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Background: The coronavirus disease of 2019 (COVID-19) is a severe public

health issue that has infected millions of people. The effective prevention and

control of COVID-19 has resulted in a considerable increase in the number of

cured cases. However, little research has been done on a complete

metabonomic examination of metabolic alterations in COVID-19 patients

following treatment. The current project pursues rigorously to characterize

the variation of serum metabolites between healthy controls and COVID-19

patients with nucleic acid turning negative via untargeted metabolomics.

Methods: The metabolic difference between 20 COVID-19 patients (CT ≥ 35)

and 20 healthy controls were investigated utilizing untargeted metabolomics

analysis employing High-resolution UHPLC-MS/MS. COVID-19 patients’

fundamental clinical indicators, as well as health controls, were also collected.

Results: Out of the 714 metabolites identified, 203 still significantly differed

between COVID-19 patients and healthy controls, including multiple amino

acids, fatty acids, and glycerophospholipids. The clinical indexes including

monocytes, lymphocytes, albumin concentration, total bilirubin and direct

bilirubin have also differed between our two groups of participators.

Conclusion:Our results clearly showed that in COVID-19 patients with nucleic

acid turning negative, their metabolism was still dysregulated in amino acid

metabolism and lipid metabolism, which could be the mechanism of long-

COVID and calls for specific post-treatment care to help COVID-19 patients

recover.
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Introduction

The acute respiratory syndrome coronavirus 2 (SARS-CoV-

2) infection has caused a major threat to worldwide public health,

and the new kind of coronavirus pneumonia (COVID-19), an

acute respiratory infectious disease, is caused by this infection

(Rahimkhoei et al., 2021). According to the World Health

Organization, over 435 million cases and 5.9 million fatalities

have been reported worldwide as of 1 March 2022 (WHO 2022).

Fever or chills, chronic dry cough, shortness of breath or

difficulty in breathing, muscle or body aches, headache, new loss

of taste or smell, and gastrointestinal problems are all signs of

COVID-19 (To et al., 2021). COVID-19 is classed as mild or

moderate in 81 percent of those infected, and 19 percent of those

diagnosed will develop multiple organ failure (Wu and

McGoogan, 2020). SARS-CoV-2 is a systemic disease that

affects numerous organs, including kidneys, muscles, lymph

nodes, gastrointestinal organs, and others (Soni et al., 2021),

and causes many long-term health problems (Crook et al., 2021).

Currently, many multi-omics studies on COVID-19 patients

have been conducted, revealing the underlying mechanism of the

virology, pathogenesis, host response, etc. of COVID-19

infection at molecular and cellular levels (Shen et al., 2020; Su

et al., 2020; Valdes et al., 2022). These studies have deepened our

understanding of the fundamentals of COVID-19 infection and

aided in the prevention, control, and treatment of COVID-19.

Nevertheless, most current studies have focused on COVID-19

patients who were unconcerned about disease severity and were

most likely in the early stages of infection. As a result, little is

known about the metabolic status of COVID-19 patients in the

late stages of infection. A recent proteomic and metabolomic

study revealed that COIVD-19 caused persistent abnormalities

after discharge (Li et al., 2022), emphasizing the importance of a

study focused on cured COIVD-19 patients.

In this study, we used untargeted metabolomics to analyze

the metabolomic differences between COVID-19 patients with

nucleic acid turning negative (whom are abbreviated as cured

COVID-19 patients in subsequent paragraphs of the article) and

health controls. We aim to reveal the metabolic status of COVID-

19 patients so that we can better monitor the health of COVID-19

survivors in the future to alleviate the possible post-COVID

sequela.

Methods and analysis

Study cohort

This study included a total of 20 COVID-19 patients who

were hospitalized in Jiaxing Hospital from January to March

2020 The inclusion criteria for cured COVID-19 patients are: 1)

the disappearance of major clinical signs and 2) have two

consecutive negative result from COVID-19 nucleic acid tests

(CT ≥ 35). All patients were sampled after fulfilling these

2 criteria but not yet discharged from hospital. The Diagnosis

and Treatment Protocol for COVID-19 Patients 8th edition was

used for the diagnose and treatment of COVID-19 patients

(Tentative 8th Edition). Nucleic acid was extracted from

sputum or a throat swab using automatic nucleic acid

extraction and purification device (GENFINE, Jiangsu

Changzhou, China, P961002) and viral nucleic acid extraction

reagent (GENFINE, Jiangsu Changzhou, China, Y502-G40).

