expressing
Yap1. Consistent with Western blot data, cell surface proteins
CD44 and epithelial cell adhesion molecule (EpCAM) separated
into adherent (A++) and suspension compartments (S++), respec-
tively, as measured by flow cytometry (Fig. 3E). Together, these
results indicated that individual SCLC tumors have the capacity
to express three distinct TF-defined cell states concurrently and
that these populations are in physical proximity ex vivo, suggesting
an interactive intratumoral system. In support of this framework,
Yap1-expressing cells, as measured by IHC in matched primary
and PDX tissue, were at the interstices of Ascl1-expressing cellular
sheets (fig. S13).

CCX1 comprised at least three cell states with distinct morphol-
ogies and significant cell-cell communication.We assessed the traits
of the distinct compartments using physically separated strata or by
flow cytometry (CD44+ or EpCAM+ cells) and examined cellular
invasion, response to chemotherapy or radiation, and clonogenicity.
Our results indicated that the A++- or CD44+-expressing cells, but
not the other strata or EpCAM+ cells, had the capacity to invade

Matrigel (Fig. 3F). CD44+ cells were also more resistant to chemo-
therapy and radiation (Fig. 3G). We noted that despite significant
fluctuation from baseline in the proportion of EpCAM+ and
CD44+ cells after therapeutic stress, cellular proportions as mea-
sured by each marker returned to pretherapy levels. These results
indicated that cell state proportions were elastic but ultimately resil-
ient to perturbation. As it related to clonogenicity, EpCAM+ cells
had a greater tumorigenic capacity than CD44+ cells by both in
vivo limiting dilution and in vitro colony formation assays (Fig. 3,
H and I), in line with previous data (40). We demonstrate analo-
gously distinct morphological and phenotypic characteristics in
tumor subpopulations in another ex vivo sample, CBX140
(fig. S14).

To assess the extent that the epigenome regulates distinct sub-
populations in CCX1, we conducted Assay for Transposase-Acces-
sible Chromatin using sequencing (ATAC-seq) in each stratum
(Fig. 3J). CCX1 strata had preferential accessibility at ASCL1,
NEUROD1, and YAP1 loci in a manner consistent with protein
levels (see Fig. 3D), indicating that the expression of fate-determin-
ing TFs was regulated by the epigenome. To assess genetic diversity,
we conducted whole exome sequencing of the bulk population and
each stratum (fig. S15). The bulk population and each stratum had
clonal RB1 and TP53mutations/loss, indicating the human andma-
lignant origin of each subpopulation. Moreover, the bulk popula-
tion and the strata shared similar clonal architectures and genetic
alterations [single-nucleotide variant and copy number alterations
(93.8% similar)], indicating that successive waves of cellular expan-
sion and selection did not result in diverse subclonal populations
(41). Together, these results indicated that the distinct strata in
CCX1 are regulated by nongenetic (epigenetic) processes.

Cell state dynamics indicate multivalent lineage plasticity
Our results indicated that most SCLC tumors contain two or more
cell types and that intratumoral subtypes may cooperate to promote
tumorigenicity and/or cellular diversity. Although bright-field live-
cell imaging suggested cell type switches (movies S1 to S3) and RNA
velocity estimates suggested some putative transitions between cell
populations (fig. S16), we sought to measure SCLC TF subtype
switching directly to quantify individual transition rates. We devel-
oped a fluorescent reporter platform that can measure TF states at
the population and single-cell level. We generated reporter con-
structs containing the promoter sequence of ASCL1, NEUROD1,
or YAP1. The inserts were placed upstream of reporter genes
mCherry red fluorescent protein (mRFP), cyan fluorescent
protein (CFP), or enhanced green fluorescent protein (eGFP)
(Fig. 4A). Cells expressing each TF as measured by the correspond-
ing fluorescence were morphologically distinct at the population
and single-cell level and in their localization within strata (Fig. 4,
B and C). ASCL1 cells were round and mainly found in semi- or
fully suspended cellular aggregates (S++). NEUROD1 cells repre-
sented the rarest subtype and comprised two main populations of
very small round cells or more pleomorphic neural-like cells, and
these cells were found mainly in emergent semisuspended aggre-
gates (A+ and S+). Last, YAP1-expressing cells were found mainly
in the tightly adherent layer (A++). Measurements of the aspect
ratios (Fig. 4D) and cellular displacement (Fig. 4E) supported
these characterizations insofar as NEUROD1- and ASCL1-express-
ing cells had greater sphericity and YAP1-expressing cells were ir-
regularly shaped and had the greatest displacement.
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Fig. 3. SCLC ex vivo tumors have distinct phenotypic states regulated by the epigenome. (A) Whole transcriptome associations in matched CCX1 primary tumor,
PDX, and ex vivo cells. (B) Scatter star plot of gene expression [transcript per million (TPM)] for program defining genes in five matched PDX and ex vivo cells: CCX1,
CCX280, CBX41, CBX163, and CBX140. Hubs =means; spokes = individual sample values. (C) Phase contrast images (×20) of CCX1 ex vivo cells. Arrowsmark representative
populations of cells in each stratum. (D) Strata profiled by immunoblot. (E) Flow cytometry data show CD44- and EpCAM-expressing cells in each stratum. APC, allophy-
cocyanin; PE, phycoerythrin. (F) Invasion assay of strata or cells sorted via fluorescence-activated cell sorting (FACS) for CD44 or EpCAM. Values are an average of the
number of stained cells from four high-power fields. Error bars represent SEM of at least three different experiments. The student t test with Welch’s correction was used
for statistical analysis. *P < 0.05. (G) CCX1 ex vivo cells (5 × 106) were treatedwith chemotherapy (EP; etoposide (1.5 μg/ml) and cisplatin (0.5 μg/ml)] for 5 days, followed by
drug washout or irradiated to a total dose of 10 Gy (2 Gy per fraction daily). CD44- and EpCAM-expressing cells were quantified by flow cytometry at the indicated times,
and the change in the percentage of CD44 and EpCAM (%Δ) calculated relative to t = 0. (H and I) Cells with differential expression of EpCAM and CD44 expression were
FACS-sorted and tested for clonogenicity in vitro or in vivo (limiting dilution assay). Tumor growth was followed for ~8 weeks in NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG)
mice. *Nonoverlapping CIs of the proportions as calculated by the Clopper and Pearson exact test. (J) Track plots of ATAC-seq signals at the ASCL1,NEUROD1, and YAP1 loci
in each stratum of CCX1. Red arrowheads and yellow shading mark accessibility and the designated promoters, respectively.
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Fig. 4. Quantifying cell state transitions by single-cell fluorescence tracking. (A) Schematic of a TF reporter vector. Sequences flanking the promoter of each gene
were placed upstream of the ORFs of the FPs (X′FP). WPE, Woodchuck Hepatitis Virus Posttranscriptional Element; RRE, Rev responsive element; cPPT, central polypurine
tract; 5′LTR, 5′ long terminal repeat; U5/RSV, inverted repeat within the U5 region of the Rous sarcoma virus; AmpR, ampicillin resistance gene; pUC ori, the pUC plasmid’s
origin of replication. (B) Representative tracks of cells expressing the indicated reporters. (C) Representative fluorescent, bright-field, and merged images of cells express-
ing the indicated reporters. (D) Aspect ratios of fluorescent cells are shown by violin plots. *P < 0.05, Mann-Whitney test. (E) Cumulative distribution function of displace-
ment of fluorescent cells. *P < 0.05, Mann-Whitney test. (F) Log fold change of flow cytometry separated fluorescent versus nonfluorescent cells from single reporter
transfected populations for neuroendocrine (NE), neural (N), and mesenchymal (MS) genes. (G) Cells expressing two reporters (i.e., double positive) were detected using
flow cytometry. (H) Schematic depicting all possible transitions using bivalent reporter integration. Serial fluorescent measurements of a representative stationary (I) and
nonstationary (J) cells. Differenced series represent the computed differences between two consecutive measurements. Autocorrelation (ACF) was measured by calcu-
lating the correlation of the time series with itself at variable time lags. Red bars indicate 95% CI. (K) Representative dual fluorescent images of cell state transitions
observed in CCX1 ex vivo cultures. Arrows mark the transitioning cells. (L) Serial fluorescent measurements of corresponding transitions in (K). RFU per frame and
moving averages (every 10 frames) are shown as dashed and solid lines, respectively. (M) Total fluorescence for each TF reporter, over time. (N) The instantaneous tran-
sition rates for the state transitions in CCX1 were measured from at least 150 hours of live-cell imaging. Lines represent the moving average of every five frames. Arrows
corresponding to the plateau phase of ASCL1-expressing cells in (M) are shown in the Y-to-A and N-to-A panels. Linear regression of the transition rates are shownwith red
dashed lines.
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To determine whether reporter positive cells expressed the cor-
responding TF states, we separated fluorescent and nonfluorescent
cells from single reporter transfected populations using flow cytom-
etry and measured the relative enrichment for each TF and coregu-
lated genes by bulk RNA-seq. We observed enrichment of TF and
associated gene transcripts for each reporter (Fig. 4F), suggesting
that each TF reporter marks the corresponding lineage with high
fidelity.

