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When storing multiple objects in visual working
memory, observers sometimes misattribute perceived
features to incorrect locations or objects. These
misattributions are called binding errors (or swaps) and
have been previously demonstrated mostly in simple
objects whose features are easy to encode
independently and arbitrarily chosen, like colors and
orientations. Here, we tested whether similar swaps can
occur with real-world objects, where the connection
between features is meaningful rather than arbitrary. In
Experiments 1 and 2, observers were simultaneously
shown four items from two object categories. Within a
category, the two exemplars could be presented in
either the same or different states (e.g., open/closed;
full/empty). After a delay, both exemplars from one of
the categories were probed, and participants had to
recognize which exemplar went with which state. We
found good memory for state information and exemplar
information on their own, but a significant memory
decrement for exemplar–state combinations, suggesting
that binding was difficult for observers and swap errors
occurred even for meaningful real-world objects. In
Experiment 3, we used the same task, but in one-half of
the trials, the locations of the exemplars were swapped
at test. We found that there are more errors in general
when the locations of exemplars were swapped. We
concluded that the internal features of real-world
objects are not perfectly bound in working memory, and
location updates impair object and feature
representations. Overall, we provide evidence that even
real-world objects are not stored in an entirely unitized
format in working memory.

Introduction

Working memory is a limited capacity system
(Cowan, 2001; Miller, 1956) used to actively maintain
and work with the information necessary for our

current goals and tasks (Baddeley, 1986; Baddeley &
Hitch, 1974). However, it is unclear what the nature
is of the representations stored in visual working
memory. Most early work suggested that information
about entire objects is represented in intrinsically
holistic, totally bound units, with all features stored
or forgotten together (Cowan, Chen, & Rouder, 2004;
Kahneman, Treisman, & Gibbs, 1992; Lee & Chun,
2001; Luck & Vogel, 1997; Luria & Vogel, 2011;
Treisman, 1999; Vogel, Woodman, & Luck, 2001; Xu,
2002; Xu & Chun, 2006); however, since those studies
were undertaken, many other studies have provided
evidence that there is—either also or instead—relatively
independent feature storage (see Brady, Konkle, &
Alvarez, 2011, for review; ; Bays, Catalao, & Husain,
2009; Bays, Wu, & Husain, 2011; Fougnie & Alvarez,
2011; Fougnie, Cormiea, & Alvarez, 2013; Markov,
Tiurina, & Utochkin, 2019; Pertzov, Dong, Peich, &
Husain, 2012; Shin & Ma, 2017; Wang, Cao, Theeuwes,
Olivers, & Wang, 2017; Wheeler & Treisman, 2002).

In the foundational study about this issue, Luck
and Vogel (1997) claimed that only objects, not
features, limit the capacity of visual working memory,
because they found no decrement in performance with
additional features per object, even within the same
dimension. Luck and Vogel (1997) suggested, therefore,
that unlike in perception, where illusory conjunctions
occur and features seem to be unbound to some extent
(Treisman, 2006), unitized objects are the “units” of
visual working memory. This finding was in line with
the “strong” object hypothesis, which claims that visual
working memory is limited only by a number of objects
and that features play no role in working memory
limits and are only forgotten when entire objects are
forgotten. However, further research provided evidence
against this “strong” object view: multiple features from
the same dimension cannot be stored without cost,
even if they are on the same objects (Olson & Jiang,
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2002; Wheeler & Treisman, 2002); detecting changes
that require binding is harder than detecting changes
that do not (van Lamsweerde, et al. 2015); additional
resources are needed for keeping bound features in
memory (Fougnie, Asplund, & Marois, 2010; Fougnie
& Marois, 2009); features can independently fade from
memory (Fougnie & Alvarez, 2011; Fougnie, Cormiea,
& Alvarez, 2013); and memories for different sensory
dimensions rely on independent storage capacities
(Markov et al., 2019; Wang, Cao, Theeuwes, Olivers,
& Wang, 2017). Thus, although the early evidence
was mixed on this issue, it is now clear that for simple
stimuli like colors and orientations, items in working
memory are not inherently represented in a solely
object-based, unitized manner (e.g., Cowan et al., 2013;
Park et al., 2017). Although participants can maintain
the binding between features (at least partially by using
location as a cue), this is not because the objects are
themselves stored in a single holistic representation that
by necessity is encoded and forgotten in an all-or-none
manner, as suggested by early work; instead, features
rely on distinct capacities, accumulate independent
noise, and can be lost independently.

One result of this is that, similar to perceptual
illusory conjunctions, binding errors also occur in
visual working memory studies (Bays, 2016; Bays,
Catalao, & Husain, 2009; Bays, Wu, & Husain, 2011;
Dent & Smyth, 2005; Emrich & Ferber, 2012; Pertzov
et al., 2012), and this occurs even though these studies
use displays where such errors are unlikely to have
perceptual origins (e.g., for a set of four objects the
percentage of binding errors is approximately 10%; see
Bays et al., 2009; Emrich & Ferber, 2012). This finding
suggests that memory representations are also prone to
the binding problem, at least in circumstances where
location noise is considerable (Oberauer & Lin, 2017).
Thus, the evidence suggests that both the binding of
features within an object and the binding to location of
objects are often imperfect in visual working memory.

Are real-world objects likely to be
stored holistically in visual working
memory?

Existing studies have almost exclusively tested simple
objects with features that are easy to manipulate in
experiments (geometrical shapes with various colors,
orientations, etc.). There is very little research examining
the storage of real-world objects in visual working
memory. In comparison with the simple objects that
are usually used in standard visual working memory
tasks, real-world objects have many more features, both
visual and semantic. and the connections between these
features are meaningful rather than arbitrary. Although

simple features (e.g., color and orientation) each have
somewhat or complete independence in their underlying
storage capacity (Markov et al., 2019; Wang et al., 2017)
and are in some cases even represented by separate
neurons or structures (Conway, 2009; Paik & Ringach,
2011), the complex features of real-world objects are
not nearly as separable from each other as basic visual
features like color and orientation, at least in terms
of their visual properties: a cabinet being “open”, for
example (rather than “closed”), results in changes to
spatial frequency, color, orientation, shape, and many
other visual aspects of the object. Thus, one possibility
is that real-world objects are stored in memory in
a way that is effectively unitized—that, rather than
distinct features being encoded and lost separately, and
requiring effort or resources to bind, the objects are
stored and remembered in a wholly all-or-none manner.

There are several bodies of work from outside of
visual working memory that are consistent with this
possibility and that can be interpreted as predicting that
object memories should be holistic and all-or-none. For
example, a large body of work looking at ventral visual
processing shows that the individual low-level features
that make something an object (e.g., a mug)—the curves
and colors and spatial frequencies—are untangled
during visual processing into a more general mug
representation as processing proceeds to higher level
visual areas (DiCarlo, Zoccolan, & Rust, 2012). Thus,
unlike low-level features with arbitrary bindings, there
are preexisting mid- and high-level representations of
many aspects of real-world objects that could be used
for working memory storage, perhaps suggesting that,
if memory relies on such high-level representations,
memory should consist of a relatively unitized object
representation (e.g., a mug representation), rather than
separable memories for separate properties of objects.
Indeed, some studies on cortical representation of
objects argues in that the medial temporal lobe as well
as more ventral visual regions, objects (Erez, Cusack,
Kendall, & Barense, 2016) or structured scenes or
events (e.g., van den Honert, McCarthy & Johnson,
2017) are represented holistically; that is, that brain
responses cannot be explained by the sum of the
component stimuli or features alone (Erez et al., 2016).
This hypothesis has been used to argue that a central
feature of building more complex object and scene
representations—and holding them in memory—is
a holistic representation (e.g., van den Honert et al.,
2017) that does not rely simply on the similarity of the
underlying feature representations but goes beyond
these to novel, unitized representations designed to
prevent confusions of similar items.

In addition to the question of binding, there are
also other pieces of evidence consistent with the idea
that participants store real-world objects differently
than simpler objects, which could result in qualitatively
distinct representations. For example, real-world
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objects, compared with simple stimuli, allow access to
significant additional information (e.g., the real size
of the objects: Konkle & Oliva, 2012; Long, Konkle,
Cohen, & Alvarez, 2016; Long, Moher, Carey, &
Konkle, 2019; expected nearby objects and their spatial
position: Kaiser, Stein, & Peelen, 2015); O’Donnell,
Clement, & Blockmole, 2018, and people can have
specific expertise with certain object categories (Curby
& Gauthier, 2007; Curby, Glazek, & Gauthier, 2009;
Janini & Konkle, 2019; Xie & Zhang, 2017), all of
which may be used to enhance working memory. In
fact, several studies have shown that the capacity of
visual working memory for real-world objects differs
from that of simple stimuli, in particular being less
fixed and more dependent on the particular stimuli used
and how much meaningful information about them
can be processed (Asp, Störmer & Brady, 2019; Brady,
Störmer, & Alvarez, 2016). For example, Brady et al.
(2016) showed a boost in performance for real-world
objects that was attributable to more active storage
in visual working memory, consistent with a theory
where additional high-level information about such
objects, perhaps in the ventral stream, is maintained in
working memory in addition to low-level information.
Some recent studies (Li, Xiong, Theeuwes, & Wang,
2020; Quirk, Adam, & Vogel, 2020) instead found
no difference between storing simple features and
real-world objects in visual working memory, but these
results were likely due to a lack of control for similarity
between targets and foils in the color versus real-world
object tasks (Brady & Störmer, 2020; Brady & Störmer,
in press). With better control for target–foil similarity
(Brady & Störmer, 2020), real-world objects result in
significantly better performance compared with simple
features (Brady & Störmer, 2020; Brady & Störmer, in
press).

