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Complex Network Clustering by 
a Multi-objective Evolutionary 
Algorithm Based on Decomposition 
and Membrane Structure
Ying Ju1, Songming Zhang1, Ningxiang Ding1, Xiangxiang Zeng1 & Xingyi Zhang2

The field of complex network clustering is gaining considerable attention in recent years. In this study, 
a multi-objective evolutionary algorithm based on membranes is proposed to solve the network 
clustering problem. Population are divided into different membrane structures on average. The 
evolutionary algorithm is carried out in the membrane structures. The population are eliminated by the 
vector of membranes. In the proposed method, two evaluation objectives termed as Kernel J-means 
and Ratio Cut are to be minimized. Extensive experimental studies comparison with state-of-the-art 
algorithms proves that the proposed algorithm is effective and promising.

Network analysis is an important topic in computer science and bioinformatics researches1–3. In the last decade, 
a large number of algorithms for network clustering, such as the algorithm of Girvan and Newman4, fast greedy 
modularity optimization5, and Markov cluster algorithm6, were proposed. Much research, such as that by Orman 
and Labatut7 and Forunato8, has been conducted on community detection in networks. However, because of the 
inherent complexity of network clustering, community detection problems often cannot be satisfactorily solved by 
traditional heuristic optimization methods. Thus, metaheuristic algorithms are adopted as a tool for dealing with 
community detection problems. These metaheuristic algorithms are notable for their effective local learning and 
global searching capabilities and have proven to be more successful than heuristic methods in solving optimization 
problems9–12. Metaheuristic algorithms, which also automatically determine the number of communities, are thus 
convenient to adopt in community detection applications13. Numerous scholars have applied some metaheuristics 
algorithms, such as evolutionary and particle swarm optimization algorithms, to the problem of network cluster-
ing. In this regard, Pizzuti14 proposed a single objective genetic algorithm (GA-net) for network clustering; Gong15 
suggested a memetic algorithm-based network clustering method (Memenet). Although used successfully, in 
both theory and application in community detection problems, those single objective algorithms still have a 
significant disadvantage. For example, different algorithms on the same network may produce different solutions. 
Many single objective algorithms also must determine the number of communities as prior information16,17.  
However, for real networks, this information is often unknown.

To alleviate the disadvantages of single objective algorithms, multi-objective optimization is applied to the 
problem. A large number of multi-objective optimization evolutionary algorithms have been developed, which 
can be potentially effective and helpful for solving the problem18–20. Therefore, using multi-objective optimization 
algorithms to solve the community detection problem has become a significant subject21,22. In 2007, Zhang and 
Li19–21 proposed an algorithm, a Multi-Objective Evolutionary Algorithm based on Decomposition MOEA/D). 
However, research on MOEA/D has revealed that some, but not all, solutions are chosen in several sub-problems 
(Fig. 1), which may result in loss of population diversity. To address the sub-problems, we designed a new 
Multi-Objective Evolutionary Algorithm, where each sub-problem has several solutions (Fig. 2).

Membranes play an essential role in the structure and the functioning of living cells. In this study, we propose 
a novel algorithm, Multi-Objective Evolutionary Algorithm based on Decomposition and Membrane structure 
(MOEA/DM), for community detection based on an evolutionary algorithm. To solve the problem of a solution 
corresponding to several sub-problems, we add a membrane structure to help ensure that a sub-problem will have 
multiple solutions, where the membrane structure refers to the structure of membrane computing models23–26. 
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We seek the optimal solution through the evolution of a particle in the membrane structure and the exchange of 
an adjacent membrane structure among the optimal particles. Experimental results indicate that, in terms of time 
and effect, MOEA/DM performs better than MOEA/D.

The rest of this paper is organized as follows. Section 2 describes the community detection and concept of 
multi-objective optimization. Section 3 elucidates the proposed MOEA/DM. Section 4 presents the experimental 
studies. Section 5 concludes the study.

