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Abstract

Protein structure can provide new insight into the biological function of a protein and can enable the design of better
experiments to learn its biological roles. Moreover, deciphering the interactions of a protein with other molecules can contribute
to the understanding of the protein’s function within cellular processes. In this study, we apply a machine learning approach for
classifying RNA-binding proteins based on their three-dimensional structures. The method is based on characterizing unique
properties of electrostatic patches on the protein surface. Using an ensemble of general protein features and specific properties
extracted from the electrostatic patches, we have trained a support vector machine (SVM) to distinguish RNA-binding proteins
from other positively charged proteins that do not bind nucleic acids. Specifically, the method was applied on proteins
possessing the RNA recognition motif (RRM) and successfully classified RNA-binding proteins from RRM domains involved in
protein–protein interactions. Overall the method achieves 88% accuracy in classifying RNA-binding proteins, yet it cannot
distinguish RNA from DNA binding proteins. Nevertheless, by applying a multiclass SVM approach we were able to classify the
RNA-binding proteins based on their RNA targets, specifically, whether they bind a ribosomal RNA (rRNA), a transfer RNA (tRNA),
or messenger RNA (mRNA). Finally, we present here an innovative approach that does not rely on sequence or structural
homology and could be applied to identify novel RNA-binding proteins with unique folds and/or binding motifs.
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Introduction

In recent years, there has been a growing appreciation for the

importance of RNA and its interacting proteins. RNA-binding

proteins (RBPs) function both in basic cellular processes and as key

regulators of gene expression. Genome sequencing and analysis

has identified many highly conserved noncoding RNAs [1] as well

as numerous RBPs whose biological roles are still unknown. An

increasing amount of new evidence on noncoding RNAs suggests

that many other cellular processes may be mediated by RNA [2].

In most cases, RNA is found in complexes with proteins, either as

large ribonucleoprotein complexes (such as the ribosome) or in

more transient interactions (such as the helicase-RNA interactions)

[3]. Identification of proteins involved in interaction with RNA is

essential to unraveling the cellular processes in which these

interactions are involved.

RBPs are characterized by a modular structure and are

composed of multiple repeats that are built from a small number

of basic domains that are arranged in various ways in order to

satisfy their diverse functional requirements [4]. The RBPs can be

classified into different families based on their basic binding motifs,

for example: the RNA recognition motif (RRM), the KH domain,

the double stranded RNA-binding domain (dsRBD), and the zinc

finger motif [5]. Based on the first draft of the human genome, it

was estimated that there are more than a thousand RBPs with

known RNA-binding motifs in the genome. These numbers are

expected to increase dramatically when considering all proteins

that have RNA-binding capacities [6]. In recent years, new

RRMs, such as the PAZ domain and the PIWI motif, which are

found in the RNA-induced silencing complex (RISC), have been

identified [7], revealing distinct, novel modes of RNA recognition

[8]. An increasing amount of evidence on noncoding RNAs

suggest that new RNA-binding motifs are yet to be discovered [9].

For many years, computational methods for identifying RNA-

binding function based on structural information were not practical,

due to the great diversity of the proteins and lack of structural

information about them. With the exponential increase in the

number of proteins being identified by genomics and proteomics

projects, and specifically by structural genomics initiatives, predicting

RNA-binding function from structure is now feasible. Since it is

impractical to perform a functional assay for every uncharacterized

protein, scientists have been turning to sophisticated computational

methods for assistance in annotating the huge volume of sequence

and structural data being produced. To date, many techniques are

available for automatic function prediction, including: homology-

based methods, phylogenetic methods, sequence patterns, structural

similarity, structural patterns, methods based on genomic context,

and microarray expression data [10]. Among these, several

computational methods have concentrated specifically on predicting

DNA-binding proteins from three-dimensional (3D) structures [11–

16]. In addition, a couple of successful methods for prediction of

RNA-binding function based on primary sequence were recently

developed [17,18].