To quantify transitions between TF states, we generated cells ex-
pressing dual reporters by tandem transfections. We observed pop-
ulations of cells expressing one or the other reporter with minimal
coexpression in individual cells (Fig. 4G). These results, which are
consistent with the minimal overlap of TF gene expression seen in
individual cells in scRNA-seq UMAP plots (Fig. 2H), suggest that
cell states are largely mutually exclusive. These results are also con-
sistent with recently published SCLC scRNA-seq data (39).
Tandem, tripartite transfections were either lethal or resulted in
prohibitively slower growth, precluding trivalent measurements.
Nonetheless, we used a permuted bivalent approach to measuring
all possible state transitions (Fig. 4H). The percentage of mRFP,
eGFP, and CFP in either monovalent or bivalent reporter transfec-
tions was similar: 77 ± 5% ASCL1, 12 ± 3% YAP1, and 5 ± 1%
NEUROD1 (means ± SD) and approximated the scRNA-seq TF ex-
pression in CCX1 (Fig. 2H). These results indicated that our biva-
lent TF reporter systems accurately mark distinct subpopulations.

We used automated single-fluorescent reporter tracking to
follow individual cells transfected with bivalent reporters via
time-lapse imaging. We generated single-cell tracks from up to
250 hours of live-cell images for our ex vivo samples and measured
relative fluorescence unit (RFU) intensity per cell per frame. We
identified two distinct signal processes. Cells either emitted
signals characterized by variable fluctuations but with a mean, var-
iance, and covariance that did not change with time (i.e., stationary;
Fig. 4I), or they were nonstationary (Fig. 4J). The latter had a dis-
cernible trend in fluorescence intensity (increase or decreasing) and
a statistically significant time lag autocorrelation (Fig. 4, I and J). To
mitigate against the risk of capturing spurious transitions, we
adopted a stringent signal processing heuristic. This consisted of
statistically significant autocorrelation signals of concomitantly
vanishing and emerging cell states for each tracked particle. Bivalent
transitions were quantified using dual reporter time series analysis
(Fig. 4K and movies S4 to S8). Representative state transitions from
cropped frames in time series are shown in Fig. 4L.We applied these
criteria to CCX1 cells cultured from 105 cells to ~80% confluency
and assessed state transitions as a function of density (Fig. 4M).
We calculated a per frame state transition rate, defined as the
number of state transitions between two sequential frames, captured
1.5 hours apart, divided by the total number of cells in the second-
ary frame (Fig. 4N). Our results indicated variable moving average
frequencies across the six possible state transitions. Notably, direct
Ascl1 to NeuroD1 state transitions either did not occur or were
lower than the limit of detection in this tumor (although this tran-
sition was observed in other samples; see Fig. 5). Moreover, as the
population approached near confluency, there were notable changes
in some transition rates. Namely, there was a decrease in the tran-
sitions into Ascl1 (arrows in Fig. 4N), which corresponded to the
plateau phase of growth of the Ascl1 population. These results sug-
gested that transition rates can potentially be modulated to config-
ure tumor composition in a manner responsive to environmental

stressors (e.g., higher cellular density, lower pH, or lower nutrient
state). Together, SCLC tumors can interconvert between different
TF states, and some transition rates are altered in response to envi-
ronmental cues.

Individual CCX1 cellular interconversions appeared to occur
randomly (Fig. 4N), and the tumor population was resilient to
change after therapeutic stress (Fig. 3G). These features suggested
that state dynamics in this tumor were governed by a stochastic
process. Markov chains have been used to model pseudo-randomly
changing systems and infer transition probabilities between pheno-
typic states within cancer cell populations (4). A prediction of
Markov state dynamics is that any state will return to a fixed equi-
librium of cell state proportion over time if transitions are multiva-
lent (i.e., transitions can occur between any two states). To assess
these properties in CCX1, cells with integrated bivalent reporters
were purified (via flow cytometry) into homogeneous states and fol-
lowed by serial fluorescence measurements (fig. S17 and Supple-
mentary Materials and Methods). ASCL1, NEUROD1, or YAP1
purified states evolved over time to invariably express the other re-
porter. Using serial matrix proportion measurements, we estimated
the transition probability (P) for each of the nine possible transi-
tions and estimated the equilibrium cell state composition using
I(eq). We then measured the proportions of each reporter in exper-
imentally unperturbed (unsorted) populations over 7 days. The ex-
perimentally measured proportions were highly correlated to the
estimated equilibrium state composition (fig. S17D), indicating
that state dynamics can be accurately predicted by a Markov
chain (42).