Nucleic acid identification was made using fluorescence

quantitative PCR (Thermo Fisher Scientific, ABI7500) and a

SARS-CoV-2 nucleic acid detection kit (Wuhan Easy Diagnosis

Biomedicine Co., Ltd., China, 2019-nCaV-100-02). Twenty

healthy individuals were also included as a control.

Serum collecting tubes (Chengdu Puth Medical Plastics

Packaging Co., Ltd., China) were used to obtain the blood

samples. Furthermore, the sample was centrifuged for 10 min

at 1,500 g. The serum samples were then transferred to new

storage tubes and stored at −80 °C immediately.

The samples in this investigation came from a clinical trial

that our team started and registered as MR-33-20-004032 in the

Medical Research Registration and Filing Information System.

Jiaxing Hospital’s study has been approved by the Ethical/

Institutional Review Board. All patients before participation

gave informed written consent.

Sample preparation for metabolome
analysis

The metabolomics analysis and sample preparation were

carried out as previously described (Shen et al., 2020). To

inactivate potential viruses, ethanol was added to the serum

samples and shaken before drying in a biosafety hood. After

being dried, the samples were then subjected to downstream

processing in preparation for metabolomics analysis. In brief, a

300 μl methanol extraction solution was added to 100 μl

deactivated serum samples and shaken for 2 min.

Centrifugation at 4,000 × g for 10 min was then performed to

denature and precipitate proteins. To ensure comprehensive and

accurate metabolomic analysis, each supernatant was divided

into four fractions and analyzed using a nontarget metabolomic

platform consists of 4 different metabolomic analytical methods:

two for analysis by using two separate reverse-phase/ultra-

performance liquid chromatography (RP/UPLC)-MS/MS

methods with positive ion-mode electrospray ionization (ESI);

one for analysis by using RP/UPLC-MS/MS with negative-ion

mode ESI; one for analysis using hydrophilic interaction liquid

chromatography (HILIC)/UPLC-MS/MS with negative-ion

mode ESI. To remove the organic solvent, four fractions were

all dried with nitrogen gas, and then re-dissolved in four different

reconstitution solvents which were compatible with the 4 UPLC-

MS/MS methods respectively.
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Untargeted UPLC–MS/MS analysis

All UPLC-MS/MS methods were conducted using the

ACQUITY 2D UPLC system (Waters, Milford, MA,

United States) and Q Exactive HF hybrid Quadrupole-Orbitrap

system (Thermo Fisher Scientific, San Jose, United States) with

HESI-II heated ESI source and Orbitrap mass analyzer. The mass

spectrometer was operated at a resolution of 35,000 mass units

(200 m/z). In the first UPLC-MS/MS method, the QE was

operated under positive electrospray ionization (ESI) and a

C18 column (UPLC BEH C18, 2.1 × 100mm, 1.7 μm; Waters)

was used in UPLC. Water and methanol containing 0.05%

perfluorooctanoic acid (PFPA) and 0.1% formic acid (FA), with a

final pH at 3were used asmobile solutions for gradient elution.When

the polar mobile phases increased from 5 percent to 95 percent, the

gradient elution for techniques with C18 columns was performed in a

7-min run. The QE was still under ESI positive mode for the second

method, and theUPLC employed the sameC18 column as in thefirst.

The mobile phase solutions were composed of water, acetonitrile,

methanol, 0.01% FA, and 0.05% PFPA at pH 3, optimized for more

hydrophobic compounds. As to the third UPLC-MS/MSmethod, the

QE was performed under negative ESI mode. A C18 Column was

used and it was eluted with mobile solutions that containedmethanol

andwater in 6.5 mMammoniumbicarbonate at pH 8. In terms of the

fourth UPLC-MS/MS method, the HILIC UPLC column (UPLC

BEH Amide, 2.1 × 150mm, 1.7 μm; Waters) was used, and the

mobile solutions were composed of water and acetonitrile with

10mM ammonium formate at pH 10.8, and the gradient elution

is conducted in 7minutes run with the polar mobile phase decreased

from 80% to 20%. The QE was performed under negative ESI mode.

