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Abstract 

Background New-onset atrial fibrillation (NOAF) is the most common arrhythmia in critically ill patients admitted 
to intensive care and is associated with poor prognosis and disease burden. Identifying high-risk individuals early 
is crucial. This study aims to create and validate a NOAF prediction model for critically ill patients using machine learn-
ing (ML).

Methods The data came from two non-overlapping datasets from the Medical Information Mart for Intensive 
Care (MIMIC), with MIMIC-IV used for training and subset of MIMIC-III used as external validation. LASSO regression 
was used for feature selection. Eight ML algorithms were employed to construct the prediction model. Model perfor-
mance was evaluated based on identification, calibration, and clinical application. The SHapley Additive exPlanations 
(SHAP) method was used for visualizing model characteristics and individual case predictions.

Results Among 16,528 MIMIC-IV patients, 1520 (9.2%) developed AF post-ICU admission. A model with 23 variables 
was built, with XGBoost performing best, achieving an AUC of 0.891 (0.873–0.888) in validation and 0.769 (0.756–
0.782) in external validation. Key predictors included age, mechanical ventilation, urine output, sepsis, blood urea 
nitrogen, percutaneous arterial oxygen saturation, continuous renal replacement therapy and weight. A risk probabil-
ity greater than 0.6 was defined as high risk. A friendly user interface had been developed for clinician use.

Conclusion We developed a ML model to predict the risk of NOAF in critically ill patients without cardiac surgery 
and validated its potential as a clinically reliable tool. SHAP improves the interpretability of the model, enables 
clinicians to better understand the causes of NOAF, helps clinicians to prevent it in advance and improves patient 
outcomes.
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Introduction
New-onset atrial fibrillation (NOAF) is defined as the 
occurrence of atrial fibrillation (AF) in patients with no 
prior history of this condition. During AF, the loss of 
atrial function and the increase in ventricular rate can 
result in decreased cardiac output and hemodynamic 
disturbances [1]. NOAF is the most common arrhyth-
mia encountered in critically ill patients admitted to 
the intensive care unit (ICU). The reported incidence 
of NOAF in this population varies widely, ranging from 
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1.7% to 43.9%, with significant heterogeneity among 
studies [2]. Research suggests that in patients with septic 
shock, the presence of NOAF serves as a marker of dis-
ease severity and represents an additional organ failure 
[3]. Furthermore, multiple studies have demonstrated a 
strong association between NOAF during critical illness 
and an increased risk of stroke, heart failure (HF), and 
both short-term and long-term mortality [4, 5]. While 
numerous studies have investigated NOAF following 
cardiac surgery [6, 7], research on critically ill patients 
who have not undergone cardiac surgery remains com-
paratively scarce. The identification and management 
of such patients and corresponding interventions con-
tinue to be challenging. Although several studies have 
shown a reduction in NOAF among high-risk patients, 
the quality of evidence supporting these findings is low 
[8, 9]. Notably, the incidence of NOAF among critically 
ill non-cardiac surgery patients is remarkably high [10]. 
In real-world clinical settings, the majority of critically ill 
patients developing NOAF are those with infections or 
other non-cardiac conditions, and these patients often do 
not receive timely, specialized intervention from cardio-
vascular specialists [11]. This gap in care underscores the 
pressing need for early identification of patients at high 
risk for AF within routine ICU settings and the explora-
tion of potential targeted interventions.

Machine learning (ML) is gaining prominence in the 
field of medicine, demonstrating impressive results in 
predicting survival and prognosis among cancer patients 
[12]. In recent years, several ML models have been devel-
oped to identify individuals at risk of AF. However, these 
models are primarily limited to the general population 
or patients undergoing cardiac surgery [13, 14], with few 
models designed for routine identification of AF risk in 
the intensive care unit (ICU) setting. Furthermore, most 
studies rely on bedside electrocardiogram (ECG) for AF 
detection [15], which, despite its high accuracy, may not 
provide clinicians with sufficient information to prevent 
the onset of AF due to its short-term nature.

Despite the high accuracy achieved by ML models, the 
influence of individual variables on these models often 
remains unknown. This lack of transparency limits the 
application of ML in clinical practice [16]. SHapley Addi-
tive exPlanations (SHAP) combines optimal credit allo-
cation with local explanations to visually represent the 
importance of each variable in the model [17], thereby 
providing a more interpretable output.

Therefore, this paper aims to build a model to iden-
tify NOAF risk groups in critically ill patients using ML 
methods, and to visually interpret the model using SHAP 
methods to assist clinicians in the clinical identification 
and intervention of high-risk groups.