To determine the associations between state transitions and the
intratumoral composition of SCLC tumors, we generated TF report-
er–expressing cells in three additional SCLC tumors and one
NSCLC tumor, CCX29 (Fig. 5A). Expectedly, CCX29 expressed
YAP1 but not ASCL1 or NEUROD1. We observed distinct intratu-
moral compositions (Fig. 5B), and state transition rates varied
across the four tumors (Fig. 5C). We measured the transition prob-
abilities using single-cell tracking for each sample and predicted the
equilibrium state proportions usingMarkovian chain processes (see
Supplementary Materials and Methods). The predicted and mea-
sured state proportions were highly correlated (Pearson r = 0.82)
(Fig. 5D). To assess the magnitude of the dependence of intratu-
moral proportions on state transitions, we simulated changes in in-
dividual transition rates and assessed the impact on each TF state
(Fig. 5, E and F). These results indicated that cell state transitions
are critical for regulating SCLC intratumoral compositions. More-
over, simulated changes in specific transitions (e.g., between Yap1
and NeuroD1 in CCX280; Fig. 5F) had more impact on tumor com-
positions than other transitions, and these dependencies varied in a
tumor-specific manner (fig. S18).

Our data on SCLC state dynamics indicated that transitions reg-
ulate intratumoral composition. Since each state had distinct func-
tional attributes, we reasoned that the prevalence of each state in
individual tumors may influence clinical outcomes. We annotated
clinical outcomes from the 64 donor patients (table S1 and data S3).
First, we examined known variables of SCLC outcomes. For
example, both cancer stage (limited versus extensive) and the use
of chemotherapy were significantly associated with overall survival,
and the use of chemotherapy was significantly associated with pro-
gression-free survival (fig. S19). These associations suggested that
salient variates that influence outcomes could be identified using
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this dataset. We then combined TF expression as measured by bulk
RNA-seq with clinical outcomes. Tumors with high ASCL1 or
YAP1 expression were more and less likely to respond to first-line
chemotherapy ± radiation, respectively (Fig. 5, G andH). Moreover,
tumors with relatively higher ASCL1 expression, despite having
higher response rates after first-line therapy, were significantly
more likely to ultimately progress (P = 0.046; Gray’s test for equality
based on competing risk of death) and concomitantly had a worse
overall survival (P = 0.028; log-rank test) (Fig. 5, I and K).

Conversely, tumors with relatively higher YAP1 expression were
less likely to progress after chemotherapy (P = 0.021; Gray’s test
for equality based on competing risk of death) (Fig. 5J). Therefore,
state composition had a significant impact on chemotherapy re-
sponse. A schematic describing tumor response trajectories after
chemotherapy stratified on the basis of ASCL1 expression is
shown in Fig. 5L.

Fig. 5. SCLC composition is regulated by stochastic cell state transitions and is associated with distinct clinical response trajectories. (A) Representative fluor-
escent, bright-field, and merged images from cells with ASCL1, NEUROD1, or YAP1 reporters across four ex vivo tumors. CCX29 was derived from a lung adenocarcinoma
(LUAD). (B) Proportion of reporter expression (% reporter positive). Data are representative of three additional images for each ex vivo tumor. (C) The transition rates for all
possible transitions were calculated by averaging instantaneous transition ratemeasures from at least 150 hours of live-cell imaging. Error bars represent SEM of transition
rates from four high-power fields in at least two wells. (D) Scatterplot of state proportions measured experimentally (x axis) or at equilibrium using the Markov chain (y
axis). Estimates of CBX41 ex vivo tumors state (E) proportions and (F) fold change upon variance of transition rates by the indicated values. (G) PDX-sourced ASCL1 and
YAP1 gene expression levels stratified by treatment response after first-line chemotherapy ± radiation. CR, complete response; PR, partial response; SD, stable disease. Bars
represent the median, and the Mann-Whitney test was used for statistical analysis. *P < 0.05. (H) Representative patient computed tomography images before and after
induction chemotherapy comprising 4 cycles of etoposide and carboplatin. High and low ASCL1 expressions were median stratified using TPM. Red circles delineate the
gross tumor volume. Estimated cumulative incidence curves of tumor progression stratified by (I) ASCL1 or (J) YAP1 gene expression. Shaded area represents 95% CI. (K)
Kaplan-Meier estimates of overall survival of patients stratified by median ASCL1 gene expression. (L) Schematic illustrating distinct chemotherapy (cis/etop) response
trajectories for ASCL1 high or low tumors.
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Epigenetic modifiers reconfigure SCLC intratumoral states
SCLC TF state transitions were stochastic, modulated by the envi-
ronment (i.e., cellular density), and appeared regulated by epigenet-
ic processes (Fig. 3J). Accordingly, we reasoned that intratumoral
state proportions can be altered using drugs that target the epige-
nome. We assessed the impact of distinct classes of epigenetic
drugs on CCX1 morphology using longitudinal treatments at sub-
lethal doses (fig. S20). We tested drugs that were U.S. Food and
Drug Administration–approved, currently in clinical trials, or
pending examination in trials: MS-275, GSK2879552, SAHA,
iBET-726, JIB-04, and EPZ6438. Most drugs appeared to differen-
tially impact subpopulation growth. In particular, JIB-04, which in-
hibits the Jumonji family of histone demethylases, diminished the
growth of suspended cell aggregates (i.e., S++ or neuroendocrine
cells) (Fig. 6A). Conversely, iBET-762, a small-molecule inhibitor
that targets bromodomain and extra terminal (BET) proteins, pro-
moted suspended cell aggregate growth while decreasing adherent
cell growth (i.e., A++ or mesenchymal cells). We used TF reporter–
expressing cells to assess the impact of JIB-04 and iBET-762 on TF
expression. Consistent with the bright-field microscopy findings,
JIB-04 decreased ASCL1-expressing cells and had moderate to
minimal effects on YAP1 andNEUROD1 expression (Fig. 6B). Con-
versely, iBET-762 increased ASCL1, reduced YAP1, and did not sig-
nificantly alter NEUROD1 expression. Morphometric analyses of
TF-expressing drug-treated cells demonstrated distinct morpholog-
ical states. iBET-762 and JIB-04 increased the number of equiaxed
(spherical) and elongated (asymmetric) cells, respectively (Fig. 6C).
To assess the impact of each drug on the transcriptome, we per-
formed scRNA-seq and showed that drug treatments lead to diver-
gent cell types (Fig. 6D). Namely, iBET-762 increased the number of
EPCAM- and ASCL1-expressing cells and significantly decreased
the number of VIM-, CD44-, and YAP1-expressing cells. JIB-04
had diametrically opposed effects in CCX1. To quantify these
effects, we visualized ASCL1, NEUROD1, and YAP1 transcript
levels per cell by density distribution plots (Fig. 6E). Therefore,
JIB-04 and iBET-762 significantly altered the prevalence of each
TF state.