Altogether, then, there is significant evidence that
real-world objects differ from simple stimuli in working
memory and there are reasons to believe that real-world
objects may be stored in a more holistic manner
because they depend on more high-level representations
that have been argued to be based on unitized object
representations. Are real-world objects, then, stored
in a unitized, all-or-none format in visual working
memory? Or can different features of such objects be
lost independently, or misbound?

This subject has been largely unaddressed to date.
In fact, there are only a few studies that have used
real-world objects to investigate binding in visual
working memory, and this work has been done mainly
in the context of object–location binding (e.g., Lew
& Vul, 2015; Pertzov et al., 2012). In such tasks,
researchers test memory for item identities and for
their locations. In such object–location tests, memory
failures can come from forgetting objects, forgetting
locations, or forgetting which object was in which
location. Because it is widely believed that objects and

Figure 1. Example of two different exemplars in two different
states.

locations are stored relatively independently, even for
realistic objects (e.g., ventral and dorsal pathways;
Haxby et al., 1991; Mishkin & Ungerleider, 1982), it is
perhaps not surprising that such independence has been
found in such studies. However, whether the object’s
internal features are themselves stored in a holistic,
bound representation is not considered within the scope
of this existing object–location binding research.

The question of whether real-world objects are stored
in bound units has, however, been previously addressed
in the studies of visual long-term memory (Balaban,
Assaf, Arad Meir, & Luria, 2020; Brady, Konkle,
Alvarez, & Oliva, 2013; Spachtholz & Kuhbandner,
2017; Utochkin & Brady, 2020). These studies have
largely found evidence supporting a “weak” object
view; what Olson and Jiang (2002) used to designate
representations that are somewhat bound—that is,
people know which features went with which others to
some extent—but that are not intrinsically all-or-none
representations, and certainly not totally holistic
representations (as in Luck & Vogel, 1997).

For example, Brady et al. (2013) showed that
information about an object’s color is forgotten faster
than information about the state the object was in
(whether the cucumber was whole or sliced; whether the
book was open or closed; Figure 1). Furthermore, they
showed forgetting is independent for information about
object state and information about the specific object
exemplar (whether I saw this or that cucumber; or this
book or that one; see Figure 1). In other words, Brady
et al. showed that the features of real-world objects can
be forgotten independently. This finding is consistent
with the demonstrations of independent forgetting
of simple features in working memory (Fougnie &
Alvarez, 2011; Fougnie, Cormiea, & Alvarez, 2013),
and suggestive that the representation of real-world
objects, at least in long-term memory, is higher level;
that is, that information about state and exemplar are
encoded distinctly. In their recent work, Utochkin
and Brady (2020) tested other predictions that derive
from the idea of independent storage of real-world
object features in long-term memory. In particular,
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they demonstrated that people often commit “swap”
errors, when they show good memory for both which
exemplars and which object states they have seen, but
frequently choose an incorrect combination of the
exemplar and the state. In particular, Utochkin and
Brady (2020) asked participants to remember different
exemplars from the same category presented in the
same state (e.g., two different coffee mugs, both empty)
or in different states (e.g., two different coffee mugs,
one empty and one full). They found that participants
had good memories for the states and exemplars
alone, but when the two exemplars had been seen in
different states, participants were at chance in correctly
matching which state went with which exemplar, often
reporting swapped states for the two exemplars. Thus,
Utochkin and Brady (2020) concluded that state and
exemplar information are represented independently,
rather than in an all-or-none, holistic representation
in long-term memory—rejecting the “strong” object
claim and casting doubt on even “weak” object-based
representations in favor of largely independent storage
of high-level object properties like exemplar and state.

Although this work argues for extremely independent
representations, other work provides evidence in
favor of at least a “weak” object-based view, that is,
representations that are dependent between features,
even if not all-or-none or holistic. For example, Balaban
et al. (2020) argued that there is a dependence between
different features of objects in long-term memory,
and that at minimum state information cannot be
stored without storing the exemplar information, so
that exemplars and states are stored in a hierarchical
structure or some other form of dependence between
them is present. However, the hierarchical structure
is not consistent with strong, holistic all-or-none
object-based views and leaves the nature of the
dependence unclear.

This evidence of at least partially independent
long-term memory storage of different features of
real-world objects leads to important questions about
the representation of these objects in working memory.
Are high-level properties of these objects (like object
state vs. object exemplar) more holistic and integrated
when stored in working memory, which may rely more
on sustained perceptual activation in high-level visual
areas than does long-term memory? Many accounts
of working memory suggest that working memory is
more focused on the storage of perceptual features
per se, rather than semantic features, suggesting that
items are stored in a more perceptual format in working
memory than long-term memory (e.g., Baddeley, 1966).
As applied to visual working memory, this account
would suggest that even real-world objects might be
stored solely as perceptual features. This account
would be broadly consistent with models of visual
working memory that argue memory storage occurs
sustained activity in sensory visual cortex; that is,

even real-world objects are stored in terms of their
colors and shapes and orientations, not in terms of
semantically meaningful object features (e.g., Harrison
& Tong, 2009; Serences, Ester, Vogel, & Awh, 2009; for
review, see Serences, 2016). If this is the case—that
visual working memory is strictly perceptual—then
nearly all high-level changes to real-world objects
(like a change of the state or exemplar) would be
expected to appear strongly bound in this memory
system, because almost any change in either dimension
would change the color, shape, orientation, and so
on. By contrast, because distinguishing between two
different states or poses of an object, and between two
different exemplars of the same object category are
two common and important tasks that we perform
every day in the context of real-world objects, if objects
are stored in more meaningful representations, rather
than purely as perceptual features, they could appear
quite independent. Indeed, this would be consistent
with some evidence that the inferior temporal cortex,
where objects are likely to be represented in richer ways
(e.g., via parts) is involved in visual working memory
(Fiebach, Rissman, & D’Esposito, 2006; Li, Miller, &
Desimone, 1993; Miller, Erickson, & Desimone, 1996;
Ranganath, DeGutis, & D’Esposito, 2004), and with
suggestions that visual working memory involves more
abstracted representations in parietal cortex rather than
low-level sensory representations (e.g., Xu, 2017). Thus,
to some extent the question of how bound they are
in working memory is a question about the nature of
visual working memory storage for real-world objects
more generally.

In addition, if we consider working memory
representation as a precursor for consolidation
into long-term memory, then it could be that the
independent long-term memory storage of such
high-level features like object state and object exemplar
could plausibly be accounted for by limited binding in
working memory. Utochkin and Brady (2020) briefly
addressed this issue using a short-term memory version
of their exemplar–state memory task. However, their
task was extremely straightforward, with only two
objects to remember, and thus did not load working
memory capacity in the ways that are known to cause
more misbinding reports for simple stimuli and basic
features (Bays et al., 2009, 2011; Emrich & Ferber, 2012;
Pertzov et al., 2012).

Thus, in the current study, we tested the boundedness
of real-world object representations in visual working
memory using a relatively high-load task requiring
participants to remember four items presented
simultaneously, akin to standard visual working
memory studies with simple stimuli (e.g., Luck &
Vogel, 1997). As the possibly independent features of
real-world objects, we rely on the previous long-term
memory work showing that the visual or semantic
features people use to recognize which state or pose
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an object is in (e.g., was the cup full or empty; was the
cabinet open or closed) can be forgotten or represented
independent of the features people use to distinguish
which exemplar of a category they have seen (which
cabinet did I see; which mug did I see), as in Utochkin
and Brady (2020). Note that although we refer to state
and exemplar as object properties, they are not like the
simple features of color and orientation often used in
working memory tasks. Instead, as noted elsewhere in
this article, the visual features used to discriminate them
are likely quite complex and different kinds of state
changes (i.e., different ways the pose or configuration of
an object could be changed) may rely on different visual
or semantic features. However, distinguishing between
two different states or poses of an object, and between
two different exemplars of the same object category
are both common and important tasks that need to
be regularly performed with real-world objects. Thus,
in the present work we focus on these dimensions and
ask whether these two aspects of objects are stored in
a unitized format in visual working memory. Thus, in
all experiments, our participants performed different
modifications of the exemplar–state task. This task
required participants to report the state (open/closed,
full/empty, etc.) of each of two exemplars from the same
category that were presented in the working memory
display. The idea of this double recognition test was to
dissociate exemplar memory and state memory alone
from memory for exemplar–state conjunctions (e.g.,
binding). In Experiments 1 and 2, we asked whether
observers are more accurate with exemplar and state
memory alone than their conjunction. In Experiment
3, we tested how this relates to spatial location, that is,
whether observers might separately update the location
of two features when the object moves spatial locations
(with only a single feature staying attached to an old
location).

Experiment 1

In Experiment 1, we asked participants to remember
four objects in visual working memory: two exemplars
from two object categories. The two exemplars from
each category could be shown in either the same state
or different states. At test, both items of a single
category were probed and observers had to recognize
the states in which each of the exemplars of that
category had been presented. If the information used
to discriminate exemplars and the information used to
discriminate states are represented in memory in a fully
unitized, all-or-none format, we should not observe any
differences between the performance of remembering
objects in same or different states, because each object
would be self-contained, with the features perfectly
bound. However, if representations of real-world
objects are not unitized and holistic, we anticipate

that swap errors could occur between the features of
objects (e.g., a mug that was full gets reported as empty
because the other mug was empty). Thus, if there is
independence in the representation of the features of
the objects we predict worse performance for objects
presented in different states compared with objects
where the two items from the same category are in the
same state.