Materials and methods
Data source
The data used to construct the model came from 
the Medical Information Mart for Intensive Care IV 
(MIMIC-IV, version: v2.2) [18, 19], which contains 
clinical information on 431,231 hospital admissions 
for 299,712 patients admitted to Beth Israel Deaconess 
Medical Center from 2008 to 2020. We also performed 
external validation using a subset of the MIMIC-III data-
base [20], which included 26,836 admissions for 23,692 
patients between 2001 and 2008, and there was no over-
lap with patients with MIMIC-IV. The corresponding 
author (Bing Xiao) passed the Collaborative Institutional 
Training Initiative (CITI) program exam and obtained a 
certificate (Record ID: 57,440,109). As the MIMIC data-
base is de-identified, we do not need to obtain informed 
consent from patients. We made a verbal report to our 
hospital’s ethics committee and did not need to go 
through the normal approval process.

Participants
Patients who met the following criteria were included 
in the study: (1) Patients were older than 18 years; (2) 
Patients had been admitted to the ICU for more than 
two days; (3) Absence of atrial fibrillation event within 
first day; (4) Patients had not undergone cardiac surgery, 
including valve surgery and coronary artery bypass graft-
ing; (5) Patients had no history of AF; and (6) For patients 
with multiple ICU admissions, only ICU admission 
records from the patient’s first admission were included. 
Figure 1 illustrated the patient screening process.

Data extraction and outcomes
Structured Query Language (SQL) in PostgreSQL was 
used to extract data from two databases on patients 
admitted to the ICU during the first 24 h. The variables 
extracted in this study were: (1) Demographic informa-
tion: age, gender, race, and weight; (2) Comorbidities: 
myocardial infarction (MI), heart failure with reduced 
ejection fraction (HFrEF), heart failure with preserved 
ejection fraction (HFpEF), peripheral arterial disease, 
cerebrovascular disease, chronic lung disease, chronic 
kidney disease, chronic liver disease, hypertension, dia-
betes mellitus, sepsis; (3) Laboratory indicators: hemo-
globin, white blood cells (WBC), platelets, blood urea 
nitrogen (BUN), creatinine, glucose, anion gap, potas-
sium, sodium, calcium, creatine phosphate kinase (CK_
CPK), creatine kinase isoenzymes (CK_MB), N-terminal 
pro-brain natriuretic peptide (NT-proBNP), urine out-
put; (4) Vital signs: heart rate (HR), respiratory rate (RR), 
systolic blood pressure (SBP), diastolic blood pressure 
(DBP), temperature, percutaneous arterial oxygen satu-
ration  (SpO2); (5) Interventions: mechanical ventilation, 
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continuous renal replacement therapy (CRRT), vasopres-
sors, antibiotics. The maximum and minimum values 
of the first day were taken for multiple measurements, 
except for  SpO2. To reduce the impact of missing data on 
model construction, the KNNImputer (KNN) method 
was used to impute data missing less than 20% and dis-
card data missing more than 20% (Fig. S1).

The primary outcome was NOAF occurring after the 
first day of ICU admission, defined by heart rate status 
recorded at the nurse’s bedside [21].

Statistical analysis and model development
The Kolmogorov–Smirnov test was used for continuous 
variables. As continuous variables were all non-normal, 
the median (interquartile range) was used for descrip-
tion and the Mann–Whitney U test was used to compare 
differences between groups. Categorical variables were 
expressed as percentages (%) and Pearson chi-squared 
tests were used to compare differences between groups.

Due to class imbalance in the dependent variables, 
undersampling was used to resample the data to balance 
the data. The sample data were divided into a training set 
and an internal validation set by fivefold cross-validation 
sampling. In the case of many features, the lasso was 
used to select features, which is a method to introduce 
L1 regularization, select features and reduce dimensions 

by compressing coefficients, screening features with large 
contributions and eliminating redundant features.

In this study, eight ML algorithms, extreme gradient 
boosting (XGBoost), support vector machine (SVM), 
adaptive boosting (Adaboost), multilayer perceptron 
(MLP), neural network (NN), naive bayes (NB), logistic 
regression (LR) and gradient boosting machine (GBM), 
were used to construct the prediction model. The vari-
ables selected by lasso were included in the model. Ten-
fold cross-validation was used to ensure the stability of 
the model. Grid tuning parameters were used to select 
the best tuning parameters for each algorithm. In the 
process of parameter adjustment, the highest area under 
the curve (AUC) of receiver operating characteristic 
(ROC) was selected as the optimal model. The models 
were built on the training set, and the internal valida-
tion set and external validation set were validated on the 
best model. The performance of the predictive model was 
assessed by AUC of the ROC curve, sensitivity, specific-
ity, recall, F1 score, accuracy and recall. In addition, a 
decision curve analysis (DCA) and calibration curve were 
plotted to demonstrate the true clinical utility. To deter-
mine the optimal threshold probability for our model, 
we generated a clinical impact curve (CIC). This sophis-
ticated visualization tool enabled us to rigorously assess 
and identify the most effective decision threshold for 
clinical application [22].