Clustering problem related background
Network Community detection based on the graph.  A network is usually expressed as a graph struc-
ture, G =​ G (N, V), where N represents nodes and V represents the relationships between the network’s nodes. For 
a graph, G =​ G (N, V) can also be expressed as an adjacent matrix, A. For every element aij of A,
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L(i, j) denotes that node i and node j are connected; wij represents the weight value of the two nodes.
The purpose of network community detection is to determine the characteristic similarities of the nodes in the 

network and then classify them. If a network is undirected and unweighted when an edge is connected between 
two nodes, then aij = 1; otherwise, aij = 0. The degree of node i is defined as = ∑ =k Ai j
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Figure 1.  Solution structure of MOEA/D algorithm. 

Figure 2.  Solution structure of MOEA/DM algorithm. 
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For network we divide into m communities, S =​ {S1, S2, …​, Sm}, if ∀ ∈i Si, ∑ > ∑∈ ∈k ki S i
in

i S i
out

i i
, this commu-

nity is called strong sense, and community in a weak sense if ∀ ∈i Si, ∑ > ∑∈ ∈k ki S i
out

i S i
in

i i
. The above state-

ment shows that, in a strong community, each node has more connections within a community than with other 
communities in the network. In a weak community, the sum of the degrees within the rest of the community, is 
greater than the sum of the degrees within the community.

Multi-objective Optimization(MOP).  A multi-objective optimization problem is stated as follows:
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where Ω is the variable space. Ω → RF : m contains m objective functions where Rm is defined as the objective 
space. Unlike a single objective optimization problem producing one optimal solution, there are probably many, 
even infinite, solutions for problem (3). These feasible solutions are called Pareto Optimality. Let u, v ∈​ Rm. u is 
said to dominate v if for any i ∈​ {1, 2, …​, m}, ui ≥​ vi and there exists at least one j ∈​ {1, 2, …​, m} that uj >​ vj. If there 
is no point X ∈​ Ω such that X dominates X*, then X* is a Pareto optimal solution. All the non-dominated X* set is 
called Pareto Front. However, it is time-comsuming and even impossible to find the entire Pareto Front. Therefore, 
most algorithms aim to find out an even-distributed part of Pareto Front to represent the whole one.

Under certain conditions, a multi-objective optimization problem(MOP) can be decomposed into several sin-
gle objective optimization problems(SOPs). There are two types of algorithms to decompose an MOP into a group 
of SOPs. The first type is weight aggregation based decomposition approaches, a set of weight vectors are used 
to convert an MOP into a number of SOPs using a scalarization method. the weighted Tchebycheff approach27 
and the PBI approach21 are most widely used. The second type decomposes the objective space into a group of 
subspaces using a set of weight/reference vectors, which are most widely used in recent years.

The Tchebyshev method is classic and is expressed as:

λ λ= −≤ ≤
⁎ ⁎min g X f Z( , Z ) max (X) (4)

te
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where X ∈​ Ω, z* is the reference point. For i ∈​ [1, m], Zi
* =​ min fi (x). Zi

* =​ min{ fi (x)|x ∈​ Ω}, i =​ {1, 2, …​, m}. For 
each non-dominated solution x* of (3), there exists a weight vector lamda so that x* is the optimal solution of (4). 
We cannot conclude whether or not (1) the pareto front is concave and (2) the two objectives we use in this paper 
are discontinuous. When the pareto front is non-concave, the weighted sum approach does not work well, and 
that is why we choose the Tchebycheff approach.

MOEA/DM for Community Detection
Introduction of MOEA/DM algorithm.  In 2004, MOEA/D was proposed. However, we discovered there 
is a lack of diversity in the pareto front. We assume the reason for this is there may be a number of sub problems 
corresponding to the same non-dominated solutions. Therefore, we propose a MOEA/DM algorithm to reduce 
the number of sub problems and improve the probability that the solution is not the same for each sub-problem 
and corresponding optimal.

Objective function.  For an unsigned network, the degree of the node reveals the closeness between the 
nodes. Modularity density (D)28, widely used in a variety of community detection algorithms, is one of the most 
basic measurement standards that uses the degree of the node. D is defined as:
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In Eq. (5), each sum means the ratio between the difference of the internal and external degrees of the subgraph Si 
and the size of the subgraph. In the above formula, we define = ∑ ∈ ∈L A(S , S )i j i S j S ij,i j

 and = ∑ ∈ ∈L A(S , S )i j i S j S ij,i j
. 