The experiment included two tasks. In the exemplar–
state task, we evaluated both whether participants knew
which exemplar was in which state (state–exemplar
conjunctions), and also whether participants knew
whether the two objects had been in the same state
or different states than each other (an index of state
memory independent of binding). We also measured
memory for exemplars alone in a separate exemplar task.
Here, participants had to remember two exemplars from
two categories (four items in total), but rather than them
differing in states and participants needing to recognize
the states, instead the test pitted these two previously
seen exemplars against two new exemplars from the
same category. This task helps to dissociate poor
memory for exemplars alone from genuine swap errors.

Method

Participants
Twenty psychology students from the Higher School

of Economics, 19 female, age, 18-22 years, M = 18.8,
took part in the experiment for course credit. All
participants reported having normal color vision,
normal or corrected-to-normal visual acuity, and no
neurological problems. Before the beginning of the
experiment, they signed an informed consent form. The
sample size was estimated using G*Power 3.1.9.2 (Faul,
Erdfelder, Lang, & Buchner, 2009). Our sample size
was based on previously reported samples in a similar
study of exemplar–state memory (Brady et al., 2013;
Utochkin & Brady, 2020)–—15 to 20 participants in
one group. The planned sample size also included a few
extra participants taking into account the possibility
of technical problems or poor performance in some
participants. With this sample size, we are able to
detect η2 equal to 0.08 (for repeated measures analysis
of variance [ANOVA]) and Cohen’s d’s equal to 0.7
(two-tailed t test) with an α of 0.05 and power (1–β)
of 0.8. This is smaller than the effect size reported by
previous studies investigating binding errors in visual
working memory and visual long-term memory (Bays
et al., 2009; Emrich & Ferber, 2012; Pertzov et al., 2012;
Utochkin & Brady, 2020), which ranges from 1.1 to 1.9
(Cohen’s dz).

Apparatus and stimuli
The experiment was developed and presented via

PsychoPy (Peirce et al., 2019) for Linux Ubuntu. Stimuli



Journal of Vision (2021) 21(3):18, 1–24 Markov, Utochkin, & Brady 6

were presented on a standard CRT monitor with a
refresh frequency of 75 Hz and 1,024 × 768-pixel spatial
resolution. Stimuli were presented on a homogeneous
white field. Participants sat approximately 47 cm from
the monitor. From that distance, the screen subtended
approximately 42.4° × 32.5° of visual angle.

Three image sets were used in the experiment. For
the exemplar task, we used the image set from the study
by Konkle, Brady, Alvarez, and Oliva (2010) including
more than 360 categories with 2 to 16 exemplars per
category. We selected 120 object categories for the
exemplar task. For the exemplar–state task, as the
items that tested, we used the image set from the study
by Brady et al. (2013; also used by Utochkin & Brady,
2020). It contained 120 unique object categories and
each category contained two exemplars (e.g., two
different books, Figure 1) and each exemplar was
represented by two different states (e.g., open books and
closed books, Figure 1). For the items that served as
distractors on each trial (e.g.., that were not tested), we
created a new image set consisting of 60 categories not
overlapping with the categories from Brady et al. (2013)
and the categories used in the exemplar task. This
image set had the same exemplar–state organization as
that of Brady et al. (2013), yet not all categories always
had the full set of exemplar and state instances. It was
sufficient to have at least one exemplar in one state and
another exemplar in a different state, so they could be
used as learned but not tested items in different states
shown together with two subsequently tested items.
For studied but not tested items shown in the same
states, we used 60 additional categories from Konkle et
al. (2010) not overlapping with those 120 used for the
exemplar task (two exemplars were drawn from each
category).
Sample and test displays: Each to be remembered
set (sample) contained four items, each presented at
approximately 6.22° × 6.22° of visual angle. The centers
of the images laid on an invisible circle with radius
10.3°. The only parameter defining the position of each
object was the rotational angle on the imaginary circle.
These angles were chosen randomly for each object in
each trial with the only restriction that the minimum
distance between the centers of any two objects was
30° of rotation. This was done to avoid overlap or
clustering between the objects. Two items in the sample
were always drawn from one object category and the
other two objects were drawn from a different category
(Figure 2). At test, two locations corresponding with
the centers of two originally presented items—always
of the same category—were marked by dots. At 3.3° to
the right and to the left of each dot, two images were
presented. One of the images at each dot was the exactly
the item presented at that location in a sample and
another item was always a foil item not presented in the
sample. Therefore, one and only one correct answer was
present at each probed location and participants had to

Figure 2. The time course of typical trial in Experiment 1 in
(A) the exemplar–state task and (B) the exemplar task. In both
tasks, participants had to remember all four initial objects as
accurately as possible. Then, after a delay, they had to perform
two simultaneous two-alternative forced choice memory tests,
picking the correct item at each spatial location. In the
exemplar–state task, this meant picking the correct state for
each exemplar. In the exemplar task, this meant picking the
correct exemplar in each spatial location.

make two simultaneous two-alternative forced choice
judgments. By presenting both tests simultaneously, we
decrease the possibility that swap errors arise simply
because participants retrieve the wrong exemplar, by
making it completely explicit that there are two different
relevant items that must be independently remembered.

Procedure
The experiment contained two tasks, the exemplar–

state and exemplar tasks. The order of the tasks was
counterbalanced across participants. During testing,
participants were instructed to repeat a syllable “ba”
aloud at a rate of about 3 Hz to diminish verbal
encoding of stimuli. An experimenter was present in
the testing room during the entire experiment and
monitored whether the participants followed the
instruction to pronounce the syllable.
Exemplar–state task: In each trial, two exemplars from
two object categories were presented for 3 seconds
(e.g., nail polish A opened, nail polish B closed,
cooler A closed, and cooler B closed, Figure 2A). This
sample display was followed by a 1-second retention
interval (blank screen) and then the test screen was
presented. Each of the two probed locations contained
two possible states of the same exemplar, exactly the
exemplar originally presented at that location in the
sample (nail polish A opened vs. nail polish A closed
at one location; nail polish B opened vs. nail polish B
closed at another location, Figure 2A). Participants had
to choose the correct state for each exemplar (double
two-alternative forced choice). Exemplars of both
the subsequently tested and subsequently not-tested
category could be presented in either the same states or
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in different states. There were 60 trials with exemplars
from a tested category presented in the same states
and 60 with exemplars from the tested category in
different states. Whether the nontested exemplars
were presented in the same or different states was
manipulated orthogonally to the state manipulation
of the tested items. Because the participants did not
know in advance which exemplars would be tested
and because any categorical pair of objects had an
equal chance to appear in the same or different states,
our participants needed to remember all four items.
For each tested category, exemplars were presented in
the same states to one-half of the participants and in
different states to another one-half of the participants.
Exemplar task: The procedure of the exemplar task was
similar to that of the exemplar–state task in terms of
display structure and time course. The main difference
was that two items from the same category were always
presented in the same state, and the foil items at test
were new exemplars from the same category rather than
different states of old exemplars. Therefore, on each
trial, observers had to pick a single exemplar at each
probed location (Figure 2B). There were 60 trials in the
exemplar task.

Data analysis
We estimated the overall accuracy (the total number

of correctly chosen items) in both the exemplar–state
and the exemplar tasks. Report accuracy in the
exemplar task was used as a measure of memory for
exemplars. Report accuracy in the two conditions of the
exemplar–state task was used to estimate the memory
for exemplar–state conjunctions. Finally, to estimate
state memory, we compared how often the participants
reported both items as being in the same states when
the studied items had been presented in the same states
compared with the trials when the studied items had
been presented in different states. This logic was similar
to that used by Utochkin and Brady (2020).

We also estimated how often the reported states
matched their exemplars in the exemplar–state task.
There were three possible outcomes: both correct, one
correct, and none correct. If real-world objects are
stored in a fully holistic form, we should not observe
any difference between these three outcomes as a
function of the condition in the exemplar–state task.
However, if the features underlying exemplar and
state discrimination are stored in some way that is
nonholistic, and thus somewhat independent, we should
observe an increase in the number of no correct answers
for the different states condition, with a concurrent
decrease in the number of both correct answers.

The standard frequentist and Bayesian t tests
were performed. The Bayesian t-test is a direct way
to estimate evidence for H1 against H0 (Rouder,
Speckman, Sun, Morey, & Iverson, 2009). The Bayes

factor (BF10) was calculated using JASP 0.9.0.0 (JASP
Team, 2018; Wagenmakers et al., 2017) and interpreted
using the standard Jeffreys, 1961. Theory of probability
(3rd ed.), Oxford University Press, Oxford. The Cauchy
distribution with a width of 0.707 was used as a prior
distribution of effect sizes under H0. A Bonferroni
correction was made for multiple comparisons in
calculating the statistical significance level.