Fig. 1 Patient screening flow from the MIMIC database. NOAF: new-onset atrial fibrillation
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Using the SHAP method, a swarm diagram was drawn 
to show the contribution of each feature to the prediction 
results. SHAP evaluations of selected cases showed how 
much a feature affected a particular sample and helped us 
understand the model’s decision-making process. Finally, 
we used feature recursive elimination to further filter var-
iables to lay out a simplified version of the model.

All statistical analyses were performed in R software 
(version: 4.3.3) and two-sided p-values less than 0.05 was 
considered significant.

Results
Baseline characteristics
After screening, a total of 16,528 MIMIC-IV patients 
were included in the study, and 1520 (9.2%) developed AF 
after ICU admission. A total of 6037 patients were drawn 
from the MIMIC-III subset with the same inclusion cri-
teria, and 677 (11.2%) developed AF. Differences in base-
line characteristics between MIMIC-IV and MIMIC-III 
subset patients were shown in Table S1.

Table  1 showed baseline information of all patients 
enrolled in MIMIC-IV database. Notably, older and white 
patients were more prone to developing NOAF during 
hospitalization. These patients experienced prolonged 
hospital and ICU stays, with substantially higher in-hos-
pital mortality rates (28.42% vs. 11.63% in non-NOAF 
patients). NOAF patients also exhibited higher inci-
dences of MI, HFrEF, HFpEF, peripheral arterial disease, 
chronic lung disease, chronic kidney disease, diabetes, 
hypertension, sepsis. On the first day of ICU admission, 
NOAF patients more frequently required interventions 
such as vasopressors, antibiotics, mechanical ventila-
tion, and CRRT. Laboratory and vital signs assessments 
revealed that NOAF patients had lower levels of hemo-
globin, platelets, SBP, DBP, MBP, temperature,  SpO2 and 
urine output. Conversely, they demonstrated elevated 
WBC, BUN, creatinine, glucose, anion gap, potassium, 
RR compared to patients without NOAF.

Feature selection
Lasso regression was used to screen the relevant features 
of the training set, and the characteristics of the variable 
coefficients were shown in Fig. 2A. The iterative analysis 
was performed using a tenfold cross-validation method. 
The 23 variables closely associated with NOAF were 
admission_age, race, weight, urine output, WBC_max, 
BUN_min, potassium_min, HR_min, HR_max, SBP_
min, DBP_max, MBP_min, RR_min, temperature_min, 
temperature_max,  SpO2_min, chronic_liver_disease, 
HFrEF, HFpEF, sepsis, mechanical_ventilation, CRRT, 
vasopressors.

Model performance comparisons
We constructed eight ML models to identify the risk of 
NOAF in critically ill patients in the ICU. Figure  3 dis-
played the discriminative performance of eight models 
in terms of ROC curves. All eight models showed con-
siderable prediction performance for new-onset AF, with 
the XGBoost model exhibiting best performance. The 
XGBoost model achieved an AUC of 0.891 [95% confi-
dence interval (CI): 0.878–0.903], setting the benchmark 
for NOAF prediction. Following closely, the GBM model 
showed comparable efficacy with an AUC of 0.877 (95% 
CI: 0.864–0.891), outperforming the remaining algo-
rithms. The remaining models, while still demonstrating 
good predictive power, ranked as follows in descend-
ing order of performance: Adaboost (AUC = 0.859, 95% 
CI: 0.845–0.873), NN (AUC = 0.825, 95% CI: 0.809–
0.841), MLP (AUC = 0.807, 95% CI: 0.789–0.824), NB 
(AUC = 0.792, 95% CI: 0.775–0.810), SVM (AUC = 0.788, 
95% CI: 0.770–0.806) and LR (AUC = 0.786, 95% CI: 
0.769–0.804).

Table  2 showed detailed performance metrics for 
the eight models. The XGBoost model exhibited supe-
rior overall performance (sensitivity: 0.826, specificity: 
0.775). Notably, the XGBoost achieved the highest F1 
score (0.805) and accuracy (0.801), while also boasting 
the highest recall rate (0.826) among all models evalu-
ated. The calibration curves for all eight models were 
illustrated in Fig. 4A, providing crucial insights into their 
predictive reliability. Six of the eight models, excluding 
NB and Adaboost models, demonstrated favorable con-
sistency between predicted probabilities and observed 
outcomes.