To determine whether the changes in CCX1 composition by JIB-
04 and iBET-762 were attributed to modulations in cell state tran-
sition rates, we quantified single-cell transitions using dual reporter
time series analyses of CCX1 cells treated with sublethal doses of
drug (Fig. 6F). Specifically, we used concentrations that had a
maximal growth inhibition of ~10% for any state in an individual
tumor at day 10.We calculated the average transition rate using gen-
erated single-cell tracks from up to 250 hours of live-cell images.
Our results indicated an increase in NEUROD1 to ASCL1 transi-
tions after iBET-762 treatment and a decrease in bilateral
NEUROD1 to YAP1 transitions. These changes in state transitions
are consistent with the reconfiguration of this tumor toward a more
neuroendocrine (Ascl1+) composition. Despite a retention of some
Yap1-expressing cells in JIB-04–treated cells (see Fig. 6B), there
were no significant transitions observed under these conditions.

To assess the extent that the observed reconfiguration of tumor
proportions was attributed to differential cell death, we measured
the absolute number of dead cells using 4′,6-diamidino-2-phenyl-
indole (DAPI) staining in longitudinally treated cultures treated
with vehicle or drugs (iBET-762 and JIB-04). ASCL1-expressing
cells had a higher basal rate of death than YAP1-expressing cells,
followed by NEUROD1-expressing cells ( fig. S21). However, in

the setting of the use of sublethal concentrations of the indicated
drug, the number of dead cells was not significantly higher across
the three states. These results indicated that tumor composition re-
configuration under these conditions is not attributed to differential
drug-induced death.

We also measured the change in CCX1 composition by JIB-04
and iBET-762 in other tumors. We measured a surrogate marker
of the neuroendocrine state, suspended cell aggregates (or S++) in
five additional ex vivo samples (Fig. 6F). Although the magnitude
of changes varied across samples, iBET-762 and JIB-04 appeared to
increase and decrease cluster size, respectively. These results sug-
gested that although each tumor has preferred state proportions at
equilibrium, intratumoral composition can be modulated using
drugs that target the epigenome.

CBX41, in particular, had a significant increase in suspended cell
aggregates in the presence of iBET-762 (Fig. 6F). To determine the
basis of this change in phenotype, we examined TF state composi-
tion in this sample. In contrast to CCX1, CBX41 had a lower
number of ASCL1-expressing cells, with moderate-to-high
NEUROD1 and YAP1 expression at baseline (Fig. 5B). We used
the TF reporters to assess the impact of iBET-762 on TF expression
in CBX41 (Fig. 7A). iBET-762 increased ASCL1 and decreased
NEUROD1 and YAP1, compared to vehicle-treated cells. ASCL1 re-
porter fluorescence images in conjunction with bright-field images
demonstrated a significant increase in ASCL1 expression after
iBET-762 (Fig. 7B). As shown in Fig. 6F, iBET-762 increased the
growth of suspended cell aggregates (i.e., S++ or neuroendocrine
cells). These results suggested that the increased growth rate in
CBX41 after iBET-762 treatment is due to a change from a
NEUROD1 to an ASCL1 tumor composition. To examine this treat-
ment effect on the protein level, CBX41 ex vivo cells were treated
with iBET-762 for 3 or 5 days. Western blot analyses showed an in-
crease in Ascl1 and a decrease in NeuroD1 levels at 3 and 5 days after
treatment (Fig. 7C). Quantification of band intensity demonstrated
a significant increase in the Ascl1:NeuroD1 protein ratio after iBET-
762 treatment (Fig. 7D). CBX41 xenografts were then injected into
mice and treated with iBET-762. iBET-762 accelerated tumor
growth compared to mock-treated controls (Fig. 7E). These
results indicated that iBET-762 enhances the growth of CBX41 by
reconfiguring tumor composition toward a more proliferative neu-
roendocrine state.

Epigenetic modifiers alter SCLC chemotherapy response
trajectories
Since state composition had a significant impact on clinical re-
sponses to chemotherapy (see Fig. 5, G to L), we predicted that al-
tering state proportions using JIB-04 or iBET-762 would also alter
treatment responses in derivative PDXs. CCX1 and CBX41 were in-
jected into mice and treated adjuvantly (Fig. 8A) or neoadjuvantly
(Fig. 8B) with JIB-04 or iBET-762 and 3 cycles of cisplatin and eto-
poside. Adjuvant iBET-762 and JIB-04 significantly accelerated and
decelerated tumor regrowth compared to chemotherapy alone in
CCX1 (Fig. 8C). In CBX41, adjuvant iBET-762 had an accelerated
recovery compared to adjuvant JIB-04 but not to chemotherapy.
Neoadjuvant JIB-04 accelerated tumor regrowth compared to che-
motherapy alone in both CCX1 and CBX41 (Fig. 8D). Neoadjuvant
iBET-762 had subtle effects on treatment response trajectories in
the two xenografts. In CCX1, which had a high proportion of
Ascl1 at baseline (84% of all fluorescent cells; Fig. 5B), neoadjuvant
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Fig. 6. Reconfiguring SCLC tumor composition by epigenetic reprogramming. A series of ex vivo tumor experiments (A to F) were performed involving treatment
with iBET-726 (30 nM), JIB-04 (50 nM), or vehicle (ϕ). (A) Treated CCX1 ex vivo cells expressing RFP (for enhanced visualization of the adherent layer) were monitored for
morphological changes for up to 16 days by bright-field and fluorescent images. Black boxes in the image at 16 days were magnified to ×10 (last column). (B) Fluorescent
cells with integration of the designated reporter construct were counted longitudinally after treatment. The relative counts, normalized to the value at t = 0 hours, are
shown. (C) The aspect ratios of these fluorescent positive cells are shown by violin plots, following treatment. The Mann-Whitney test was used for statistical analysis.
*P < 0.05. (D) UMAP feature plots derived from scRNA-seq of treated CCX1 ex vivo tumors were grouped by (top) drug ID or (bottom) the normalized expression of the
designated genes. (E) Density distributions comprising the normalized scRNA-seq gene expression values for treated CCX1 ex vivo cells. Black bars represent themedians.
(F) The average transition rates for CCX1 ex vivo cells treated with iBET-762 (10 nM) or JIB-04 (10 nM). The Student t test with Welch’s correction was used for statistical
analysis. *P < 0.05. (G) Cell cluster size, as measured by the average size of suspended cellular aggregates per image (a surrogate of neuroendocrine subpopulations), was
measured for six distinct ex vivo tumors following treatment.
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iBET-762 did not significantly change tumor sensitivity to chemo-
therapy. In CBX41, which had low proportion of Ascl1 at baseline
(13% of all fluorescent cells; Fig. 5B), neoadjuvant iBET-762 had a
biphasic response trajectory with more rapid growth initially, fol-
lowed by a lag in tumor regrowth compared to chemotherapy
alone. Together, these results indicated that epigenetic drugs
altered tumor chemotherapy response trajectories in a treatment se-
quence–dependent manner.