TheQEmass spectrometer analysis was carried out by alternatingMS

and data-dependent MS2 scans using dynamic exclusion. The scan

range was 70–1,000m/z, and the MS capillary temperature was

350°C, sheath gas flow rate was at 40, and aux gas flow rate was

at 5 for both positive and negative methods.

Quality control of metabolome analysis

Amixture of internal standards was spiked into every sample to

aid chromatographic peak alignment and instrument stability

monitoring. Instrument variability was determined by calculating

the median relative SD (RSD) of all internal standards in each

sample. The median RSD of this study is ≤5%, which fulfilled our

QC criteria. In addition, extracted water samples served as blanks,

and extracted commercial plasma samples were used for monitoring

instrument variation.

Compound identification

The identification of metabolites followed the pre-processing of

raw data, peak finding/alignment, and peak annotation using in-

house software. Metabolites were identified by searching the in-

TABLE 1 Baseline characteristics of COVID-19 patients and healthy controls.

Participant characteristics Healthy
controls (n = 20)

COVID-19
patients (n = 20)

p-value

Demographics

Age (years) 46.7 ± 12.9 47.9 ± 13.6 0.786

Gender

Male 14 14 1

Female 6 6

BMI 23.7 ± 2.8 23.2 ± 3.2 0.391

Clinical characteristics

White blood cell (×109̂/L) 5.66 ± 1.75 5.93 ± 1.77 0.9

Lymphocytes (×109̂/L) 1.93 ± 0.59 1.35 ± 0.32 0.00032

Monocytes (×109̂/L) 0.28 ± 0.08 0.83 ± 1.60 0.00014

Platelets (×109̂/L) 229.05 ± 46.09 244.67 ± 61.62 0.36

Alanine aminotransferase (IU/L) 35.8 ± 38.39 64.85 ± 91.56 0.14

Aspartate aminotransferase (IU/L) 26.75 ± 17.76 33.95 ± 32.510 0.053

Creatinine (μmol/L) 79.86 ± 13.19 76.7 ± 18.87 0.32

Glutamyltransferase (IU/L) 35.8 ± 32.02 41.88 ± 34.57 0.12

Total bilirubin (μmol/L) 15.27 ± 5.87 8.83 ± 1.89 0.0032

Direct bilirubin (μmol/L) 5.01 ± 4.03 2.26 ± 0.60 0.00086

Lactate dehydrogenase (IU/L) 222.5 ± 64.35 208.82 ± 32.64 0.71

Albumin (g/L) 50.28 ± 6.45 41.84 ± 5.58 0.00031

The p value of significantly differed clinical indexes are displayed in bold. Note: Data are shown as BMI, body mass index; mean ± SD. N, number of participants.
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house database which included over 3,300 standards whose entries

were generated by running purified compound standards on the

experimental platforms. The identification must meet three criteria

well (Shen et al., 2020; Bi et al., 2022): 1) narrow window retention

time (variation less than 0.1 min), 2) accurate mass with variation

less than 10 ppm, and 3) MS/MS spectra with high forward and

reverse scores that stemmed from the comparison of the ions present

in the experimental spectrum to those present in the library

spectrum entries. By following these three criteria, almost all

isomers can be distinguished. All detected metabolites meet the

level 1 requirements by the Chemical Analysis Working Group

(CAWG) of the Metabolomics Standards Initiative (MSI) (Sumner

et al., 2007), except a few asterisk labeled lipids that were matched to

in silico MS/MS spectral.

Statistical analysis

R software (version 3.6.1) was used for data analysis (Lu et al.,

2021). The Kolmogorov-Smirnov test was used to determine

whether the data distributions were normal. The mean

(±standard deviation) was used to represent normally

distributed data, whereas the median (±interquartile range)

was used to represent abnormally distributed data, and

categorical variables were represented as frequencies (%).