Results

Overall accuracy
A one-way repeated-measure ANOVA was run to

compare the total accuracy between the exemplar task
and the two conditions of the exemplar–state tasks
(same states vs. different states). We found a substantial
effect, F (2,18) = 28.99, p < 0.001, BF10 > 105, η2 =
0.604, Figure 3A. Comparisons between the exemplar
task and two conditions of the exemplar–state tasks
found differences between all three. The accuracy of
exemplar recognition, M = 0.86, was higher than
the accuracy of state recognition when the objects
were presented in same states, t(19) = 2.924, p =
0.009, Bonferroni corrected α = 0.017, BF10 = 5.749,
Cohen’s d = 0.654, and when they were presented in
different states, t(19) = 7.702, p < 0.001, Bonferroni
corrected α = 0.017, BF10 > 105, Cohen’s d = 1.722.
Most important, the accuracy of reporting correct
exemplar–state conjunctions, M = 0.81, was greater in
trials when two exemplars were presented in the same
states compared with trials when they were presented in
two different states,M = 0.74; t (19) = 4.772, p < 0.001,
Bonferroni corrected α = 0.017, BF10 = 216, Cohen’s d
= 1.067, Figure 3A.

State memory
The percentage of time participants choose two

responses in the same states is our index of state
memory. We found that participants did so more
often when the objects had actually been presented in
the same states compared with when they had been
presented in different states, same states: M = 0.72,
different states: M = 0.23; comparison: t (19) = 10.7, p
< 0.001, BF10 > 106, Cohen’s d = 2.393. This finding
suggests that our participants had good memory for
which states were presented, regardless of their ability
to report which exemplars these states belonged to.

Accuracy of conjunction memory within paired choices
Given the good memory for whether two exemplars

had been presented in the same or in different states,
we can ask how often these memories were correctly
bound to the exemplars. To estimate that, we analyzed
the proportions of three possible outcomes of the
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Figure 3. Results for Experiment 1 for overall accuracy (A), state
memory accuracy (B) and choosing both, one, or no correct
states for exemplars (C). Images on top of the bars in (C) are
examples of participants’ answers in each of the response
outcomes. Note that the axis labels show two the different
exemplars of the category (e.g., two different Lego people),
either in the same state as each other, or different states than
each other. Error bars depict 95% CIs. LEGO Group. This is an
independent site not authorized or sponsored by the LEGO
Group.

paired choices that our observers made on each trial:
both states correct, one state correct, or zero correct.
Swap errors occur if participants often report both
items incorrectly (e.g., knows the items had different
states but not which state went with which exemplar).
Thus, an excess of 0 correct trials is evidence of swap
errors (e.g., knowledge of the states separate from the
exemplars they go with).

If the overall accuracy is simply impaired by
the objects being in different states (perhaps from
greater difficulty encoding them, for example), with
no change in binding difficulty per se, participants

overall performance should predict their performance
for picking both items wrong. For example, with an
81% overall correct response rate, as in the same
state condition, if the two objects are responded to
independently we expect the proportion of trials with
two correct answers to be (0.81)2 (e.g., an independent
chance to get each object correct); with item one
correct and item two incorrect to be (0.81)(1 – 0.81);
with item one incorrect and item two correct to be
(1 – 0.81)(0.81); and with zero correct answers to be
(1 – 0.81)2. The small decrease in percent correct to 74%
in the different state condition can also be analyzed in
this way, to see if relatively speaking, participants make
more double errors (swaps) than would be expected
given how often they get none and one correct. These
errors should change predictably if the only difference
in conditions is an overall accuracy effect from more
difficult encoding rather than independent knowledge
of states and exemplars (resulting in a change from
[1 – 0.81]2 = 3.6% zero correct trials, to [1 – 0.74]2 =
6.7% zero correct trials). By contrast, if different states
result in binding difficulties, then when the objects are
presented in different states, participants should show
an abundance of zero correct trials, which represent
swap errors (where they knew the states, but not how
they went together).

Overall, we found that there was no significant
difference between the proportions of choosing
both correct answers between the two conditions of
exemplar–state task, same states: M = 0.67, different
states: M = 0.62; comparison: t(19) = 1.609, p = 0.124,
BF10 = 0.698, Cohen’s d =.360, and also between
the proportions of choosing only one correct answer,
same states: M = 0.28, different states: M = 0.24,
comparison: t(19) = 1.073, p = 0.297, BF10 = 0.386
, Cohen’s d = 0.240, because both displayed small
decreases that did not reach significance. However,
there were significantly more none correct trials for
objects shown in different states compared with same
states, same states:M = 0.05, different states:M = 0.15;
comparison: t (19) = 5.345, p < 0.001, BF10 = 676.7,
Cohen’s d =1.195. This result is indicative of swap
errors.

We can also compare this level of no correct answers
with the independent responses baseline. In the same
state condition, there was no significant excess of zero
correct answers relative to the individual performance
level, same states none correct vs. predicted from
individual performance level: t(19)=0.468, p = 0.645,
BF10 = 0.256, Cohen’s d = 0.11. However, for the
different state condition there was a significant excess
of such trials, different states none correct vs. predicted
from individual performance level: t (19) = 7.14,
p < 0.001, BF10 > 105, Cohen’s d = 1.59, consistent
with swaps. This is because zero correct choices in
the different state condition mean that a participant
reported the states as being different (which is correct in
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terms of states alone) but ascribed them to the wrong
exemplars (which is incorrect in terms of conjunctions
or swap errors). In comparison with the failure to report
any correct conjunctions for same state objects (which
is more consistent with the absence of state memory),
the “swap responses, according to our analysis, are
observed in a considerable number of trials.

Overall, our results showed that our observers
were quite good at recognizing exemplars and at
discriminating whether the objects were presented in
the same or different states. However, in a significant
number of trials, they showed difficulties with reporting
correct exemplar–state conjunctions. As a specific sign
of a binding failure, this difficulty manifested as an
increased fraction of trials within the different state
condition where observers successfully reported the
states as being different but chose wrong the exemplars
for these two states. Note that the failure to report any
conjunction correctly is rare in the same state trials
where people do not actually need to remember exact
conjunctions to perform the exemplar–state task and an
ability to report the conjunction depends on memory
only for the state itself. Therefore, we conclude that the
difference between memory performance in the two
conditions of the exemplar–state task is a result of
binding failures, which is consistent with nonholistic,
at least partially independent storage of exemplar and
state features of real-world objects.

Experiment 2

The exemplar and the exemplar–state tasks were
separated into two different blocks in Experiment 1.
This practice could artificially encourage our observers
to particularly focus on exemplar or state features
during encoding, which could result in an inflated rate
of swap responses and overestimate the independence of
exemplar and state memories. Therefore, in Experiment
2, we randomly mixed trials from the exemplar and
exemplar–state tasks to discourage our participants
from selective encoding of the corresponding features.

Method

Participants
Twenty-five psychology students from the Higher

School of Economics, 21 female; age, 18 to 33 years; M
= 19.7, took part in the experiment for course credit.
All participants reported having normal color vision,
normal or corrected-to-normal visual acuity, and no
neurological problems. The apparatus, stimuli, and
procedure were the same as in Experiment 1. The main
difference from Experiment 1 is that trials from the

exemplar task were randomly mixed with trials from
exemplar–state task.

Results

One participant showed less than 50% accuracy in all
conditions and was excluded from the analysis.

Overall accuracy
We found evidence for a strong effect of the task

and same/different-state manipulation on recognition
accuracy, F (2,21) = 39.23, p < 0.001, BF10 > 108, η2 =
0.630 (Figure 4). Participants were more accurate in the
exemplar task, M = 0.86, than in the exemplar–state
task, both when the states were same, M = 0.80;
comparison: t(23) = 4.247, p < 0.001, Bonferroni
corrected α = 0.017, BF10 = 100.2, Cohen’s d =
0.867, and when the states were different, M = 0.73;
comparison: t(23) = 9.024, p < 0.001, Bonferroni
corrected α = 0.017, BF10 > 106, Cohen’s d = 1.842.
Most important, within the exemplar–state task, our
participants were more accurate when tested exemplars
were shown in the same state,M = 0.80, than when they
were in different states, M = 0.73; comparison: t(23) =
4.512, p < 0.001, Bonferroni corrected α = 0.017, BF10
= 180.5, Cohen’s d = 0.921.

State memory
Like in Experiment 1, our participants were quite

good at discriminating whether the two tested exemplars
had been presented in the same or different states.
For objects presented in the same states, they chose
two response options of the same states much more
frequently, M = 0.69, than when the objects had been
presented in different states, M = 0.21; comparison:
t(23) = 13.93, p < 0.001, BF10 > 108, Cohen’s d = 2.843.

Accuracy of conjunction memory within paired choices
Our participants chose both correct exemplar–state

conjunctions with approximately equal frequencies
in the two conditions of the exemplar–state task,
same states: M = 0.64, different states: M = 0.62;
comparison: t(23) = 0.747, p = 0.463, BF10 = 0.276,
Cohen’s d =.152. The participants chose only one
correct conjunction for items shown in same states
more frequently than for items shown in different states,
same states: M = 0.31, different states: M = 0.21,
comparison: t(23) = 2.649, p = 0.014, BF10 = 3.581,
Cohen’s d = 0.541. Critically, they were substantially
more likely to choose no correct conjunctions for
items shown in different states than for items shown
in same states, same states: M = 0.05, different states:
M = 0.17, comparison: t (23) = 7.846, p < 0.001,
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Figure 4. Results for Experiment 2 for overall accuracy (A), state
memory accuracy (B), and choosing both, one, or no correct
states for exemplars (C). Images on top of the bars in (C) are
examples of participants’ answers in each of the response
outcomes. Note that the axis labels show two the different
exemplars of the category (e.g., two different Lego people),
either in the same state as each other, or different states than
each other. Error bars depict 95% CIs. LEGO Group. This is an
independent site not authorized or sponsored by the LEGO
Group.