DISCUSSION
Despite some indications that individual SCLCs may comprise dis-
tinct cell types, the extent of human SCLC intratumoral heteroge-
neity and the direct observation of subtype switching has been
elusive (15, 16, 19, 22, 25–28, 31, 32, 35, 39, 43). In this study, we
showed that treatment naïve SCLCs are substantially more hetero-
geneous than previously appreciated, with most samples retaining
two or more cell types that can access transcriptional states
marked by ASCL1, NEUROD1, or YAP1. We showed that the rela-
tive frequency of each state varied across tumors and that most
SCLCs are governed by reversible bidirectional cell state transitions
rather than unidirectional differentiation hierarchies. We conclude
that there are stable attractors, or preferred states, in the gene

expression network topology of most SCLC characterized by the ex-
pression of two or more state-defining TF genes.

We measured the kinetics of state transitions and associated
single-cell dynamics with overall population trends using stochastic
transition theory (i.e., Markov chains). Our results suggest that the
transition rates in individual tumors have autonomous circuits that
are critical for configuring intratumoral proportions. Despite a pro-
pensity toward an equilibrium in individual tumors, transition
probabilities were affected by environmental signals including pop-
ulation density and drug treatments. These results advance a model
whereby SCLCs represent multistate dynamical systems that are re-
sponsive to their environment.

Our findings introduce new questions about the regulation of
state dynamics and tumor proportions. First, the per frame transi-
tion rates are on the order of 0.0 to 0.02 transitions per frame or 0 to
~1/50 cells every 1.5 hours. This represents a small fraction of each
subpopulation. It is unclear whether the transitioning fraction is
fixed or transitory and the extent that some cells undergo terminal
differentiation (i.e., no longer retain the capacity to transition into
other states) within each state is not currently known. Second, our
findings suggest that SCLCs appear to contain intrinsic clocks that
regulate cell state transitions. The source of this synchrony and its
stochastic tendencies are not known. In bacteria, noise in

Fig. 7. Epigenetic reprogramming alters tumor phenotype. (A) Fluorescent CBX41 cells with integration of the designated reporter construct were counted longi-
tudinally after treatment. (B) Representative fluorescent, bright-field, and merged images from cells with stable integration of the ASCL1 reporter construct. (C) Immu-
noblot analysis for relative expression of NeuroD1 and Ascl1 after treatment. (D) Quantification of immunoblots in (C). (E) NSGmice bearing CBX41 in the flank were block
randomized into one of three treatment arms as shown. Data are expressed as means ± SEM; n = 4 independent animals for each arm. The χ2 test was used for statistical
analysis. *P < 0.05. Arrows represent every other day dosing with iBET-762 or JIB-04 treatments.
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underlying genetic circuits permits access to different dynamic
regimes, including gene program oscillations that result in cellular
differentiation (44). It is possible that tumor state transitions simi-
larly depend on noise in the underlying gene regulatory networks.
Third, in addition to the putative autonomous circuitry, certain en-
vironmental cues appear to influence the timing of these transi-
tions. For example, the attenuation of conversion into the ASCL1
state upon increased population density suggested that cell-cell or
paracrine signals could influence transition probabilities, although
the precise nature of these interactions remains unknown.

SCLC’s state diversity is likely a major feature of its clinical ver-
satility and lethality. Cell type diversity can confer several advantag-
es in tumors including allowing subpopulations to foster the growth
of another group. The cell-cell interactions observed between SCLC
cell types suggest that these fostering exchanges are possible. Specif-
ically, the extensive contacts observed between Yap1- and
NeuroD1- or Ascl1-expressing cells suggest commensal niche-like
interactions (see delimited areas in movies S1 to S3). In addition,
phenotypic switching between therapy sensitive (neuroendocrine)
and therapy-resistant states (mesenchyme or neural) is predicted
to underlie SCLC’s persistence despite significant initial responses
to chemotherapy. Consistent with this observation, we showed that
SCLCs had varied clinical and PDX chemotherapy treatment

response trajectories in a manner dependent on the expression
level of the ASCL1 and YAP1 states. We conclude that the nonge-
netic means to undergo transitions provides the capability for some
tumors to swiftly reemerge once the therapy is withdrawn, a hall-
mark of SCLC clinical response trajectories.

There is evidence to support a role for the epigenome in the state
diversity of SCLC. Namely, there was preferential promoter accessi-
bility to ASCL1, NEUROD1, and YAP1 in a manner similar to
protein and phenotypic expressions in ex vivo strata. Despite the
potential for gene promoter accessibility for each state, it is
evident that there are differential epigenetic constraints in individ-
ual tumors since state proportions varied significantly in the cohort.
Plastic epigenetic topologies may result from relaxation or restric-
tion of epigenetic landscapes (45), which may enhance the evolu-
tionary fitness of some SCLCs. It is also plausible that certain
genetic alterations regulate epigenetic barriers and, accordingly,
TF state proportions in tumors. For example, MYC activation has
been shown to facilitate transitions from ASCL1 toward NEUROD1
or YAP1 expression (32). Other putative variables for the regulation
of the epigenome include genomic alterations in genes that regulate
histones (e.g., CREBBP, EP300, and MLL), differential DNA meth-
ylation patterns, and distinct cells of origins (14, 20, 46).