Give a partition S =​ (S1, S2, …​, Sm) of the graph, where Si is the vertex set of subgraph Gi (i =​ 1, 2, …​, m). However, 
MOEA/D divided D into two parts as two objectives one of which is NRA (negative ratio association) and the 
other one is ratio cut (RC).
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RC is used to measure the connection density between communities and NRA is used to measure connec-
tion density within communities. If these two goals are optimized simultaneously These two objectives can be 
determined to minimize the community more closely and the internal connection between communities sparse 
connection. Given a partition S =​ (S1, …​, Sm), Si are the decision variables, and m is the scale (i.e., the number of 
decision variables) of the problem.

Encoding and decoding of discrete population position.  Proposed in the graph structure is a 
genetics-based adjacency matrix notation29, where each individual, g, of the population consists of N genes, each 
of which, takes allele values, j, in the range 1, 2, …​, N. Genes and alleles represent nodes of the graph G =​ (V, E) 
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modeling a network. Thus, a value of j, assigned to the ith gene, is then interpreted as a link between the nodes i 
and j, and, in the resulting clustering solution, the nodes are in the same cluster. The decoding of this representa-
tion requires the identification of all connected components. All nodes belonging to the same connected compo-
nent are then assigned to one cluster. A main advantage of this representation is that it is unnecessary to fix the 
number of clusters in advance, because the number of clusters is automatically determined in the decoding step. 
Figure 3 illustrates the locus-based adjacency scheme for a network of seven nodes.

Crossover.  We choose the two-point crossover, in favor of uniform crossover, because the two-point crosso-
ver better maintains effective node connections in the network. Given two parents, A and B, we first randomly 
select two points i and j (1 ≤​ i ≤​ j ≤​ N), and then everything between the two points is swapped between the par-
ents (i.e. ↔A Bk k,  ∀​ k ∈​ {k|i ≤​ k ≤​ j). An example of the operation of two-point crossover on encoding is shown 
in Fig. 4.

Combination of Evolutionary Algorithms and Membrane Structure.  The main idea of MOEA/DM 
is that object space is divided into a plurality of membrane structures and the solution of each membrane struc-
ture is initialized. Through population evolution within the membrane to screen out the best solution in each 
membrane and passed to the adjacent membrane structure. In each evolution of the membrane interior and also 
remove the worst performance of the solution. So in a sub-problem we choose the best solution is relatively more 
and to ensure that in each membrane is the best. Through a number of iterations, the solutions of each membrane 
structure is considered to be the best solutions of the sub-problem that corresponding membrane structure.

Through in comparison to the four known classification network and in two unknown classification network 
MOEA/D and MOPSO, MOEA/DM in the calculation of the cost of time is much faster than the other two algo-
rithms and also in effect superior by. The algorithm flow can be expressed as Fig. 5.

Experimental Results
In this paper, we compare, mainly in time and Q4,29 values, our proposed algorithm with one EA-based algorithm 
(MOEA/D) and one PSO-based algorithm (MOPSO). Experimental parameters are listed in Table 1. Compare 
the number of iterations of the three algorithms, those algorithms set for the 200 generation. Finally, we use the 
modularity proposed by Newman and Girvan. The modularity is defined as:
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MOEA/D algorithm.  MOEA/D uses the Pareto dominance concept to allow the heuristic to handle 
problems. The algorithm provides a simple, but efficient, way of introducing decomposition approaches into 
multi-objective evolutionary computation. A decomposition approach, often developed in the community 
of mathematical programming, is readily incorporated into EAs in the MOEA/D framework to solve MOPS. 
Because MOEA/D is better than the EA-based algorithm, we chose MOEA/D for comparison with our proposed 
algorithm (MOEA/DM) to determine the performance of time cost and Q-value.

MOPSO algorithm.  The MOPSO uses the same Pareto dominance concept to allow the heuristic to handle 
problems. However, the main difference between MOEA/D and MOPSO is the optimization strategy. Because 
MOPSO is better than the PSO-based algorithm, we chose MOPSO for comparison with our proposed algorithm 
(MOEA/DM) to determine the performance of time cost and Q-value.