In terms of clinical applicability, except Adaboost, each 
model showed robust net benefit across a wide range of 
threshold probabilities, with the XGBoost model exhib-
ited the highest net benefit and therefore selected as the 
optimal model for predicting NOAF (Fig.  4C). To fur-
ther elucidate the model’s performance, we plotted the 
CIC for the XGBoost model (Fig. 4B), the x-axis showed 
different risk thresholds and their corresponding cost–
benefit ratios, while the y-axis illustrated the number of 
positive patients identified by the model versus the actual 
true positives in a sample of 1000 individuals. This visual-
ization revealed that as the threshold increased, the num-
ber of positive patients identified by the model converged 
towards the actual number of true positives. However, 
this convergence was accompanied by an escalation in the 
cost–benefit ratio associated with false positives. After 
careful consideration of these trade-offs, we established 
0.6 as the optimal threshold for defining high-risk NOAF. 
This judicious selection stroked a balance between two 
critical factors: it mitigated the risk of excessive false-
positive identifications that could result from an overly 
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Table 1 Comparison of baseline characteristics in the non-NOAF and NOAF groups

Variables New-onset atrial fibrillation P

Total (n = 16,528) Non-NOAF (n = 15,008) NOAF (n = 1520)

Admission age, M  (Q1,  Q3) 64.19 (51.98, 75.98) 62.94 (50.80, 74.73) 74.19 (65.31, 82.86)  < 0.001

Weight, M  (Q1,  Q3) 78.00 (65.30, 93.70) 78.00 (65.30, 93.45) 78.80 (65.00, 95.30) 0.192

Gender, n (%) 0.752

 Female 7686 (46.50) 6985 (46.54) 701 (46.12)

 Male 8842 (53.50) 8023 (53.46) 819 (53.88)

Race, n (%)  < 0.001

 White 10,490 (63.47) 9429 (62.83) 1061 (69.80)

 Black 1634 (9.89) 1540 (10.26) 94 (6.18)

 Asian 515 (3.12) 466 (3.11) 49 (3.22)

 Hispanic 607 (3.67) 575 (3.83) 32 (2.11)

 Other 3282 (19.86) 2998 (19.98) 284 (18.68)

Los hospital, M  (Q1,  Q3) 9.20 (5.82, 16.06) 8.97 (5.70, 15.75) 12.03 (7.68, 20.08)  < 0.001

Los icu, M  (Q1,  Q3) 3.85 (2.71, 6.79) 3.71 (2.66, 6.21) 6.58 (3.86, 11.63)  < 0.001

Hospital expire flag, n(%)  < 0.001

 No 14,351 (86.83) 13,263 (88.37) 1088 (71.58)

 Yes 2177 (13.17) 1745 (11.63) 432 (28.42)

MI, n (%)  < 0.001

 No 14,206 (85.95) 13,027 (86.80) 1179 (77.57)

 Yes 2322 (14.05) 1981 (13.20) 341 (22.43)

Chronic lung disease, n (%)  < 0.001

 No 12,520 (75.75) 11,476 (76.47) 1044 (68.68)

 Yes 4008 (24.25) 3532 (23.53) 476 (31.32)

Chronic renal disease, n (%)  < 0.001

 No 13,716 (82.99) 12,585 (83.86) 1131 (74.41)

 Yes 2812 (17.01) 2423 (16.14) 389 (25.59)

Diabetes, n (%)  < 0.001

 No 12,207 (73.86) 11,152 (74.31) 1055 (69.41)

 Yes 4321 (26.14) 3856 (25.69) 465 (30.59)

Chronic liver disease, n (%) 0.463

 No 14,107 (85.35) 12,800 (85.29) 1307 (85.99)

 Yes 2421 (14.65) 2208 (14.71) 213 (14.01)

Peripheral vascular disease, n (%)  < 0.001

 No 14,888 (90.08) 13,578 (90.47) 1310 (86.18)

 Yes 1640 (9.92) 1430 (9.53) 210 (13.82)

Cerebrovascular disease, n (%) 0.267

 No 13,217 (79.97) 11,985 (79.86) 1232 (81.05)

 Yes 3311 (20.03) 3023 (20.14) 288 (18.95)

Hypertension, n (%)  < 0.001

 No 6772 (40.97) 6327 (42.16) 445 (29.28)

 Yes 9756 (59.03) 8681 (57.84) 1075 (70.72)

HFrEF, n (%)  < 0.001

 No 14,462 (87.50) 13,265 (88.39) 1197 (78.75)

 Yes 2066 (12.50) 1743 (11.61) 323 (21.25)

HFpEF, n (%)  < 0.001

 No 15,012 (90.83) 13,728 (91.47) 1284 (84.47)

 Yes 1516 (9.17) 1280 (8.53) 236 (15.53)

Sepsis, n (%)  < 0.001

 No 6759 (40.89) 6416 (42.75) 343 (22.57)

 Yes 9769 (59.11) 8592 (57.25) 1177 (77.43)

Hemoglobin min, M  (Q1,  Q3) 10.40 (8.70, 12.10) 10.50 (8.80, 12.10) 9.90 (8.47, 11.53)  < 0.001

Hemoglobin max, M  (Q1,  Q3) 11.70 (10.10, 13.40) 11.70 (10.10, 13.40) 11.40 (9.88, 13.03)  < 0.001
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low threshold, while simultaneously avoiding the sub-
stantial losses associated with false-positive patients that 
might occur with an excessively high threshold.