BF10 > 106, Cohen’s d = 1.6. Again following the
logic of what is expected from independent responses
based on participants’ individual percent correct, we
find an excess of none correct trials in the different
state condition only, comparison for same states:
t(23) = 0.008, p = 0.994, BF10 = 0.215, Cohen’s d =
0.002; comparison for different states: t(23) = 10.676,
p < 0.001, BF10 > 107, Cohen’s d = 2.18. This result
replicates the finding from Experiment 1, showing
that, in a substantial number of trials with a correct
report about tested items being in different states,
participants committed swap errors failing to correctly

report which exemplars these states had gone with, but
being—correctly—aware that there were two different
states present.

The results of Experiment 2 closely replicated
the pattern of results from Experiment 1. In both
experiments, there were swap errors, where participants
failed at reporting the state–exemplar conjunctions but
had accurate memory for whether the objects’ states
had been the same or different. Because the mixed
design of Experiment 2 discouraged selective encoding
of exemplar features or state features, it seems that
swap errors are not strongly dependent on an encoding
strategy. These results are compatible with the idea of
there being significant independence in the features that
underly exemplar and state discrimination in visual
working memory.

Robustness across categories in Experiments 1 and 2
To test whether the differences between the two

conditions of the exemplar–state task are caused by
our central manipulation of same versus different state,
not by internal characteristics of individual images
potentially affecting the memorability of objects,
we analyzed the proportions of correct answers and
the likelihood of choosing the same states across all
tested images. In other words, we treated categories
as a random effect rather than participants to ensure
robustness not only across participants, but also across
individual images. In particular, we can estimate how
many observers chose the same states and correct
exemplar–state conjunctions for every given category
as a function of whether items in this category were
presented in the same or different states (rather than
how many observers did so, regardless of category).
As the results of Experiments 1 and 2 showed highly
similar patterns, we merged responses from all observers
taking part in these two experiments. Overall, each
category was seen by 22 participants in the same state
and by 22 participants in different states.

We found that the overall accuracy across categories
was lower when objects from these categories were
shown in different states than when they were shown
in same states, t(119) = 6.180, p < 0.001, Cohen’s d
= 0.564, BF10 > 106. The probability of choosing the
same states for objects shown in different states was
lower than the probability of choosing same states for
objects shown in same states, t(119) = 26.52, p < 0.001,
Cohen’s d = 2.421, BF10 > 1040. Therefore, our pattern
of results shows the robustness of the pattern described
in Experiments 1 and 2 not only across observers but
also across stimuli.

The effect of not tested states in Experiments 1 and 2
In each trial of our exemplar–state task, we tested

only one category (e.g., two of the four objects), and



Journal of Vision (2021) 21(3):18, 1–24 Markov, Utochkin, & Brady 11

Figure 5. Results for the influence of states of tested and not tested objects on overall accuracy (A), state memory accuracy (B). Error
bars depict 95% CIs.

the main manipulation was whether these objects were
in the same state as each other or different states.
However, items that have not been tested could also
appear in either the same or different states. Because
the same versus different status of the states of the not
tested items were purposefully made orthogonal to the
states of the tested items, it is possible to estimate the
contribution of the former to the accuracy of reporting
the latter. Given that performance estimates for such
an analysis were built on 30 trials per combination of
tested and not tested states (rather than 60 trials for our
main analysis), we merged the data from Experiments
1 and 2 to compensate for some possible loss in the
precision of individual estimates owing to the reduced
number of trials.
Overall accuracy: A repeated-measure two-way
ANOVA was run to estimate the effect of state
manipulations in tested and not-tested items. We found
a significant effect of the states of tested items on
accuracy, F(1,43) = 43.305, p < 0.001, BF10 > 107,
η2 = 0.502 (Figure 5), reflecting the trend reported
separately for each experiment: observers were less
accurate when tested items were presented in different
states. More importantly, we found evidence for the
effect of tested items states × not tested items states
on accuracy, F(1,43) = 5.429, p = 0.025, BF10 =1.02,
η2 = 0.112. This effect arose because the accuracy of
reporting tested conjunctions presented in same states
was lower when the not-tested objects were presented
in different states compared with not-tested objects
presented in same states, t(43) = 2.991, p = 0.005,
Cohen’s d =.451, BF10 = 7.731 (Figure 5A). When the
tested objects were presented in different states, the
states of not tested objects had no effect, t(43) = 0.206,
p = 0.838, Cohen’s d =.031, BF10 = 0.167. In other
words, there was an overall performance improvement
particularly in the condition where both categories were
more homogenous, each having only one state present.
This finding is broadly consistent with the idea that
state and exemplar properties are not automatically

represented in a single holistic representation, but that
binding the features used to discriminate state and
exemplar features is difficult.
State memory: Participants reported the tested items
were in the same states less when the tested objects
were in different states compared with same states, F
(1,43) = 305.784, p < 0.001, BF10 > 1054, η2 = 0.877,
reflecting the result shown separately in Experiments
1 and 2. Importantly, the percentage reporting both
tested items were in the same state was lower when
not-tested objects were in different states compared
with when the not tested objects were in the same
states, F (1,43) = 22.424, p < 0.001, BF10 = 0.282, η2 =
0.343 (Figure 5B). Therefore, we found that the states
of not-tested but also memorized objects had a slight
effect on reported states of tested objects in the same
direction as the effect of tested objects states. Again, the
finding that observers’ answers were sensitive to state
manipulations (although less than within the tested
categories) supports the idea of somewhat independent
storage of the features underlying state and exemplar
discrimination in real-world objects.

Similarity between exemplar and state pairs
Looking at the performance on the exemplar task

compared with the exemplar–state task, one could
argue that there are differences in the exemplar and state
manipulations themselves that account for this effect.
For example, it intuitively seems that two different
states of the same object might be more visually similar
than two different exemplars in the same state, and
that this could affect the two-alternative forced choice
task performance (e.g., Brady & Störmer, 2020). In this
case, the exemplar–state task would be harder than the
exemplar task based on the images alone, rather than
because of binding difficulties. Although previous work
has found these two kinds of test tend to be similar
in difficulty (Brady et al., 2008), to test this intuition
more systematically, we quantitatively estimated
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Figure 6. Similarity of exemplar and state pairs (0 = completely dissimilar objects; 1 = completely similar objects). Final max-pool
layer: Estimation of similarity for paired exemplars and paired states (A) and average values for each category show significant
heterogeneity by category (B). The examples of most similar and dissimilar pairs of exemplars and states according to the max pool
layer. (C). Layer 1: Estimation of similarity for paired exemplars and paired states (D) and average values for each category show
significant heterogeneity by category (E). The examples of most similar and dissimilar pairs of exemplars and states according to layer
1 (F).

similarity using the VGG16 pretrained convolutional
neural network (Brady & Störmer, 2020; Simonyan
& Zisserman, 2014). We were particularly focused on
the top max-pool layer, which allowed us to retrieve
high-level features that are more invariant to low-level
transforms, because previous work demonstrates that
this provides a useful proxy for object similarity (Brady
& Störmer, 2020) with extremely similar object stimuli.
However, we also estimated similarity values based only
on layer 1, which are more related to very low-level
image similarity and should have little invariance.
We used our target stimuli (Brady et al., 2013) and
estimated similarity between paired exemplars in the
same states (exemplar pairs) and between the two states
of the same exemplar (state pairs). Similarity for the
240 exemplar pairs and 240 state pairs (Figure 6A) and
the average similarity for each category (Figure 6B)
were estimated.

We found quite small (approximately 3%) but
significant differences in the similarity based on final
max-pool layer estimates between exemplar pairs, M

= 0.83, and state pairs, M = 0.86; comparison: t (119)
= 4.272, p < 0.001, BF10 = 411.6, Cohen’s d = 0.39
(Figure 6B), with state pairs being slightly more similar
on average. However, we found no significant differences
in the similarity based on layer 1, exemplar pairs: M =
0.77; state pairs:M = 0.77; comparison: t (119) = 0.314,
p = 0.754, BF10 = 0.1, Cohen’s d = 0.029) (Figure 6E).
We also found significant, although weak, correlations
between the similarity estimates based on the final
max-pool layer and the similarity estimates based on
layer 1, exemplar pairs: r (118) = 0.39 p < 0.001; state
pairs: r (118) = 0.44 p < 0.001. To estimate the effect
of similarity on task performance—and validate the
similarity metric—we calculated a correlation between
the average performance on the task and the similarity
estimates for exemplars and state pairs based on both
final max-pool layer and layer 1. We found that layer
1 did not significant predict performance in the task
(p > 0.10), but that the max pool layer did, with a
significant negative correlation between similarity
values for state pairs based on the final max-pool layer
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and accuracy, r (118) = 0.31 p < 0.001. Therefore, state
similarity—as measured by the more invariant max
pool layer—indeed affected overall performance and
the difficulty of the two-alternative forced choice task
(e.g., Brady & Störmer, 2020).