Figure 3.  Encode of network. 

Figure 4.  Crossover of solution. 
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For each test instance, both MOEA/D and MOPSO were run independently 100 times on the same computer 
(Inter(R) Celeron(R)M CPU 520 machine, 1.6 GHz, 512 MB memory). The operating system is Windows 8. In 
our experiments, the following performance indexes are used. There are many parameters that can be set flexibly, 
shown on Table 1, such as the parameter that are used to store the dominant solution, that we call it niche. The 
parameter niche is used to determine the neighborhood size and influence on the performance of our algorithm. 
In order to find the best value, we run the algorithm 200 times with different niche. After a lot of experiments, 
when niche equals 13 more suitable for this algorithm. Apart from the parameter niche, the population size pop-
size, the iteration number maxgen and the cell number CellNum are also affected the results of the experiment. 
We use the method of controlling variables, and ultimately determine their values. We set the popsize equal 120, 
the gmax equal 200 and the CellNum equal 40.

Experimental results on real-world networks.  In this section, we demonstrate the MOEA/DM appli-
cation effects on five real-world networks. Of these, the dolphin social30, the American college football31, the 
Zachary’s karate club32 and the political book network found from V. Krebs are known to be true. For the Santa 
Fe Institute SFI33 and the netscience networks34 the true data classification is unknown. The characteristics of the 
networks are given in Table 2. Table 3, we reflect on the performance of Q and running time on the value of the 
data that is known to the specific classification of MOEA/DM. Table 4, we reflect on the MOEA/DM performance 
of the Q value and time cost on the two unknown exact classification data.

Comparison of algorithms on the karate network.  Karate network.  The Karate network is a social 
network analysis in the field of classical data sets. In the early 1970s, the sociologist, Zachary, took two years to 

Figure 5.  Framework of the proposed MOEA/DM. 

Algorithm

Parameters

Popsize CellNum Niche PC PM

MOEA/DM 120 40 13 1 0.06

MOPSO 100 NULL 40 1 0.06

MOEA/D 100 NULL 40 1 0.06

Table 1.   Experimental parameters.
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observe the social relations among the 34 members of an American university karate club. Based on these internal 
club members as well as external exchanges, he constructed the social relations between members of the network 
consisting of 34 nodes. An edge between two nodes means that between the corresponding communities at least 
two members frequent exchanges of friends.

In Fig. 6(a), we show the true situation of the clustering karate network, In Fig. 6(b) we present the results 
of the clustering algorithm, MOEA/DM. In Fig. 6(b), MOEA/DM is divided into four categories: the top part is 
divided into two categories and the bottom part also divided into two parts. In Fig. 6(a), Point 10 (red) belongs 
to the real structure (upper part). According to our prediction, Point 10 (blue) should belong in the predicted 
structure (lower part) shown in Fig. 6(b). Other papers designate points (such as Point 10) as fussy nodes, i.e., it 
can be either classified to the first cluster or to the second one.

In the classification process, because points have just two edges to connect two different categories, points 
(such as Point 10) are divided into two parts. Although we used four categories (rather than two), we correctly 
divided the network.

Table 3 shows that, although the performance value index, Q, for our MOEA/DM is consistent with the values 
for MOEA/D and MOPSO, the time value for MOEA/DM is superior to the times for MOEA/D and MOPSO.

Comparison of algorithms on the dolphin network.  Dolphin network.  In New Zealand’s life habits of 
62 bottlenose dolphins, Lusseau30 found the dolphin’s interaction with a specific pattern, and constructed a social 
network containing 62 nodes. This dolphin network is naturally separated into two large groups: female and male. 
In Fig. 7(a), we show the true situation of the clustering dolphin network, In Fig. 7(b) we present the results of the 
clustering algorithm, MOEA/DM. In Fig. 7(b), MOEA/DM is divided into four categories: the top part is divided 
into two categories and the bottom part also divided into two parts.