External validation
Despite the inherent differences in baseline characteris-
tics between the two datasets, our model demonstrated 

Z: Mann–Whitney test, χ2: Chi-square test

M: Median,  Q1: 1st Quartile,  Q3: 3st Quartile

NOAF New-onset atrial fibrillation, Los Length of stay, MI Myocardial infarction, CRRT  Continuous renal replacement therapy, HFrEF Heart failure with reduced ejection 
fraction, HFpEF Heart failure with preserved ejection fraction, WBC White blood cell, BUN Blood urea nitrogen, HR Heart rate, RR Respiratory rate, SBP Systolic blood 
pressure, DBP Diastolic blood pressure, MBP Mean blood pressure, SpO2 Percutaneous arterial oxygen saturation

Table 1 (continued)

Variables New-onset atrial fibrillation P

Total (n = 16,528) Non-NOAF (n = 15,008) NOAF (n = 1520)

WBC min, M  (Q1,  Q3) 9.50 (6.90, 12.90) 9.40 (6.90, 12.80) 10.20 (7.20, 13.90)  < 0.001

WBC max, M  (Q1,  Q3) 12.70 (9.20, 17.50) 12.60 (9.10, 17.40) 13.60 (9.90, 18.90)  < 0.001

Platelets min, M  (Q1,  Q3) 184.00 (129.00, 245.00) 185.00 (130.00, 246.00) 171.00 (117.00, 232.25)  < 0.001

Platelets max, M  (Q1,  Q3) 219.00 (161.00, 288.00) 220.00 (162.00, 289.00) 210.00 (153.00, 279.25) 0.001

BUN min, M  (Q1,  Q3) 17.00 (11.00, 27.00) 16.00 (11.00, 26.00) 22.00 (15.00, 37.00)  < 0.001

BUN max, M  (Q1,  Q3) 20.00 (14.00, 33.00) 19.00 (13.00, 32.00) 27.00 (18.00, 45.00)  < 0.001

Aniongap max, M  (Q1,  Q3) 16.00 (14.00, 19.00) 16.00 (14.00, 19.00) 17.00 (14.00, 20.00)  < 0.001

Aniongap min, M  (Q1,  Q3) 13.00 (11.00, 15.00) 13.00 (11.00, 15.00) 14.00 (11.00, 16.00)  < .001

Creatinine min, M  (Q1,  Q3) 0.90 (0.70, 1.30) 0.80 (0.60, 1.20) 1.00 (0.70, 1.70)  < 0.001

Creatinine max, M  (Q1,  Q3) 1.00 (0.80, 1.60) 1.00 (0.80, 1.50) 1.25 (0.90, 2.20)  < 0.001

Glucose min, M  (Q1,  Q3) 113.00 (95.00, 136.00) 113.00 (95.00, 136.00) 118.00 (96.75, 143.00)  < 0.001

Glucose max, M  (Q1,  Q3) 148.00 (120.00, 194.00) 147.00 (119.00, 192.00) 159.00 (129.00, 209.00)  < 0.001

Sodium min, M  (Q1,  Q3) 137.00 (134.00, 140.00) 137.00 (134.00, 140.00) 137.00 (134.00, 140.00) 0.008

Sodium max, M  (Q1,  Q3) 140.00 (137.00, 143.00) 140.00 (137.00, 143.00) 140.00 (137.00, 143.00) 0.205

Potassium min, M  (Q1,  Q3) 3.80 (3.50, 4.20) 3.80 (3.50, 4.20) 3.90 (3.50, 4.30)  < 0.001

Potassium max, M  (Q1,  Q3) 4.40 (4.00, 4.90) 4.30 (4.00, 4.80) 4.50 (4.10, 5.20)  < 0.001

Urine output, M  (Q1,  Q3) 1585.00 (970.00, 2450.00) 1625.00 (1000.00, 2495.00) 1200.00 (692.00, 1900.00)  < 0.001

HR min, M  (Q1,  Q3) 69.00 (60.00, 81.00) 70.00 (60.00, 81.00) 68.00 (60.00, 80.00) 0.114

HR max, M  (Q1,  Q3) 103.00 (90.00, 117.00) 103.00 (90.00, 117.00) 101.00 (89.00, 117.00) 0.058

SBP min, M  (Q1,  Q3) 91.00 (82.00, 103.00) 92.00 (82.00, 104.00) 86.00 (77.00, 97.00)  < 0.001