Fig. 8. Epigenetic reprogramming alters chemotherapeutic response trajectories. Schematics depicting (A) adjuvant and (B) neoadjuvant treatment strategies with
iBET-726 or JIB-04. (C andD) NSGmice bearing CCX1 or CBX41 in the flank were block randomized into one of three treatment arms as shown. Sequential treatments were
given at least 24 hours after the completion of the first therapy. Data are expressed as means ± SEM; n = 4 independent animals for each arm. The χ2 test was used for
statistical analysis. *P < 0.05. Arrows represent every other day dosing with iBET-762 or JIB-04 treatments. The red bar represents the duration of chemotherapy
treatments.
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The detailed analyses of state transitions in SCLC permitted sim-
ulation of the impact of individual transitions on overall tumor
composition. Our results suggest that modulating distinct state
transitions in categories of tumors can markedly alter tumor com-
position. We also showed that tumor compositions could be exper-
imentally modified using drugs that target the epigenome. Namely,
iBET-762 and JIB-04 differentially altered Ascl1 and Yap1 states
and, in turn, tumor growth rates and chemotherapy response trajec-
tories. Although there have been previous indications of SCLC
subtype differential sensitivities (33, 47), the reconfiguration of
SCLC cell state composition by altering state transition rates using
epigenetic modifiers has not heretofore been shown. Our results
also indicate that the sequencing of epigenetic therapies with che-
motherapy could affect treatment efficacy. Further investigations
are needed to determine the targets, dependencies on baseline
state proportions, the impact of differential drug sensitivities on
each state, and the most optimal sequencing with chemotherapy.
Nonetheless, our results establish that SCLC state reconfiguration
by certain epigenetic drug treatments is possible.

In conclusion, we have elucidated a spectrum of states of SCLC
cells and their dynamics, identifying cellular programs that recapit-
ulate neuroendocrine, neural, and mesenchymal development. Our
work advances a unified dynamical model of cellular states and
program diversity in SCLC and nominates therapeutic strategies de-
signed to limit its plasticity.

MATERIALS AND METHODS
Cell culture
Cell lines from the Cancer Cell Line Encyclopedia (CCLE) were au-
thenticated per CCLE protocol andwere grown in advanced Roswell
Parl Memorial Institute (RPMI) or Dulbecco’s modified Eagle’s
medium/F12 (Thermo Fisher Scientific, MA) supplemented with
1 to 5% fetal bovine serum (FBS) (Thermo Fisher Scientific, MA),
penicillin (100 U/ml), streptomycin (100 μg/ml), L-glutamine (292
μg/ml; Corning, NY), and 1% HEPES buffer solution. PDX-derived
cells grown under identical media conditions were supplemented
with 1% FBS. Ex vivo samples represent tumor cells derived from
PDX and grown in culture for a short duration (maximum of 16
weeks). All cultures were maintained at 37°C in a humidified 5%
CO2 atmosphere and regularly tested to ensure the absence of my-
coplasma. Plates were treated with 0 Gy (no radiation) or with γ-
radiation delivered at 0.91 Gy/min with a 137Cs source using a Gam-
macell 40 Exactor (Best Theratronics, ON, Canada).

Plasmids and lentiviral infections
Fluorescent reporter promoter plasmids were generated by cloning
the 5′-flanking promoter sequences located ~1.5-kb upstream and
up to 200–base pair downstream of the transcriptional start site
(TSS) of ASCL1, NEUROD1, or YAP1 (GeneCopoeia) upstream of
reporter genes mRFP, CFP, or eGFP. The plasmids were stably in-
tegrated into ex vivo cells with a multiplicity of infection of >1, se-
lected, and maintained in the presence of puromycin (0.01 μg/ml),
hygromycin (5 μg/ml), or neomycin (25 μg/ml). Bivalent reporter–
expressing cells were generated by sequential infection and
selection.

Fractionation of ex vivo strata
Cellular strata of ex vivo cultures were fractionated using a four-step
process: (i) Suspended cell aggregates (S++) were collected by pipet
transfer; (ii) the remaining strata were first suspended in Hanks’ ba-
lanced salt solution (pH 7.4) (Thermo Fisher Scientific, MA) for 15
min. Semi-adherent cells (S+) that entered the new suspended strata
were also collected; (iii) mechanical disruption of the remaining
cells facilitated the release of additional adherent cells (A+); (iv)
lastly, tightly adherent cells (A++) were detached by enzymatic di-
gestion using Accumax (STEMCELL Technology, Vancouver,
BC). Each layer was collected into separate tubes for downstream
processing.

Cellular invasion
Twenty-four–well Boyden chambers (Corning, NY) comprising
semipermeable membranes with 8-μm pore size were coated with
30 to 50 μl of Matrigel (Corning, NY). A serum gradient was estab-
lished by placing medium with 10% FBS in the plate well and 1%
FBS in the top chamber. Established cell lines, fractionated ex
vivo cells, or flow cytometry–sorted CD44- or EpCAM-expressing
cells were added to the top chamber in equal cell numbers (105 to
106 cells). The plates were incubated at 37°C for 24 hours, and in-
vasive cells were fixed and stained using 1% crystal violet solution.
Invasive cells were counted using ImageJ (48).

Antibody and reagents
Anti-actin (CST-3700 at 1:4000 dilution), anti-Yap (CST-4912 at
1:1000 dilution), anti-NeuroD1 (CST-2833 at 1:1000 dilution),
anti-Vim (CST-3932 at 1:1000 dilution), anti-CD44 (CST-5640 at
1:1000 dilution), anti-EpCAM (CST-3599 at 1:1000 dilution),
anti–histone deacetylase 1 (HDAC1) (CST-5356 at 1:1000 dilution),
and anti-vinculin (CST-4650 at 1:4000 dilution) were from Cell Sig-
naling Technology (Beverly, MA). Anti-Ascl1 (sc-390794 at 1:4000
dilution) was from Santa Cruz Biotechnology (Dallas, TX). Hy-
gromycin, neomycin, and puromycin were from MilliporeSigma
(St. Louis, MO). Pharmaceutical grade cisplatin and etoposide
used in murine experiments were procured from the clinical phar-
macies of the affiliated hospitals.

Western blot analysis
Whole-cell lysates were prepared usingM-PER lysis buffer (Thermo
Fisher Scientific, MA) and clarified by centrifugation. Nuclear and
cytoplasmic extractions were prepared using the NE-PER kit
(Thermo Fisher Scientific, MA). Proteins were separated by SDS–
polyacrylamide gel electrophoresis and transferred onto 0.45 μMni-
trocellulose membranes (Maine Manufacturing, Sanford, ME).
Membranes were incubated with primary antibody for 1 to 2
hours at room temperature, washed, and subsequently incubated
with secondary antibodies for 1 hour. Blots were developed with
an ECL chemiluminescence reagent (Amersham/GE Healthcare,
Amersham, UK).