Table 3 shows that, in terms of the Q value, MOEA/DM’s performance is the same as that for MOPSO, and 
both (MOEA/DM and MOPSO), in terms of Q value, perform better than MOEA/D. However, as indicated in 
Table 3 and shown graphically in Fig. 8, in terms of running time, MOEA/DM has the advantage that its running 
time is substantially less than half that of MOPSO.

Comparison of algorithms on the football network.  Football network.  When Jantonio Turner31 
wanted to find more football highlights and discovered that no other all-football channel existed, he founded the 
football network in August, 1996. He was first mentored by Sheldon Altfeld, who had launched his own channel 
and who by then was giving seminars to entrepreneurs who wished to begin their own networks.

The network is divided into twelve categories as shown in Fig. 9(a). Figure 9(b) shows the classification results 
after using the MOEA/DM algorithm. A comparison of Fig. 9(a) with Fig. 9(b) shows that the football network 
has a more complex structure than the Dolphin and Karate networks. In the football network, nodes belong to the 

Network

Parameters

Vertex Edge Real Clusters

Karate 34 78 2 3

Dolphin 62 159 2 3

Football 115 613 12 12

Polbooks 105 882 3 8

SFI 118 200 unknown 13

Netscience 1589 2742 unknown 35

Table 2.   Network Properties.

Network

MOEA/D MOPSO MOEA/DM

Q Time(s) Q Time(s) Q Time(s)

Karate 0.4198 91.444 0.4198 216.901 0.4198 67.314

Dolphin 0.521 160.596 0.5265 548.290 0.5265 112.845

Football 0.6044 253.406 0.6033 1035.080 0.6046 174.158

Polbooks 0.5269 231.089 0.3600 990.917 0.5269 165.830

Table 3.   A comparison of the data on the classification.

Network

MOPSO MOEA/DM

Q Time(s) Q Time(s)

SFI 0.7484 1683.24 0.7486 197.2360

Netscience 0.9503 26790.3 0.9518 578.2089

Table 4.   Comparison of the data on the unknown.
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same classare relatively decentralized. The real network structure, shown in Fig. 9(a), and our predicted network 
structure, shown in Fig. 9(b), have the same number of categories. From Fig. 9(b) we extracted the three catego-
ries on the right and placed them in Fig. 9(c). The three categories in Fig. 9(c) appear to classify the wrong point. 
The point that marked 58, 29 and the 43, 37, 91 be divided into the wrong position. An analysis of these points 
reveals that a characteristic they have in common is connecting to other classes is more prevalent than connecting 
to the edges of their own classes. The MOPSO algorithm divides the network into a like category, but more than 
10 points are incorrectly placed.

Table 3 shows that, in terms of the Q value, MOEA/DM’s performance is better than MOEA/D and MOPSO. 
As indicated in Table 3 and shown graphically in Fig. 8, in trems of running time, MOEA/DM has the advantage 
that its running time is substantially less than half that of MOPSO.

Comparison of algorithm on the polbooks network.  American political book network.  The American 
political book network, based on American political books, is a network of V. Krebs, which has been established 
on Amazon’s online bookstore. Network edges represent that more readers bought two books simultaneously. 
This information is obtained from the purchase of books on the web page provided by the “purchase of the book’s 
readers also buy books.” At the same time, according to the point of view and evaluation of the readers of the 
Amazon books, Mark Newman divided the node types into three categories: “free,” “conservative,” and “centrist.”

Figure 6.  Clustering results on Karate club network by MOEA/DM. (a) The real structure of Karate network. 
(b) The prediction structure of Karate network detected by MOEA/DM.
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The network is divided into three categories as shown in Fig. 10(a). Figure 10(b) shows the classification 
results after using the MOEA/DM algorithm. A comparison of Fig. 10(a) with Fig. 10(b) shows that the political 
network has a more complex structure than the Football networks. In the political network, nodes belong to the 
same classare relatively decentralized. MOEA/DM divides the network into eight category and the part that the 
color mark red, have divides 9 points are incorrectly placed. The category that color marks blue, have divides four 
major sub category the color mark orange, green, pink and yellow.