SBP max, M  (Q1,  Q3) 150.00 (135.00, 166.00) 150.00 (135.00, 166.00) 148.00 (133.00, 165.00) 0.006

DBP min, M  (Q1,  Q3) 46.00 (40.00, 54.00) 47.00 (40.00, 55.00) 43.00 (36.00, 49.00)  < 0.001

DBP max, M  (Q1,  Q3) 88.00 (77.00, 101.00) 88.00 (77.00, 101.00) 84.00 (72.88, 98.00)  < 0.001

MBP min, M  (Q1,  Q3) 60.00 (52.00, 68.00) 60.00 (53.00, 68.00) 56.00 (49.00, 63.00)  < 0.001

MBP max, M  (Q1,  Q3) 104.00 (93.00, 117.00) 104.00 (93.00, 117.00) 101.00 (90.00, 116.00)  < 0.001

RR min, M  (Q1,  Q3) 12.00 (10.00, 15.00) 12.00 (10.00, 15.00) 13.00 (10.00, 15.00) 0.001

RR max, M  (Q1,  Q3) 27.00 (24.00, 32.00) 27.00 (24.00, 32.00) 28.00 (24.00, 33.00)  < 0.001

Temperature min, M  (Q1,  Q3) 36.50 (36.17, 36.72) 36.50 (36.22, 36.72) 36.39 (35.83, 36.67)  < 0.001

Temperature max, M  (Q1,  Q3) 37.33 (37.00, 37.89) 37.33 (37.00, 37.89) 37.39 (37.00, 37.89) 0.81

SpO2 min, M  (Q1,  Q3) 93.00 (90.00, 95.00) 93.00 (90.00, 95.00) 92.00 (89.00, 94.00)  < 0.001

Mechanical ventilation, n (%)  < 0.001

 No 8075 (48.86) 7599 (50.63) 476 (31.32)

 Yes 8453 (51.14) 7409 (49.37) 1044 (68.68)

CRRT, n (%)  < 0.001

 No 15,381 (93.06) 14,119 (94.08) 1262 (83.03)

 Yes 1147 (6.94) 889 (5.92) 258 (16.97)

Vasopressors, n (%)  < 0.001

 No 11,567 (69.98) 10,785 (71.86) 782 (51.45)

 Yes 4961 (30.02) 4223 (28.14) 738 (48.55)

Antibiotic, n (%)  < 0.001

 No 6944 (42.01) 6425 (42.81) 519 (34.14)

 Yes 9584 (57.99) 8583 (57.19) 1001 (65.86)
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robust generalizability. The externally validated ROC 
curve yielded an AUC of 0.769 (95% CI: 0.755–0.782), as 
illustrated in Fig. S2.

Interpretability analysis
Figure  5A presented a comprehensive swarm plot illus-
trating the variables in the XGBoost model. The hori-
zontal axis represented SHAP values, while the vertical 

axis displayed features sorted by their cumulative SHAP 
value impact. Each data pointed corresponds to a specific 
instance, with its position along the x-axis indicating the 
SHAP value for that particular instance and feature. Age, 
mechanical ventilation, urine output, sepsis, BUN,  SpO2, 
CRRT, and weight emerged as the eight most important 
factors in predicting NOAF. Figure 5B offered a detailed 
case study, demonstrating the model’s prediction process 
for a specific patient. In this visualization, yellow indica-
tors signified positive contributions to the prediction, 
while violet denoted negative influences. The f(x) value 
represented the actual SHAP value for each factor. Nota-
bly, for this particular patient, our XGBoost model pre-
dicted a higher risk of NOAF compared to the baseline. 

Fig. 2 Lasso regression-based variable screening. A. Variation characteristics of variable coefficients; B. The process of selecting the optimal value 
of the parameter λ in the lasso regression model is carried out by the cross-validation method

Fig. 3 ROC curves for the machine learning models. XGBoost: 
extreme gradient boosting; SVM: support vector machine; Adaboost: 
adaptive boosting; MLP: multilayer perceptron; NN: neural network; 
NB: naive bayes; LR: logistic regression; GBM: gradient boosting 
machine; ROC: receiver operating characteristic; AUC: area 
under the curve

Table 2 Performances of the machine learning models for 
predicting NOAF

NOAF New-onset atrial fibrillation, XGBoost: Extreme gradient boosting; 
SVM Support vector machine, Adaboost: Adaptive boosting, MLP Multilayer 
perceptron; NN Neural network; NB Naïve bayes, LR Logistic regression, GBM 
Gradient boosting machine

Model Sensitivity Specificity F1 score Accuracy Recall

Adaboost 0.804 0.743 0.780 0.773 0.804

GBM 0.815 0.763 0.794 0.789 0.815

LR 0.740 0.696 0.724 0.718 0.740

MLP 0.839 0.653 0.767 0.746 0.839

NB 0.691 0.736 0.707 0.713 0.691

NN 0.766 0.728 0.751 0.747 0.767

SVM 0.738 0.700 0.724 0.719 0.738

XGBoost 0.826 0.775 0.805 0.801 0.826
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The key factors driving this prediction, as determined by 
their SHAP values, were HFrEF, sepsis, weight and age.