Consensus clustering and nearest centroid classification
Cell lines
Normalized RNA gene expression (Affymetrix U133 + 2 arrays)
derived from 53 SCLC cell lines was downloaded from the CCLE
data portal (CCLE_Expression_Entrez_2012-10-18.res at www.
broadinstitute.org/ccle/home). Data were controlled for batch
effects using ComBat (49). Expression values from the 5000 most
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variable genes [as determined by median absolute deviation
(MAD)] were median centered and used for downstream analyses.
Consensus clustering was performed using the ConsensusCluster-
Plus package (50, 51). 1-Pearson was used as a distance metric, re-
sampling was set to 1000, and the maximum k was 9. The optimal
number of clusters was determined by the consensus matrix and the
plot of Δ area under the cummulative distribution function
(CDF) curve.
Gene network classification
We created a classifier based on cluster membership and projected a
gene correlation network for consensus clusters (k = 4) using geN-
etClassifier (52). Samples with positive silhouette widths per con-
sensus cluster group were chosen for gene network and classifier
construction.
PDX RNA-seq
Sixty-four SCLC PDXs were profiled for gene expression using
RNA-seq. Reads that unambiguously aligned to the human
(versus mouse) reference genome were sorted using bbsplit in
BBTools (53). Read counts were normalized within-sample and
log-transformed. The most variable genes (by MAD) were
median-centered before clustering.
Correlation of cell line and PDX clusters
To determine the correspondence between cell line and PDX clus-
ters, we created a classifier based on cluster membership using geN-
etClassifier (52). First, we calculated the silhouette widths for the
samples within each cluster to find the most representative
samples (54). Using samples with the largest silhouette widths per
cluster (n ≥ 8), we obtained the top ranked genes within each con-
sensus cluster (posterior probability > 0.95). We then associated the
cluster-specific centroids of the shared genes between the two data-
sets using a distance measure of 1-Pearson (55–57).
Differential gene expression
Clusters were evaluated for differentially expressed genes or gene
sets using Limma (58). The Benjamini-Hochbergmethod (false dis-
covery rate < 0.05) was used to control for multiple hypothesis
testing. Gene Ontology annotations were used to determine enrich-
ment for functional terms.

Single-cell RNA-seq
For scRNA-seq of SCLC samples, tumor aggregates were digested
into single-cell suspensions as follows. Cells were treated with
Accumax (STEMCELL Technology, Vancouver, BC) for 15 to
30 min in a flask using an orbital shaker at room temperature and
then collected and incubated with collagenase type IV (STEMCELL
Technology, Vancouver, BC) for 10 min at 37°C. The disaggregated
cells were suspended in media and filtered using a 40-μm mem-
brane (Thermo Fisher Scientific, MA) to remove undissociated ag-
gregates. Live cells were sorted before library construction. Single
cells were processed through the 10X Chromium 3′ Single Cell Plat-
form using the Chromium Single Cell 3′ Library, Gel Bead, and
Chip Kits (10X Genomics, Pleasanton, CA), following the manufac-
turer’s protocol. Cell Ranger version 3.0.2 was used to convert Illu-
mina base call files to FASTQ files, which were aligned to the hg19
human reference genome and transcriptome provided by 10X Ge-
nomics. The gene versus cell count matrix was used for downstream
analysis. The raw reads were processed to obtain the unique molec-
ular identifier (UMI). Cells with fewer than 3000 expressed genes,
with a high proportion of mitochondrial reads (>25%) or low pro-
portion of ribosomal reads (<0.05%), were also removed. Genes

expressed in <10% cells were also filtered out. The UMI counts
were transformed and normalized using 1, with the normalization
method and the scale factor set to 10,000 total UMIs per cell. Visu-
alization was performed using SCANPY (59). Highly variable genes
with a mean expression range of 0.0125 to 3 and a minimum dis-
persion of 0.5 were selected for further analyses (~2400 genes).
Batch effects among the samples were adjusted using Combat
within SCANPY. The Leiden algorithm was used to do identify
cell clusters, and UMAP plots were used for visualization. The
top 100 differentially expressed genes in each cluster (1 versus all
others) were identified using the Student t test (data S4).

Flow cytometry
Single-cell suspensions were incubated with 0.05 μg of anti-CD44
(#17-0441-82, Thermo Fisher Scientific, MA), 0.05 μg of anti-
EpCAM (#14-9326-95, Thermo Fisher Scientific, MA), and DAPI
(R&D Systems, MN). Cells were then washed and resuspended in
presort buffer (BD Biosciences, CA) for fluorescence-activated
cell sorting (FACS) using the BD Biosystems Aria II flow cytometer.
For FP-expressing TF reporter cells, single cells were suspended in
media and sorted using 640-nm (Zombie NIR, 750LP filter), 355-
nm (Calcein Blue AM, 460/50 filter), 488-nm (CD45-PerCP, 692/40
filter), and 488-nm (GFP, 530/40 filter) lasers. Side scatter width
versus forward scatter (FSC) area and trigger pulse width versus
FSC criteria were used to discriminate doublets and gate only
single cells. We sorted viable FP-positive and FP-negative single
cells into round-bottom 5-ml FACS tubes. Cells were snap-frozen
immediately after sorting and stored at −80°C before whole tran-
scriptome amplification, library preparation, and sequencing.

Clonogenicity
Ex vivo cells were FACS-sorted using anti-CD44 or anti-EpCAM at
a rate of 1 cell per well in a 96-well clear, round-bottom plate
(Corning, NY). Plates were incubated for ~6 weeks, and macroscop-
ic colonies were counted manually. In vivo clonogenicity was eval-
uated by limiting dilution assays. Briefly, 102 to 105 cells were
injected subcutaneously into NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ
(NSG) mice, and caliper measurements were used to monitor
tumor growth for ~12 weeks.

Ex vivo imaging and single-cell tracking
Time-lapse live-cell fluorescence images were acquired using a mul-
timode microplate reader, BioTek Cytation 1 or 5 with BioSpa 8
(Winooski, VT). Images were captured at ×4 (scale of 300 μm) or
×10 (scale of 100 μm) magnification every 1.5 or 2 hours for a du-
ration of 100 to 200 hours. Phase contrast images were acquired
using an inverted Leica ×10 to ×20 (scale of 100 and 50 μm, respec-
tively) optical magnification microscope. Representative images of
cells magnified between ×10 and ×40 were cropped to depict the
individual cell types. PDX-derived ex vivo cells were dissociated
in Accumax (STEMCELL Technology, Vancouver, BC) by incuba-
tion for 15 min in a flask on an orbital shaker at room temperature.
Cell suspensions were then plated into 96-well clear-bottom black
microplates (Corning, NY). Five micrograms of growth factor–
reduced Matrigel (Corning, NY) was mixed into the medium
before cell plating to reduce buoyancy, therefore limiting motion
artifacts. Cell densities ranged from 1 to 2 × 104 cells per well.
Cells were treated with vehicle (dimethyl sulfoxide), iBET-762, or
JIB-04 (Cayman Chemical, MI). Imaging commenced 48 to 72
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hours after plating. Images were processed using FIJI, an image pro-
cessing package with built-in ImageJ (48). Single-cell tracking of
fluorescent cells was implemented using a FIJI plugin, TrackMate.
Cellular displacement, aspect ratios, and cluster size represented the
average of four high-power fields from serial images for the duration
of tracks for each sample. Each ex vivo sample was serially imaged in
at least two wells per condition across two biological replicates.