Table 3 shows that, in terms of the Q value, MOEA/DM’s performance is the same as that for MOEA/D, and 
both (MOEA/DM and MOEA/D), in terms of Q value, perform better than MOPSO. However, as indicated in 
Table 3 and shown graphically in Fig. 8, in terms of running time, MOEA/DM has the advantage that its running 
time is substantially less than MOEA/D.

Experimental results on unknown networks.  The SFI34 network represents 271 scientists in residence 
at the Santa Fe Institute, Santa Fe, NM, USA, during any part of calendar year 1999 or 2000, and their collabora-
tors. An edge is drawn between a pair of scientists if they coauthored one or more articles during the same time 
period. The biggest component of the SFI graph consists of 118 vertices and we only do experiments on this part. 
Figure 11 show the result of the MOEA/DM. From the picture, the network be divided into twelve category and 
MOPSO divided into eight category. From the Table 4, the Q value result from MOEA/DM better than the result 
from MOPSO and the time cost less than MOPSO.

Figure 7.  Clustering results on Dolphin club network by MOEA/DM. (a) The real structure of Dolphin 
network. (b) The prediction structure of Dolphin club network detected by MOEA/DM.
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Figure 11 illustrates the results from the algorithm, MOEA/DM, and compare with the MOPSO. In Fig. 11, 
it very clearly that MOEA/DM splits the network into eight communities, with the same network the algorithm 
that MOPSO splits network into eight. From the top of Fig. 11 to the bottom, category at the top represents a 
group of scientists using agent-based models to study problems in economics and traffic flow we shows with 
the color blue. The second category represents a group of scientists working on mathematical models in ecology 
we shows with the color red. The third category which made up of four parts, the color in the picture is red, 
yellow, green, blue, represents a group of scientists working primarily in statistical physics. The two algorithm 
subdivide this group into four small ones. At the bottom of the figure is a group working primarily on the 
structure of RNA.

Concluding remarks
This study introduced an algorithm that combines membrane structure and an evolutionary algorithm, MOEA/
DM. In the process of studying the MOEA/D algorithm, it is found that a non-dominated solution corresponds 
to multiple sub problems. MOEA/DM algorithm, mainly in the number of sub problems and the corresponding 
solution of each sub problem, improves the number of solutions of one sub problem by trying to reduce the 

Figure 8.  Comparison of three algorithms in time cost. 
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number of sub problems and the addition of film structure to try to ensure that each sub problem has a different 
number of solutions. Through experiments in the real network, it is found that this improvement has a certain 
effect. The following is a summary of the three improvements of MOEA/DM:

1.	 The diversity performance of the proposed algorithm is high because it places the target space on the aver-
age weight vector, and the membrane structure is divided into several parts.

2.	 The time efficiency of the proposed algorithm is higher than those of MOEA/D and MOPSO because the 
average algorithm to target by the proposed algorithm is divided into several parts: a few particles within 
the membrane of the evolutionary algorithm.

3.	 The effect of the proposed algorithm is better than those of MOEA/D and MOPSO, and spends much less 
time.

Figure 8 illustrates that MOEA/DM has a great advantage in running time. Nevertheless, the results of the 
experiment in a real network indicate that although MOEA/DM rapidly and accurately locates the real commu-
nity, it inevitably produces errors in terms of the community number. If a corresponding estimate of the network 
category is obtained, then the effect is better. In addition to the category of problems, we also determined that 
certain points (known as the concepts of point classification) still present a high probability of error. Such results 
are usually generated in the connection between two communities with the same side. If the two goals can be 
optimized, better results may be obtained.

Figure 9.  Clustering results on Football club network by MOEA/DM. (a) The real structure of Football 
network. (b) The prediction structure of Football network detected by MOEA/DM. (c) The apart of (b).
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It is anticipated that the proposed algorithm for complex network clustering can be applied to the field of 
bioinformatics, such as Disease Gene network35–37, DNA binding protein network identification38,39, protein 
remote homology detection40, etc. It is of interests to consider machine learning methods41–45 for network clus-
tering. Recently, spiking neural network models, see e.g. refs 46–48 particularly the ones with-self organiz-
ing49,50 have been a hot topic in the field of machine learning, it is expected to obtain interesting result with this 
new powerful model.
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