Application of model
To enhance the clinical applicability of our model and 
facilitate rapid decision-making by clinicians, we used 
feature recursive elimination for a refined selection of 
variables (Fig. S3A). This optimization process allowed 

us to maximize model performance (ROC: 0.832) while 
streamlining the input to just 7 key variables (age, 
weight, mechanical ventilation, CRRT, vasopressors, 
HFrEF). To further improve accessibility and utility, 
we have deployed the optimized model on a dedicated 
website (https:// 7kdtqk- guanc hengc heng. shiny apps. 
io/ noaf3/). This user-friendly platform enabled clini-
cians to input a patient’s first-day metrics and promptly 

Fig. 4 Calibration capability and clinical benefit of the model. A. Calibration curve B. Clinical Impact Curve (CIC) C. Decision curve analysis (DCA), 
XGBoost: extreme gradient boosting; SVM: support vector machine; Adaboost: adaptive boosting; MLP: multilayer perceptron; NN: neural network; 
NB: naive bayes; LR: logistic regression; GBM: gradient boosting machine.

https://7kdtqk-guanchengcheng.shinyapps.io/noaf3/
https://7kdtqk-guanchengcheng.shinyapps.io/noaf3/
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Fig. 5 Visually interpret machine learning models using SHAP. A SHAP summary point. B SHAP force plot. SBP: systolic blood pressure; BUN: blood 
urea nitrogen;  SpO2: percutaneous arterial oxygen saturation; WBC: white blood cell; MBP: mean blood pressure; DBP: diastolic blood pressure; 
HFrEF: heart failure with reduced ejection fraction; HFpEF: heart failure with preserved ejection fraction
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assess their risk of NOAF. Moreover, the tool provided 
a detailed breakdown of how each characteristic con-
tributed to the overall risk assessment, offering valuable 
insights into the factors driving the prediction.

Discussion
We conducted a study to predict the risk of new-onset 
AF in critically ill patients. Eight ML algorithms were 
employed to construct predictive models by screening 23 
clinical variables within the first 24 h of ICU admission. 
The results demonstrated that the XGBoost algorithm 
exhibited strong performance, with discrimination and 
calibration, and showed a substantial net benefit in clini-
cal practice. The findings from the external validation 
cohort further confirmed the stability and accuracy of the 
model. To gain deeper insights into the model, we uti-
lized the SHAP method for visualization. The colony plot 
analysis revealed that eight characteristics, namely age, 
mechanical ventilation, urine output, sepsis, BUN,  SpO2, 
CRRT, and weight, had the most significant influence on 
the prediction of the XGBoost model. The SHAP force 
plot aimed to further elucidate the process of individual-
ized AF risk prediction by the model, enabling us to com-
prehensively understand its underlying mechanism.

Current guidelines and studies rarely address the man-
agement of NOAF in the ICU setting separately. The 
available evidence is primarily derived from observa-
tional studies and expert consensus, lacking uniform 
treatment principles for NOAF [23]. Moreover, even after 
successful restoration of sinus rhythm through treat-
ment, patients remain at a high risk of recurrence [24]. 
Consequently, early detection and intervention are cru-
cial for patients at high risk of developing AF.

Attempts to build predictive models for AF risk have 
been made many years ago, and a retrospective study 
extracted data from ICU patients for the first eight hours 
and modelled them using SVM algorithms with an AUC 
of 0.73 [25]. In addition, some researchers used tradi-
tional logistic regression modelling to obtain a general 
AUC (0.836) [26], but both studies lacked external vali-
dation and interpretation of the model. Jarne Verhaeghe 
et al. constructed three CatBoost models for prediction, 
obtained AUC values of 0.81 [27], and interpreted the 
model using the SHAP method, but did not perform clin-
ical transformation, which limits its application. Several 
other studies have used ECGs to construct models, but 
as mentioned above, short-term prediction did not give 
clinicians much time to process the situation, and clinical 
applications were limited.

The XGBoost algorithm is optimized based on gradi-
ent boosting decision trees, particularly in large datasets 
and complex feature spaces. In recent years, prediction 
models based on XGBoost have been widely used in the 

medical field, showing favorable performance in various 
areas such as septicemia, cardiovascular diseases, and 
kidney injury [28–30]. Compared to the traditional logis-
tic regression algorithm, the XGBoost model can effec-
tively capture non-linear relationships and build the final 
model by integrating several weak classifiers, resulting 
in better generalization ability. Moreover, the XGBoost 
model is robust to outliers and noisy data, further reduc-
ing noise in the dataset.