Thus, to test whether these differences in similarity
affected the comparisons we made between the
exemplar task and the exemplar–state task, we selected
the categories with most similar exemplars and most
dissimilar states, according to the max pool layer (we
chose categories where exemplar similarity was higher
than state similarity, 40 categories overall with exemplar
similarity of 0.87 and state similarity of 0.81) and redid
the analysis from Experiments 1 and 2. In this sample,
the states should actually be “easier” to discriminate
than the exemplars. Thus, this provides a strong test
of whether similarity alone accounts for the difference
between our conditions.
Overall accuracy: Observers were less accurate when
exemplars were in different states, M = 0.75, compared
with same states, M = 0.84; comparison: t(43) = 4.305,
p < 0.001, Cohen’s d = 0.649, BF10 = 249.
State memory accuracy: Observers reported that
exemplars were in the same states more frequently when
exemplars were presented in the same states, M = 0.75,
compared with different states, M = 0.20; comparison:
t(43) = 17.352, p < 0.001, Cohen’s d = 2.616, BF10 >
1017.
Accuracy of conjunction memory within paired choices:
There were no differences between conditions in
choosing both correct, same states: M = 0.72, different
states: M = 0.66, comparison: t(43) = 1.985, p = 0.054,
Cohen’s d = 0.299, BF10 = 0.975, and one correct,
same states: M = 0.25, different states: M = 0.19,
comparison: t(43) = 1.811, p = 0.077 Cohen’s d = 0.273,
BF10 = 0.729. The percentage of none correct answers
was significantly higher in the different states condition
compared with the same states condition, same states:
M = 0.04, different states: M = 0.15, comparison: t(43)
= 6.046, p < 0.001, Cohen’s d =.911, BF10 = 49,614.

This additional analysis demonstrates the same
pattern as our main analysis, even for objects with
highly dissimilar states. This finding suggests that
binding errors still occur when discrimination at test is
made easier. Most important, the patterns are preserved
even when the state pairs are more dissimilar than the
exemplar pairs. Therefore, inferior performance in the
exemplar–state task cannot be explained by interobject
similarity. Instead, we conclude that it has to do with
the need to report exemplar–state conjunctions.

Discussion of Experiments 1 and 2

In Experiments 1 and 2 we found that our
participants were less accurate at reporting the

conjunctions of exemplars and states when these
exemplars had been shown in different states compared
with exemplars shown in the same state. This decrement
in conjunction recognition was combined with good
recognition memory for exemplars and good ability to
discriminate—without the need for binding—whether
states were the same or different. Importantly, the
accuracy decrement that we observed for objects
presented in the different states was mostly provided
by trials where observers correctly reported the states
being different, but swapped these states between
exemplars. Moreover, we found some benefits for
performance when the nontested objects were in the
same states rather than different states, suggesting
the task was easier when the nontested objects did
not require binding states to exemplars. Therefore,
we conclude that the features underlying exemplar
and state discrimination are represented in some
sense independently and that remembering their
conjunctions causes additional difficulty compared with
remembering these features per se. A fully unitized,
all-or-none, totally bound representation account fails
to account for our results, because it predicts that
the working memory traces should be indifferent to
whether two different exemplars are presented in same
or different states: in any case, two separate records
are created with equal likelihood to be stored or
forgotten.

In fact, binding was also not necessary in the
same states condition to recall both exemplar–state
conjunctions. It was sufficient to remember a common
state for a category instead, which is also consistent
with the idea of independence, rather than each object
being a holistic, unitized object encoded separately
from each other. In Experiment 1, observers could
discard exemplar information in the state–exemplar
condition and remember only the common state, as the
exemplar memory was not tested in the same block as
state memory. However, in Experiment 2 with its mixed
design observers did not know in advance whether
their exemplar or exemplar–state memory would be
tested. The nearly identical results of Experiments 1
and 2 suggests, therefore, that observers were encoding
relevant details sufficient to discriminate both state
and exemplar comparisons in both experiments.
However, encoding the relevant features for both (I
remember both these mugs and that they both were
full) does not seem to entail that these features were
fully unitized and bound (if I remember these mugs, I
also remember that they were full, and vice versa). The
results from the different state condition demonstrate
that while participants appear to encode all the relevant
features in both Experiments 1 and 2, these features are
nevertheless somewhat independent (e.g., I sometimes
remember the mugs and I remember one full and one
empty, but I do not remember which one was full
and which was empty). In the General Discussion, we
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consider possible exemplar and state representations
leading to the observed pattern of results in more detail.

Experiment 3

In Experiment 3, we tested another interesting
prediction following from the idea of at least partially
independently stored properties of real-world objects. In
particular, we looked at how people update previously
studied information, one of the crucial functions of
working memory (Ecker, Lewandowsky, Oberauer,
& Chee, 2010; Nyberg & Eriksson, 2016). If a task
requires participants to remember an item and then
update it, taking into account a subsequent change to
the item (update) can often cause confusions between
the initial and updated representations, resembling
binding errors (Gorgoraptis, Catalao, Bays, & Husain,
2011). An example of such errors in visual working
memory can be a failure to completely update location
changes during retention. Hollingworth and Rasmussen
(2010) showed that binding to new locations after
motion is nevertheless impacted by a remaining binding
to the original locations. Other work on the spatial
congruency bias also suggests that a location of an
object is automatically attended and that the identity of
an object is bound to this location even after updates
(Bapat, Shafer-Skelton, Kupitz, & Golomb, 2017;
Golomb, Kupitz, & Thiemann, 2014; Shafer-Skelton,
Kupitz, & Golomb, 2017). With respect to our main
research interest, this point raises an important question
about real-world object representation: When an object
changes location, will observers update or fail to update
the entire set of object properties to a new location? Or
is it possible that separate properties can separately fail
to be updated? For example, imagine I am shown a full
coffee mug A in a location X and an empty coffee mug
B at a location Y. If my memory for the mug A is then
tested at the location Y (originally belonging to the mug
B), will I fail to update both the mugA and its “fullness”
(as expected if updating is based on unitized memories)
or I can update the mug A but remember the emptiness
encoded from that location (which should cause a swap
report as we defined it in Experiment 1)? We addressed
this question in Experiment 3. We tested whether
observers commit more swaps between exemplars and
states of real-world objects when updating of locations
is required. In particular, we tested whether observers
more often choose the wrong state for a studied
exemplar if at test it takes the location of a different
exemplar shown in a different state. If features can be
independently bound to a certain location, we predict
that we will find no difference between original and
updated locations for exemplars in the same states, but
will find them for exemplars in the different states. This
prediction follows the similar logic for Experiments 1

and 2. In other words, if two exemplars in the same
state change their locations at test it should cause no
confusions, regardless of whether the state is updated
or not, because of the commonality between the two
states at the two locations. By contrast, if exemplars in
different states change their locations at test, this could
cause more binding errors if updating is independent
for state information (e.g., I remember a full mug at this
location but do not remember which mug it was, so I
choose a full mug here). By contrast, if updating works
on unitized, fully bound representations then we expect
that exemplar swap at test should produce an effect on
exemplar–state reports both when the states are same
and when they are different.

Method

Participants
Twenty-five psychology students from the Higher

School of Economics, 22 female; age, 18 to 22 years, M
= 19.24, took part in the experiment for extra course
credits. All participants reported having normal color
vision, normal or corrected to normal visual acuity, and
no neurological problems.

The apparatus, stimuli, and spatial layout were
similar to Experiments 1 and 2. Three image sets were
used in this experiment: 120 categories from an image
set (Brady et al., 2013) and 40 categories from an image
set created by ourselves were used as tested categories in
the exemplar–state task. Eighty-two categories from our
image set and 78 categories from (Konkle et al., 2010)
were used as nontested categories in the exemplar–state
task.

Procedure
In this experiment, we used only the exemplar–state

task. As in Experiments 1 and 2, observers had to
remember two pairs of exemplars from two object
categories and each pair of exemplars could be
presented in the same or different states (Figure 7). The
critical difference from Experiments 1 and 2 was at test.
In one-half of trials, the presented exemplars from the
tested category were tested at their original locations. If
exemplar A was shown at location X and exemplar B
was shown at location Y, then at test the old and new
states of exemplar A were also shown at location and
the old and new states of exemplar B were also shown at
location Y (Figure 7), as in the previous experiments. In
another one-half of the trials, the two tested exemplars
swapped their locations. If exemplar A was studied at
location X, its new and old states were tested at location
Y, and if exemplar B was studied at location Y its states
were tested at location X (Figure 7). Participants were
warned that objects could swap their locations at test
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Figure 7. Example trials of Experiment 3 where two exemplars
(locks) are (A) studied in the same states and tested in their
original locations, or (B) studied in different states and tested in
swapped locations.

and were instructed to recognize in which state each
exemplar in the category was presented, regardless of
test location.

In 80 trials, the tested exemplars were studied in
different states and in 80 trials the tested exemplars
were studied in the same states. In 80 trials, objects
were tested in their original locations and in the
other 80 trials in swapped locations. Categories were
counterbalanced across conditions between participants
using a Latin square.

Design and analysis
We had a 2 (objects in same and different states) ✕

2 (original or swapped test locations) within-subject
design. We estimated the overall accuracy (total number
of correctly chosen items) and state memory for the two
location conditions (original vs. swapped) and for same
versus different states. We also estimated the accuracy
of conjunction memory within paired choices similarly
to Experiments 1 and 2. For Bayesian t tests the same
priors as in Experiments 1 and 2 were used.

Results and discussion

Overall accuracy
A two-way repeated-measures ANOVA was run

to estimate the effects of studied exemplars being in
the same versus different states and of test location.
We found an overall effect of test location, F (1,24) =
30.230, p < 0.001, BF10 = 12.678, η2 = 0.557. Observers
were overall less accurate reporting exemplar–state
conjunctions at swapped locations (Figure 8). We also

Figure 8. Results for Experiment 3 for overall accuracy and state
memory for objects in same and different states. Error bars
depict 95% CIs. LEGO Group. This is an independent site not
authorized or sponsored by the LEGO Group.

found a strong effect of the studied states, F (1,24) =
117.380, p < 0.001, BF10 > 1010, η2 = 0.830. Observers
were less accurate when objects were presented in
different states compared with same states (Figure 7),
which is in line with the corresponding findings from
Experiments 1 and 2. However, we found no evidence
for the interaction effect between studied states and test
location, F (1,24) = 1.896, p = 0.181, BF10 = 0.517,
η2 = 0.073. That is, participants did not seem to have
additional difficulty recognizing the different state
items at updated locations compared with the same
states at updated locations, broadly consistent with
whole-object updating rather than separate updating
for each property.