DAPI staining
Ex vivo cells grown in a 96-well format were incubated with DAPI
(1.0 μg/ml; BD Biosciences, NJ). Fluorescent microscopy images
were obtained using the BioTek Cytation 5 fluorescent microscope
system with a ×10 magnification. Images were processed using FIJI,
an image processing package with built-in ImageJ (48). Quantifica-
tion was done in quadruplicates (four wells) at two high-power
fields per well, counting a minimum of 3000 total cells per high-
power field.

Mouse studies
NSG mice were purchased from the Jackson Laboratory (Bar
Harbor, ME, USA) and bred at the affiliated hospital facilities. All
animal studies were conducted under protocols approved by the In-
stitutional Animal Care and Use Committees. Biological material
was obtained from patients who provided written informed
consent under approval from the Institutional Review Board (pro-
tocol no. 07-267). Tumors were mechanically processed into sub-
millimeter pieces in antibiotic-containing RPMI medium,
combined with Matrigel (Corning, NY) and implanted into the
flank of NSG mice using a syringe with a 20-gauge needle. Tumor
volume was calculated using the formula (length × width2)/2 (60).
Tumors were harvested and stored for biological assays upon reach-
ing a size of ≤1000 mm3. Mice were randomized into treatment
arms when tumors reached ~300 to 400 mm3 in volume. iBET-
762 (0.4 mg/kg) and JIB-04 (32 mg/kg) were formulated according
to the manufacturer’s specifications and administered to mice as
three doses given every other day by oral gavage. Mice were
treated with cisplatin and etoposide at 4:8 mg/kg ratio for 1 cycle
(three doses 1 week apart). To establish whether intergroup differ-
ences were significant, we used regression with random effect and
autoregressive errors (61, 62).

Genetic data
RNA and DNA were isolated from PDX with the AllPrep RNA/
DNA/Protein Midi Kit (QIAGEN, Hilden, Germany). RNA con-
centrations were quantified using NanoDrop 2000 (Thermo
Fisher Scientific, MA). DNA concentrations were quantified with
Qubit 4 (Thermo Fisher Scientific, MA). Total RNA was converted
to mRNA libraries using the lllumina mRNATruSeq kit, and librar-
ies were sequenced on the Illumina HiSeq 2500. For PDX explants
(not ex vivo passaged), we assessed the differential mappability of
mouse reads on to the mouse and human reference genomes
(mm10 and hg19) using BBmap (63). The median of the reads
that mapped to the human reference was 83.13%. Mouse and am-
biguous reads were filtered out for downstream analyses. RNA reads
were aligned to the hg19 genome assembly using STAR (64). Exome
capture of CCX1 and its strata was performed using paired-end se-
quencing on the Illumina HiSeq platform. Copy number alterations
were estimated from exome capture data using TITAN (65).

Subclone reconstruction
Subclone reconstruction was performed using PhyloWGS (41).
Briefly, up to 2500 sampled trees were calculated for each tumor
using Markov chain Monte Carlo settings. Trees were ranked
using a normalized log likelihood to determine the solutions that
best describe the input. Sequencing error rates were assumed to
be uniform across the genome.

ATAC-seq
ATAC-seq was performed as previously described (66). Following
DNA purification, library fragments were polymerase chain reac-
tion (PCR)–amplified with Nextera XT v2 adapter primers. Se-
quencing was performed on the NextSeq 500 (Illumina) from
paired ends according to the manufacturer’s instructions. Illumina
sequencing adapter was removed from raw sequence files in FASTQ
format using Cutadapt. The reads were aligned to the hg19 refer-
ence genome using Bowtie2 with -k 1 and default parameters and
used after removing PCR duplicates with SAMtools and filtered off
an ATAC blacklist (66) for mitochondrial DNA and homologous
sequences. Both fragment ends were shifted +4 nucleotides (nt)
for positive strand and −5 nt for negative strand to account for
the distance from Tn5 binding and helicase activity to identify cut
sites. HOMER was used for calling peaks with the “-style dnase” pa-
rameter. Peak files were merged, and the HOMER function “anno-
tatePeaks.pl”was used to count the number of reads that correspond
to each peak in the merged peaks. The fraction of reads in peak
scores was calculated for each sample and was used as a normaliza-
tion factor for pileup rescaled to a total number of uniquely align-
able sequences by WigMath function of Java-Genomic Toolkit.
Normalized ATAC-seq signals for each sample were visualized
using Trackplot (67).

Clinical characteristics
Human tumor material and associated clinical data were obtained
after written informed consent on an Institutional Review Board–
approved prospective registry study (protocol no. 07-267). Patients
with a pathological diagnosis of SCLC and a successfully engrafted
PDX were selected for further evaluation. A total of 64 patients met
our eligibility criteria. One patient was on erlotinib therapy and sub-
sequently diagnosed with SCLC transformation (CBX130B).
However, this patient did not receive chemotherapy before
sample collection. Therefore, all samples were considered SCLC
treatment naïve at the time of collection. Length of follow-up was
determined from the diagnosis (biopsy) date, and patients who had
not died were censored at the time of last chest imaging. Response
Evaluation Criteria in Solid Tumors (RECIST) were used to evalu-
ate the response to first-line chemotherapy ± radiation (68). Death
without evidence of progression was treated as a competing event.
Age, gender, maximum standardized uptake values (SUVmax)
from positron emission tomography/computed tomography
(PET/CT) scans, tumor stage, surgery, and chemotherapy use
were subjected to univariate analyses. The median scores for
ASCL1, NEUROD1, and YAP1 expression (measured by TPM)
were used to stratify patients into high and low expression groups.
Actuarial analysis was used to estimate rates of overall survival, and
the Kaplan-Meier method was used to generate overall survival
curves. Cumulative incidence curves for disease progression were
estimated using the competing risk method, and Gray’s test was
used to determine significance between cumulative incidence
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curves (69). Statistical analysis was performed using R 3.6.2 (The R
Foundation, Vienna, Austria) (70).

Supplementary Materials
This PDF file includes:
Supplementary Materials and Methods
Figs. S1 to S21
Table S1

Other Supplementary Material for this
manuscript includes the following:
Data file S1 to S5
Movies S1 to S8

View/request a protocol for this paper from Bio-protocol.
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