SHAP, as a method of interpreting ML model predic-
tion, can help to understand the prediction process and 
the contribution of features of the model to some extent. 
Age had been considered the most critical factor in the 
development of AF, consistent with previous studies 
[31]. The structure of the atrium and the electrophysi-
ological changes that occur with age made the conduc-
tion slow and the low voltage diffuse in some areas [32]. 
In addition, frailty and comorbidities associated with 
aging combine to reduce the body’s reserves for cop-
ing with stressful events and increase vulnerability to 
adverse outcomes such as oxidative stress, inflamma-
tion, interventions, and medications [33]. Renal insuf-
ficiency, manifested by decreased urine output, elevated 
BUN and the need for CRRT use, emerged as an impor-
tant predictor of NOAF. AF has been observed to be 
prevalent among patients with chronic renal insufficiency 
[34], and in intensive care settings, critically ill patients 
with acute kidney injury (AKI), especially those receiv-
ing CRRT, have a higher incidence of NOAF [35], which 
may be attributed to intravascular volume depletion dur-
ing RRT and electrolyte disturbances [36]. We observed 
that both HFrEF and HFpEF were risk factors for NOAF, 
and despite their distinct pathophysiological profiles, 
both forms of heart failure substantially elevated the 
risk of NOAF through complex mechanisms interacting 
with atrial structural remodeling, mitral regurgitation, 
and neurohumoral alterations [37]. Obese patients were 
often accompanied by epicardial fat deposition, systemic 
inflammation and elevated levels of oxidative stress, 
which promote the abnormality of atrial structure and 
electrophysiological function, and then induce AF [38]. 
Unfortunately, body mass index (BMI) data were not 
available due to the severe lack of height, but we still need 
to pay attention to the potential impact of overweight 
and obesity on AF. Interestingly, we observed that hyper-
tension was excluded at variable screening, although it 
was recognized as a risk factor for AF, whereas lower SBP 
was associated with NOAF in the ICU. Consistent with 
our study, a retrospective study in elderly hemodialysis 
patients confirmed that lower pre-dialysis SBP was asso-
ciated with a higher incidence of AF [39]. Another study, 
which identified single nucleotide polymorphism (SNP) 
loci associated with NOAF in intensive care patients, 
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confirmed that genetic factors (SNPs) associated with 
ambulatory AF may play a small role in the development 
of new AF in critically ill patients in ICUs. Conversely, 
acute environmental factors and physiological stress-
ors may be more important factors in the development 
of NOAF in critically ill patients [1, 40]. We suggest that 
hypotension implied an underlying circulatory disorder 
in the patient, by inducing a range of acute physiological 
stress responses and promoting the occurrence of NOAF 
in the ICU, a mechanism different from chronic atrial 
remodeling caused by hypertension. This study revealed 
a higher prevalence of sepsis and increased requirements 
for mechanical ventilation and vasopressor support 
among patients with NOAF. These findings were consist-
ent with previous research and highlight the significant 
impact of acute illness factors, particularly sepsis, on 
patient outcomes. Notably, these acute factors appeared 
to exert a more profound influence on patient’s prognosis 
than the traditional cardiovascular comorbidities typi-
cally associated with AF [41, 42].

Our model had also achieved predictive performance 
in external validation, suggesting that our model has 
good generalizability. In addition, because the variables 
we had screened were commonly used clinical indica-
tors, they were easy to measure and therefore easy to 
promote in hospitals at all levels. We had also designed a 
clinician-friendly interface that allows clinicians to easily 
predict AF risk and allocate resources based on predicted 
outcomes.

There were also limitations to our study. Primarily, the 
retrospective design introduced potential information 
bias, including data collection errors and missing data. 
While NOAF reported by bedside nurses demonstrated 
high accuracy, the possibility of omissions and false posi-
tives cannot be entirely excluded. Furthermore, due to 
the limitations inherent in the database, some certain 
potentially crucial indicators, including height, CK_MB 
and NT-proBNP, were missing, which might have inad-
vertently led to the omission of some key variables in our 
analysis, potentially impacting the comprehensiveness 
of our predictive model. Finally, although we used the 
MIMIC-III subset as an external validation, the data were 
from a single center and further large-scale prospective 
studies are needed to validate the accuracy of our model 
and its generalization to other populations. Nevertheless, 
we still believe that our model can help critical care phy-
sicians identify patients at high risk for AF in a timelier 
manner.

Conclusion
We developed a ML model to predict the risk of NOAF 
in critically ill patients without cardiac surgery and 
validated its potential as a clinically reliable tool. SHAP 

improves the interpretability of the model, enables 
clinicians to better understand the causes of NOAF, 
helped clinicians to prevent in advance and improves 
patient outcome.
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