Student’s t-test or Mann-Whitney test (for continuous data)

and Fisher’s exact test or chi-squared test (for categorical

data) were used to examine differences across groups. The

unpaired two-sided student t-test was performed to determine

statistical significance, and the adjusted p-value was obtained

using Benjamini & Hochberg adjustment (Adjusted

p-value < 0.05).

The critical variables with discriminative power were

identified using a supervised method called partial-least

squares discrimination analysis (PLS-DA). The multiple

correlation coefficient (R2) was used to validate PLS-DA

models. Following that, we used cross-validation to obtain the

cross-validated R2 (Q2), as well as permutation tests using

2000 iterations (p < 0.001). By using variable importance in

projection (VIP), the relative relevance of each metabolite to the

PLS-DA model was determined. We can use the p-value or the

fold change of univariate analysis with the variable import in

point (VIP) of the PLS-DA model to screen for distinct

metabolites further.

To screen for differential metabolites, the VIP value was

paired with the p-value or fold change of univariate analysis. The

following are the screening criteria: 1) Metabolites with fold

change ≥1.5 or fold change ≤0.67; 2) Metabolites with a p-value

(adjusted by BH) < 0.05; 3) Metabolites with VIP ≥1. The
metabolite differed considerably between the groups if the

above three requirements were met. The pheatmap R

packages were used to build the heatmap. We used the

Euclidean distance measure and the ward clustering algorithm

to make the heatmap. What’s more, we compared the groups

based on the differentially altered metabolites, and we

investigated the metabolomic pathways influenced by the

COVID-19 infection using a KEGG pathway analysis. R

cluster Profiler (v3.12.0) package with BH multiple

comparison test as FDR <0.1 was used to determine

significant enriched KEGG pathways that were enriched for at

least three metabolites (for significantly altered metabolites),

FDR <0.1, and fold enrichment >2.

Results

Characteristics of patients

The First Hospital of Jiaxing took serum blood samples

from 20 COVID-19 patients and 20 healthy volunteers. The

COVID-19 patients were 47.9 ± 13.6 years old on average, with

6 (30.0%) of them being female. The control group’s average age

was 46.7 ± 12.9 years, with 6 (30.0%) of the participants being

TABLE 2 Classification of metabolites.

Class Numbers Percentage
(%)

Amino acid and metabolites Amino acid 215 30.11

Dipeptide 24 3.36

peptide 11 1.54

Fatty acids SCFA 17 0.38

MCFA 43 6.02

LCFA 58 8.12

Sterol lipids Bile acid 33 4.62

Androgenic steroids 22 3.08

Corticosteroids 7 0.98

Pregnenolone steroids 8 1.12

Progestin steroids 6 0.84

Sterol 4 0.56

Steroid conjugates 1 0.14

Glycerophospholipid 60 8.40

Nucleotide and metabolites 37 5.18

Sphingomyelins 30 4.20

Carboxylic acids and derivatives 26 3.64

Choline 25 3.50

Coenzyme and vitamins 23 3.22

Carnitine 19 2.66

Organic acids and derivatives 13 1.82

Bilirubin 13 1.82

Glycerides 12 1.68

Sphingolipid 4 0.56

Alcohols and polyols 3 0.42

MCFA,medium-chain fatty acids; SCFA, short-chain fatty acids; LCFA, long-chain fatty

acids.

Frontiers in Pharmacology frontiersin.org04

Chen et al. 10.3389/fphar.2022.964037

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.964037


female. Platelet count, white blood cell count, monocyte count,

lymphocyte count, alanine aminotransferase (ALT), glutamyl

transferase (GGT), aspartate aminotransferase (AST), direct

bilirubin (DBIL), total bilirubin (TBIL), creatinine, albumin

(ALB), and lactic acid were among the 12 clinical indicators

measured. Compared with healthy controls, COVID-19

patients had higher monocyte counts (p = 0.00014), lower

total lymphocyte counts (p = 0.0017), lower albumin

concentrations (p = 0.00015), lower TBIL (p = 0.00014),

lower DBIL (p = 0.0089), and the rest showed no significant

difference.