State memory
There was a strong effect of the state of studied

objects, F (1,24) = 288.742, p < 0.001, BF10 > 1010,
η2 = 0.923. Participants more often chose two same
states when objects were presented in the same states
and this effect was flipped for objects presented in two
different states. We found no evidence of the effect of
test location, F (1,24) = 0.563, p = 0.46, BF10 = 0.208,
η2 = 0.023, but did find a weak test location ✕ studied
states interaction, F (1,24) = 6.197, p = 0.02, BF10 =
0.128, η2 = 0.205, consistent with less accurate memory
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Figure 9. Results for Experiment 3 for choosing both, one or
none correct states for exemplars tested in (A) original locations
and (B) swapped locations. Error bars depict 95% CIs.

for states when the items flipped location (e.g., both
conditions being closer to 0.50).

Accuracy of conjunction memory within paired choices
We analyzed the frequencies of paired report

outcomes (both, one, or none correct) separately for
original (Figure 9A) and swapped locations (Figure
9B). Overall, the patterns were strongly similar across
these two conditions. Participants more frequently
chose both of the correct exemplar–state conjunctions
when the objects has been shown in the same state
compared with different states, original locations: M
= 0.75 for same states, M = 0.62 for different states;
comparison: t(24) = 6.381, p < 0.001, BF10 = 13,605,
Cohen’s d = 1.276; swapped locations: M = 0.69 for
same states, M = 0.54 for different states; comparison:
t(24) = 5.918, p < 0.001, BF10 = 4,811, Cohen’s d =
1.184. This result was well-mirrored by the pattern of
choosing no conjunctions correct: Participants were
more likely to choose no correct conjunctions for
items shown in different states than for items shown
in same states, original locations: M = 0.04 for same
states, M = 0.15 for different states; comparison: t (24)
= 7.712, p < 0.001, BF10 > 106, Cohen’s d = 1.542;
swapped locations: M = 0.07 for same states, M =
0.21 for different states; comparison: t (24) = 8.067, p
< 0.001, BF10 > 106, Cohen’s d = 1.613. There were
no differences between the proportions of choosing
only one correct conjunction between the two state
combinations, original locations: M = 0.20 for same

states, M = 0.23 for different states; comparison: t(24)
= 0.912, p = 0.371, BF10 = 0.307, Cohen’s d =.182;
swapped locations: M = 0.24 for same states, M =
0.25 for different states; comparison: t(24) = 0.358, p
= 0.723, BF10 = 0.224, Cohen’s d = 0.072. This result
replicates the corresponding pattern from Experiments
1 and 2 showing that observers tend to swap states
between exemplars when these exemplars are presented
in different states, with no additional reliable effect of
switching location.

Thus, in Experiment 3 we strongly replicated the
basic pattern from Experiments 1 and 2 that observers
show better memory for states (whether these states are
same or different) than for exemplar–state conjunctions
(which state goes with which exemplar), especially when
conjunction discrimination is critical for doing the task
as in the case of exemplars presented in different states.
Therefore, Experiment 3 confirms the robustness of this
basic pattern indicating the relative independence of
internal object features (features underlying exemplar
and state discrimination). In addition to this point,
we found some cost of location swaps that can be
interpreted in terms of updating failures. This result
replicates the previously reported tendency of an object
to be bound to its original location after motion or
during the update (Bapat et al., 2017; Golomb et al.,
2014; Hollingworth & Rasmussen, 2010; Shafer-Skelton
et al., 2017). The cost of location swaps was not very
strong (difference of approximately 6% between original
and swapped locations), which is also consistent with
the previous demonstrations (e.g., approximately 4%
between original and updated locations in Hollingworth
& Rasmussen, 2010).

Having succeeded with inducing updating failures,
we can turn to the main question of Experiment 3.
According to our prediction, independent updating
of different features could be inferred only if we
found no impairment for objects presented in the
same states and found this impairment in the different
states condition. Because we found no difference in
the amount of updating failures for exemplars shown
in same versus different states, we conclude that state
features are not bound to locations independently
from exemplar features. Instead, it seems that location
updating has something to do with the whole object
representation. This finding is consistent with the
previous demonstrations and the object file theory
(Bapat et al., 2017; Golomb et al., 2014; Hollingworth
& Rasmussen, 2010; Shafer-Skelton et al., 2017;
Kahneman, Treisman, & Gibbs, 1992), and especially
consistent with recent work from Dowd and Golomb
(2019) showing that updating items does not break
binding in the case of simple objects.

Thus, on the one hand, we see that the features
underlying state discriminations behave relatively
independently from those underlying exemplar
discriminations, as revealed by the same versus different
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states manipulation. On the other hand, location
updating appears to act on the entire set of object
features.

General discussion

Experiments 1 and 2 showed that real-world objects
are not necessarily stored as completely unitized, fully
bound units in visual working memory, as swap errors
occur between features of different objects of the same
category. These results are in line with theories based
on simple features which argue that visual working
memory is not based on fully bound representations
(e.g., with the weak object hypothesis, Olson & Jiang,
2002). In particular, they are consistent with theories
that suggest that memory is object based only in that
instantiating a new object representation is costly, but
that within an object, memory for features is somewhat
independent(see Brady, Konkle, & Alvarez, 2011, for
review; Fougnie, Asplund, & Marois, 2010; Markov,
Tiurina, & Utochkin, 2019; Shin & Ma, 2017; Wang,
Cao, Theeuwes, Olivers, & Wang, 2017; Wheeler &
Treisman, 2002). Unlike previous work, we showed
that feature independence can be found not only for
simple stimuli with basic features naturally assumed
to be separable (such as color, orientation, or shape),
but also for real-world objects whose properties are
more complex and meaningfully connected. Therefore,
our study suggests that at least partially independent
feature storage is a common property of visual working
memory representations. It is possible that, under
certain conditions, objects could be encoded more
holistically (e.g., when visual working memory load is
lower), but our results demonstrate that objects are not,
by necessity, encoded in a holistic, all-or-none manner.

Because we used considerably more ecologically
valid stimuli in these experiments than in previous
work, it is important to compare our results with the
results reported in the previous literature with simple
stimuli. In a study using simple features such as color
and orientation (Bays et al., 2009), the percentage
of swap errors for set size 4, with similar encoding
duration and similar items localization on the screen
to the current study, was around 0.11, which is similar
to the percentage of swap errors in our experiments
(around 0.10). So, the complexity of the features and
meaningfulness of remembered stimuli did not make a
very large difference in the frequency of binding errors,
suggesting that the features of real-world objects are
stored with a similar degree of independence to colors
and orientations. Note that this study did not aim to
discriminate between the visual and semantic features
which underlie the state and exemplar discriminations,
and therefore which are somewhat independently

represented. This complicated question is open for
future investigation.

However, these results do provide some evidence for
the idea that objects are stored in a more abstract way
than just basic visual features. That is, if participants
solely stored shape, color, spatial frequency, orientation,
and other basic visual features, then—because state
and exemplar comparisons inevitably both rely on
a combination of these features—memory for the
state and exemplar properties would end up looking
“bound.” This is because, even if color or orientation
or another of the basic visual features was selectively
lost, this would impact both state and exemplar
comparisons, so the two would be expected to change
together for the most part. Because swap errors are
about as common for these properties as with simple
features like color and orientation, this provides some
evidence that people are representing higher-level,
perhaps more semantic features of the objects (which
can be misbound or independently forgotten, as in
color/orientation).

Although our results show that the information
about exemplar and state features of real-world objects
is not stored in working memory in a totally holistic,
all-or-none manner, it does not mean that these
features are stored on completely independent “shelves”
somewhere in memory. One promising way of thinking
about this is that connection between exemplars
and states can be a hierarchically linked structure
(Balaban et al., 2020; Brady et al., 2011; Fougnie et al.,
2013), still leaving a possibility that these links can be
incorrect or lost leading to the observed misreports of
state–exemplar conjunctions. Compared with long-term
memory (Utochkin & Brady, 2020), these misreports
are rarer in working memory, suggesting that the feature
representations can be linked more strongly in the latter
case (Pertzov et al., 2012).

It is important to note that, in our experiments, we
used a relatively extended presentation time (3 seconds),
which might raise a question whether observers could
go beyond the “pure” encoding capacity of visual
working memory putting some part of information into
long-term memory. Indeed, there is no gold standard in
the literature regarding the critical presentation time
for pure working memory, with durations ranging from
hundreds milliseconds (Alvarez & Cavanagh, 2004;
Bays et al., 2009; Luck & Vogel, 1997; Olson & Jiang,
2002) to several seconds (Bays et al., 2009; Bays et al.,
2011; Brady et al., 2013; Brady et al., 2016; Fougnie
& Alvarez, 2011; Pertzov et al., 2012), and with no
strong evidence that encoding time fundamentally
changes the relative contribution of different memory
systems. However, we do not completely rule out a
long-term component in our experiments, especially
given the nature of our real-world stimuli, because
they are inherently linked to existing knowledge and
could allow for the use of newly encoded long-term
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representations, although because both the studied
items and lures are real-world objects, to discriminate
them, participants would need display-specific, newly
formed long-term memories, no more than a few
seconds old; without encoding the particular items
in a particular display, they would be a chance in the
test, even using long-term memory. As we discussed
elsewhere in this article, both visual and semantic
features can underlie the exemplar–state discrimination
and some of this information could be supported and
enhanced by existing knowledge (Curby, Glazek, &
Gauthier, 2009; Brady et al., 2016; Schurgin et al.,
2018). However, even with the potential support from
long-term memory, we still observe around 10% binding
errors, which is comparable with the data from other
studies using meaningless stimuli and shorter encoding
times (e.g., Bays et al., 2009; Emrich & Ferber, 2012).