Composition of serum metabolites

A total of 714 metabolites were detected from 40 serum

samples using untargeted metabolomics analysis, as shown in

Table 2. A Spearman correlation coefficient test (de Winter

et al., 2016) was used to analyze the metabolite-metabolite

correlation among identified metabolites in healthy controls

and COVID-19 patients. A heatmap was used to show the

correlations between groups in the form of a matrix in

Figure 1A. We noticed that the COVID-19 group is distinct

from the healthy control group.

The identified metabolites were grouped into different

chemical groups according to their metabolite classification,

including amino acid and metabolite, fatty acid, sterol lipids,

glycerophospholipid, nucleotide and metabolites

(Figure 1B). We noticed that most of the identified

metabolites belong to amino acid and metabolite (35.01%),

fatty acid (16.53%) and sterol lipids (11.34%). These three

chemical groups could be further divided into several

different subgroups (Figures 1C–E), e.g., Sterol lipids

mainly consist of bile acid and androgenic steroids, while

fatty acids consist of short chain fatty acid, long chain fatty

acid, and medium chain fatty acid.

Untargeted metabolomics analysis of
serum from subjects

We created a supervised PLS-DA model that focused on

the actual class discriminating variations to find metabolites

that are distinctive between the two groups. The first three

FIGURE 1
Composition of serum metabolites. (A) Correlation coefficient test between the healthy control group and COVID-19 group. (B) Classification
and proportion of metabolites. (C–E) Variety of major metabolites, including amino acids and their metabolites, fatty acids, and sterol lipids.
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components’ goodness of fit (R2) and model prediction ability

(Q2) for COVID-19 patients and healthy controls,

respectively, were 0.994 and 0.921 (Figures 2A,B). The

analysis revealed an appreciable difference between the

metabolomic profile of COVID-19 patients and healthy

controls.

Metabolomic changes in COVID-19
patients serum patient characteristics

The differential metabolites between groups were

screened using multivariate statistical and univariate

analysis. The alteration of serum metabolites was

determined by VIP value combined with Student’s t-test

and a fold change (FC), with VIP >1.0, p < 0.05, and FC ≥
1.5 or ≤0.67 as the criterion of statistical significance. The

above threshold led to 203 differential metabolites between

COVID-19 Patients and healthy controls (Figure 3; Table 3).

In COVID-19 patients, 21 amino acid metabolites were

upregulated, while 37 were downregulated, particularly the

hydroxyethyl amino acid derivatives (Supplementary Figure

S1). In addition, the peptide metabolites in patients with

COVID-19 were significantly reduced. Among the fatty acid-

related metabolites, 6 long-chain fatty acids and 14 medium-

chain fatty acids were down-regulated, while 22 long-chain

fatty acids were up-regulated. Meanwhile, in COVID-19

patients, 18 glycerophospholipids were up-regulated. The

majority of sterol metabolites were significantly down-

regulated.

Bioinformatics enrichment of
dysregulated pathways

According to the significantly changed metabolites,

metabolite set enrichment analysis (MSEA) and pathway

analysis were used to determine the altered metabolic

pathways in COVID-19 patients. Pathway

analysis revealed that 17 metabolic pathways were changed

significantly in patients (Figure 4A). Unsaturated fatty acid

biosynthesis, glycerophospholipid metabolism, and amino

acid metabolism were covered (Figures 4B–D).

Correlation between metabolic changes
and clinical parameters

In this retrospective investigation, Spearman correlation

analysis was conducted to find the correlation between

FIGURE 2
Detected metabolites analysis of serum samples from COVID-19 patients and healthy controls. (A)Volcano plots show the change in
transformed P-adjust (−log10) against the log2 (COVID-19/Healthy). Blue dashed lines: cut-off values (ratio >1.5 and p-value adjust<0.05). Red dots:
Highly expressedmetabolites in COVID-19 patients (115). Purple dots: Low expression of metabolites (128). The size of the points varies according to
the absolute value of [Log2(COVID-19/Healthy)]. (B) PLS-DA plot of differentially abundance metabolites. Red and blue points are COVID-19
patients and healthy controls, respectively (R2 = 0.994, Q2 = 0.921).
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clinical indices (Figure 5A). The results revealed that ALB

was positively correlated with PYMPH, TBIL, and DBIL, and

negatively correlated with monocytes, according to our

findings (MC). Meanwhile, DBIL was positively correlated

with TBIL. Furthermore, we examined correlations between

various clinical indexes and metabolite pathways through

Spearman correlation analysis. (Figure 5B). In COVID-19

patients, ALB was associated with amino acid metabolisms

including serine, glycine, arginine, threonine metabolism,

and proline histidine metabolism. Moreover, ALB was

correlated with primary bilirubin acid biosynthesis and

pyrimidine metabolism, consistent with the negative

correlation between ALB and MC. The correlation

between monocyte and various metabolic pathways is the

opposite of ALB.

In addition, we further analyzed the correlations between

key metabolites of these metabolite pathways and ALB/MC

through Spearman correlation analysis (Figure 5C). We

identified that the ALB was positively correlated with

glycerophosphorylcholine, choline, glutamate,

N-acetylaspartate, glycocholate and

glycochenodeoxycholate, while negatively to the uridine,

dihydroorotate and 2-deoxyuridine. Meanwhile, MC was

positively associated with choline, dihydroorotate,

glycochenodeoxycholate, glycocholates, sarcosine and

succinate.

Discussion

This study investigated the metabolomic profiles of

COVID-19 patients and found the link between their

metabolites and various clinical indicators. Our findings

clearly revealed that their general metabolism is still in a

state of disorder and exhibited abnormal fatty acid and amino

acid metabolism.

FIGURE 3
Dysregulated Metabolites in the serum of COVID-19 patients. Heatmap visualization of significantly altered metabolites between COVID-19
group and healthy controls. Metabolites included in the heatmap meet the requirement that fold-change >1.5 or <0.67 and adjust p value of <0.05.
The color bar represents the relative intensity of identified proteins from −3 to 3.
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A key finding reported by several COVID-19 cohort studies

is that more than 100 amino acids and their related metabolites

were dysregulated after COVID-19 infection, and the majority of

which were significantly downregulated (Shen et al., 2020).

Compared to their findings, in our COVID-19 patients, many

amino acids and their metabolites were returned to normal,

suggested a recovery of dysregulated amino acid metabolism

after the cure of COVID-19. However, we still noticed several

amino acids and their related metabolites were significantly

upregulated, such as alanine, glutamate, aspartic acid,

sarcosine, leucine, cysteine, etc. These amino acids are key

players in energy metabolism and metabolic homeostasis

regulation (Pedroso et al., 2015; Paul et al., 2018; Petersen

et al., 2019; Waskiw-Ford et al., 2020). Their upregulation

could symbolize post-disease recovery, demonstrating that the

body is repairing the damage caused by the infection. In the

meanwhile, some amino acids, including kynurenine, arginine

and tryptophan, remain suppressed. Interleukin-6 (IL-6) levels

were linked to tryptophan metabolism (Thomas et al., 2020).

Kynurenine and arginine are essential to the immunosuppressive

activity of dendritic cells, which are critical immunomodulators

(Mondanelli et al., 2017). Their persistent dysregulation may be

the underlying molecular mechanism of long-COVID and

requires targeted interventions.

Another frequently described metabolomic characteristic

of COVID-19 infection is abnormal lipid and fatty acid

metabolism (Shi et al., 2021; Tanner and Alfieri, 2021;

Zhang et al., 2022). Our study demonstrated that blood

level of short-chain fatty acids returned to normal in cured

COVID-19 patients, while the long-chain fatty acids and

glycerophospholipids were still disturbed. Long-chain

polyunsaturated fatty acids and glycerophospholipids, such

as stearidonic acid (Correa et al., 2021) and linolenate (Wang

et al., 2020), inhibit pro-inflammatory mediator release and

immune cell proliferation, hence regulating inflammatory

processes (Zeng et al., 2017; Weill et al., 2020; Correa et al.,

2021). COVID-19 infection causes immune response

dysregulation, and the continuous abnormalities in LCFA

and lipid metabolism showed a long-term immune

response problem. The findings are similar to those of

COVID-19 survivors 6 months after discharge (Li et al.,

2022), indicated that the metabolic disturbance of lipid is

associated with the long-term chronic discomfort of COVID-

19 healers.