It is important to note that accuracy in the exemplar
task was always higher than the accuracy in the
exemplar–state task, even when two exemplars were
studied in same states (Experiments 1 and 2), when
memory for conjunctions is in fact not required and
memory for states is sufficient. One explanation of
such results is that, when both exemplars are presented
in the same states, it is hard for observers to know
which state features they should remember (e.g., if they
saw two empty glasses of water it may not be easy to
anticipate that the tested state will be fullness [empty
glass and full glass] or brokenness [empty glass and
broken glass]). In a condition with different states,
observers are more likely to realize which states will be
tested and which features they should encode. Thus,
it is possible that there are even more binding errors,
but we could not detect them because the performance
in the same states condition is impaired by a failure
to anticipate and encode the proper states. However,
it also could be thought that the exemplar task was
easier than the exemplar–state task, because of the
discrimination required at test—that is, that states are
simply harder to discriminate than exemplars. It may
seem that recognizing an old exemplar against a new
exemplar is, by necessity, always easier than recognizing
an old state of an exemplar against a new state of the
same exemplar. But in fact, two states of the same
exemplar often could be more perceptually different
(e.g., a sliced and nonsliced instances of the same apple
differ by color, texture, shape, presence or absence of
pips, etc.) than two different exemplars in the same state
(e.g., two different exemplars of apples that could differ
only by color), and most previous work has found that
observers are about equally good at recognizing old
exemplars versus new exemplars and old states of same
exemplars versus their new states (Brady et al., 2008).

To test this idea more directly, we performed
an additional analysis of similarity using a deep
convolutional neural network that has been previously
shown to be a useful model of similarity of real-world

objects, successfully predicting which foils are more or
less difficult to discriminate (Brady & Störmer, 2020).
This additional analysis of similarity confirmed that,
in fact, there was quite a lot of heterogeneity in the
difficulty of both state and exemplar comparisons.
Furthermore, this analysis showed that, even when
paired states were more dissimilar than paired
exemplars, this did not affect the general pattern we
observed, suggesting the patterns arise from binding
difficulties rather than differences in the stimuli.
Therefore, it is not very likely that overall object
similarity can explain the superiority of exemplar
memory over state memory. From our additional
analysis of exemplar–state report accuracy as a function
of nontested item states, we can conclude that a
fraction of misreported same-state conjunctions (tested
objects) can be accounted for by trials where nontested
exemplars were shown in different states, perhaps taking
up more encoding time/working memory resources.

What kind of representations could underlie the
swap errors observed in our experiments? We suggest
a few possible scenarios compatible with our data,
all consistent with some form of nonholistic, at least
partially independent storage: 1) participants might
have strong feature memories (when both exemplar
and state information are present) and a failure to
bind them. The binding failures, in turn, can take
the form of false bindings (remembering full mug
A and/or empty mug B, whereas mug A was in fact
empty and mug B was in fact full) or not remembered
bindings (remembering seeing both mugs, as well as
fullness and emptiness but not remembering which
mug was presented full and which one empty). 2)
Another possibility is that some of the features could
be (independently) forgotten but observers strategically
guess these features—that is, participants might not
know, at test, whether one of the mugs was full or
empty, but remember seeing that mug. For example,
the superior performance in the same state condition
of the exemplar–state task could be explained by
better memory for repeated states (perhaps owing to
chunking these states) and worse memory for different
states. The trials where observers correctly reported
different states, but reported none of the conjunctions
correctly could be the result of the strategic guesses
(if I do not remember states, I can randomly choose
two different ones). This scenario is possible both
with and without good exemplar memory. Although
our data do not allow us to distinguish between these
scenarios and future research is necessary for it, our
principal conclusion is that any of these scenarios
require state and exemplar memories to be stored
or lost at least partially independently. Any of the
scenarios is inconsistent with strongly holistic, bound
representations (the strong object hypothesis), as such
representations should be indifferent to whether objects
are shown in same or different states.
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Our results add to the picture of how objects are
stored and forgotten across memory systems. Previous
work has suggested that long-term memory is likely to
store quite a lot of independently represented features
of real-world objects (Brady et. al., 2013; Utochkin &
Brady, 2020). In particular, using the exemplar and
exemplar–state tasks for long-term memory, Utochkin
and Brady (2020) showed that observers were at chance
when reporting state–exemplar conjunctions of objects
presented in different states, although they chose two
different states for such objects well above chance and
their exemplar memory also was good. Importantly, the
difference in recognition accuracies between same-state
and different-state pairs of studied exemplars was
dramatic (0.74 vs. 0.53, respectively). Our current
results do not show such a strongly disruptive effect of
different-state objects. Neither exemplar–state report
accuracy was near chance in that condition, nor was
its difference from same-state trials that large. We,
therefore, can conclude that visual working memory
can provide more boundedness of representations than
visual long-term memory—perhaps in part because
of representations of color, shape, orientation, and
so on, that by necessity provide useful information
about both state and exemplar discriminations. At
the same time, the fact that some binding failures can
occur after a 1-second retention period in working
memory is suggestive that part of the failed conjunction
representations in long-term memory may arise when
these features are consolidated from working memory.
It is also consistent with previous demonstrations
that object–location bindings are most susceptible to
forgetting in working memory (Pertzov et al., 2012).
The links between binding errors in visual working
memory and visual long-term memory is an interesting
subject for future research.

In Experiment 3, we tested an additional hypothesis
following from the idea of independence—namely,
that manipulating object locations at encoding and
retrieval would produce specific updating failures
when an observer reports a feature remembered at
that location when another feature at this location
is changed. Although this experiment allowed a
strong replication of the independence pattern in
terms of the same–different state manipulations, and
location swaps caused additional failures, we found no
interaction between the location manipulation and state
manipulation in Experiment 3. From these results we
concluded that location updating appears more whole
object based (consistent with what Dowd & Golomb,
2019 found for simple features).

Several explanations can be considered to account
for the finding of independence of features combined
with the demonstration of the whole object location
updating. First, the object–location binding problem
is a separate problem from feature binding (Treisman,
1996), in that objects and locations are processed to

some extent via two separate pathways, ventral and
dorsal (Haxby, et al., 1991; Mishkin & Ungerleider,
1982; Wilson, O’Scalaidhe & Goldman-Rakic, 1993).
Thus, object–location binding is also a separate
process from storing objects and locations (Postma
& De Haan, 1996; Postma, Kessels, & van Asselen,
2008), so it is possible that location swaps did not
influence binding of the features underlying state and
exemplar discrimination. According to our results,
it is possible that object–location binding could
happen after feature binding, which is consistent
with object file theories (Hollingworth & Rasmussen,
2010; Kahneman, Treisman, & Gibbs, 1992) and
with the general invariance of location tracking (e.g.,
in multiple object tracking) to feature information
(Flombaum, Scholl, & Santos, 2009; Pylyshyn, 2000)
Another explanation is discussed by Utochkin and
Brady (2020). The interaction between exemplar and
state information could be more complicated than the
interaction between parallel representations of low-level
features (such as color and orientation). Instead, the
somewhat independent storage of features supporting
exemplar discrimination and state discrimination could
result not from a fully parallel organization but from
a hierarchical one (Brady, Konkle, & Alrvarez, 2011;
Utochkin & Brady, 2020), with exemplar information
on a higher level, while access to state information is
possible only when exemplar information is not lost (if
I do not remember this mug, I also do not remember
whether it was full or empty), but not vice versa (I do
not remember whether the mug was full or empty, but
I remember it was this high yellow mug). Note that
this hierarchy does not contradict the idea that these
features are not holistic or all-or-none but partially
independent: State information still can be forgotten
independently from its exemplar or “migrate” to
another exemplar in such a model, and objects are not
forgotten in an all-or-none way in such a model. This
form of hierarchy can potentially explain the results
Experiment 3: location swaps could impair exemplar
recognition at a new location (because it was always
the exemplar whose location has been manipulated at
test in Experiment 3), which entails the loss of access
to state information. This structure is similar to the
one proposed by familiarity/recollection dichotomies
in working memory, where item memory is necessary
to access context information or other episodic details
(e.g., Mickes, Wais, Wixted, 2009). The hierarchical
organization of real-world object storage in working
memory is an intriguing possibility that needs further
investigation.

Overall, in this work we not only show that binding
errors occur for real-world objects, but also investigated
how working memory updates information about such
objects, thus providing new information about how
real-world objects are both maintained and updated,
the two most critical features of working memory
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(Baddeley, 1986; Baddeley & Hitch, 1974; Ecker et al.,
2010; Nyberg & Eriksson, 2016). We showed that the
features underlying two different discrimination tests
about real-world objects are somewhat independently
represented inside the object representation, as opposed
to entirely holistic and all-or-none, but that location
updates appear to work at the level of whole object
representations rather than impairing links between
internal features.

Keywords: visual working memory, feature binding,
real-world objects
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