The liver is the primary organ concerning amino acid

metabolism, and liver damage or dysfunction has been

documented often in COVID-19 patients (Jothimani et al.,

2020). The elevated levels of ALT, AST, GGT, and bilirubin

are common at COVID-19 onset. As for our cured COVID-19

patients, their serum ALT, AST, GGT, creatinine, TBIL and

DBIL returned to normal; ALB was down-regulated. DBIL,

TBIL and ALB were negatively associated with

glycerophospholipid metabolism, alanine and glycine

metabolism, etc. Glycerol phospholipids are the

components of bile and bile-responsive chaperone (Lee

et al., 2020). Alanine and Glycine may protect against liver

injury by attenuating oxidative stress and apoptosis in animal

experiments (Maezono et al., 1996; Chen et al., 2013). In

addition, ALB was also associated with pyrimidine

metabolism that has an intrinsic link with liver lipid

accumulation for maintaining normal liver homeostasis (Le

et al., 2013). Besides, lymphocytes and monocytes were related

to the metabolism of pyrimidine pathways and amino acids

such as glycine, serine, alanine, etc. Disorders of pyrimidine

pathways may lead to immunological diseases (Vincenzetti

et al., 2016). As mentioned earlier, amino acid metabolites

participate in immunoregulatory.

In conclusion, our findings from a metabolomic comparison

of cured COVID-19 patients and healthy controls demonstrated

the presence of residual metabolic anomalies. These offered were

helpful for the further exploration of COVID-19 patient

management, and provided insights into the molecular

mechanism and pathophysiological grounds of long-COVID.

Our study, however, has some limitations, including limited

sample size and a single sampling point. As a result, more

research with bigger sample size and more time points is

required.

TABLE 3 Summary of different types of metabolites in COVID-19
patients.

Class Up Down

Amino acid and metabolites Amino acids 19 22

Dipeptide 2 10

peptide \ 5

Fatty acids SCFA 1 1

MCFA \ 14

LCFA 22 6

Glycerides 12 \

Glycerophospholipid 18

Carnitine 1 8

Sterol lipids Bile Acid 2 4

Androgenic Steroids \ 2

Corticosteroids \ 5

Progestin Steroids \ 2

Sterol \ 2

Bilirubin \ 11

Coenzyme and vitamins 4 5

Carboxylic acids and derivatives 7 \

Nucleotide and metabolites 1 6

Choline 4 \

Organic acids and derivatives 3 1

Sphingomyelins \ 2

Alcohols and polyols 1 \
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FIGURE 4
Enriched pathways of significantly altered metabolites of COVID-19 patients. (A) Metabolic pathways enriched based on metabolites
consistently increased or decreased in COVID patients compared with healthy controls. Fold enrichment is represented by color intensity. One-
sided Fisher’s exact test followed by BHmultiple comparison test. (B) Relative abundance of metabolites involved in the biosynthesis of unsaturated
fatty acids. (C) Relative abundance of metabolites involved in the glycerophospholipid metabolism. (D) Relative abundance of metabolites
involved in the amino acids metabolism. p, p-value <0.05 pp, p-value <0.01; ppp, p-value <0.001; pppp, p-value <0.0001.
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FIGURE 5
The correlation between clinical indexes and metabolites in COVID-19 patients. (A) Correlation matrix of 12 clinical features from hospitalized
patients. The circle size corresponds to the absolute value of the Spearman rank correlation coefficient, with the red (blue) color indicating a positive
(negative) correlation. pFDR <0.05, ppFDR <0.01, pppFDR <0.001. (B,C). The altered metabolic pathways and clinical indexes correlations. (C) The
alteredmetabolites and clinical indexes correlations. The circle size corresponds to the −log10 (p-value) of the Spearman rank correlation. Only
correlations with |R|>0.5 and p < 0.05 were highlighted. With red (blue) color shows a positive (negative) correlation. PLC, peripheral lymphocyte
count.
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