The structural work of the last decade has elucidated the

structures of many major RNA-binding protein families. Further-

more, the structures of proteins in complex with their RNA targets
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have shed light on how RNA recognition takes place [5]. Recently,

several bioinformatics approaches have been applied for identify-

ing RNA-binding sites on RBPs [19–22]. Here we present a

machine learning approach to classifying RBPs, in an attempt to

identify new RBPs with unique binding motifs. The method is

based on characterizing the structural and electrostatic properties

of the proteins. The electrostatic properties are mainly calculated

from patches on the protein surfaces that are automatically

extracted using our PatchFinderPlus algorithm [11,23]. Combin-

ing an ensemble of features, we train an SVM system to distinguish

RBPs from other non-nucleic-acid binding proteins that are

characterized by large positive patches on their surfaces, with a

very high accuracy of 88%. Applying a multiclass SVM, we show

that we can successfully classify RBPs based on their RNA target

(tRNA, rRNA, or mRNA), although we could not distinguish

DBPs from RBPs. Interestingly, when tested on a nonredundant

set of proteins that possess the RNA recognition motif (RRM), a

typical RNA-binding motif known to be also involved in ssDNA

binding and protein–protein interactions [24], we could success-

fully distinguish between RRM motifs involved in RNA-binding

and the atypical RRMs involved in protein interactions.

Results/Discussion

Dataset Construction
The tremendous increase in structural information on RBPs

enabled us to generate a nonredundant dataset of protein

structures on which we were able to perform a comprehensive

analysis. In the first step, we extracted from the Protein Data Bank

(PDB) all RBP structures solved either by X-ray crystallography or

by NMR. The original list was cleaned for redundancy by

removing all structures that had more than 25% identity (for

details see Materials and Methods). Further, the structures were

annotated using the SCOP classification [25] and only protein

chains including domains from unique families were retained in

the final dataset. Overall, the final set included 76 nonredundant

structures. As a control, we used a nonredundant database of 246

non-nucleic-acid binding protein chains (NNBP), used previously

for nucleic-acid binding (NA-binding) prediction [11].

Characteristic Features of RNA-Binding Proteins
The unique properties of the electrostatic surface

patches. RBPs bind RNA through a combination of structural

modules [4]. Similar to DBPs, RBPs are known to bind RNA

mostly via a positive electrostatic surface that complements the

negative electrostatic charge of the RNA [5]. To detect new

features that could be indicative of RNA binding, we extracted

from each protein in our dataset the largest electrostatic patch on

the protein surface using our PatchFinderPlus (PFplus) algorithm

[23]. The Patch Finder algorithm was originally developed to

automatically extract the largest positive patch from a protein

surface [11]. Many studies have demonstrated the importance of

electrostatic interactions in protein–DNA and protein–RNA

recognition [22,26,27]. Previously it was shown that in DBPs,

the largest positive patch of the protein encompasses, on average

80% of protein–DNA interface [11]. Interestingly, in the current

study, we found that the overlap between the largest positive patch

and the RNA–protein interface (interface was defined as described

in the Materials and Methods section) varied dramatically between

the different RBPs, ranging from 0% to 100% (Table S1). Figure 1

demonstrates the overlap between the largest positive patch and

the real RNA-binding interface for three different RBPs. As

exemplified in Figure 1A, in some proteins such as the L1

ribosomal proteins we found a very high overlap; whereas in other

cases, for example, in the rotavirus non-structural protein and in

the tymovirus coat protein shown in Figure 1B and 1C,

respectively, the largest positive electrostatic patches did not

coincide with the real binding interfaces. Overall, the average

Author Summary

Gene expression in all living organisms is regulated by a
complex set of events at both transcriptional and
posttranscriptional levels. RNA-binding proteins play a
key role in posttranscriptional events including splicing,
stability, transport, and translation. Nowadays, there is
increasing evidence that many other cellular processes
may be mediated by RNA. Identifying new proteins
involved in interaction with RNA is thus essential to
unraveling the cellular processes in which these interac-
tions are involved. In the current study we present a
successful computational approach for classifying RNA-
binding proteins and distinguishing them from other
proteins based on structural and electrostatic properties.
We test the method on a unique protein domain, the RNA
recognition motif (RRM), which mediates both RNA and
protein interactions. We show that we can discriminate
RNA-binding RRMs from protein-binding RRMs. Further,
we demonstrate that we can classify known RNA-binding
proteins based on their RNA target (mRNA, rRNA, or tRNA).
Our method does not rely on any kind of evolutionary
information and thus can be applied to identify RNA-
binding proteins with novel modes of RNA recognition.

Figure 1. The overlap between the largest positive patch and the real RNA-binding interface in three different RBPs. (A) L1 ribosomal
protein (1mzp), (B) rotavirus nonstructural protein (1knz), and (C) tymovirus coat and capsid binding protein (1ddl). The blue region represents the
largest positive patch, yellow is the real binding interface (calculated as described in the Materials and Methods section), and green denotes the
overlap between the extracted patch and the real interface. Notably, in (A) there is a large overlap (0.9) between the positive patch and the interface,
while a very small overlap (0.05) was observed in (C).
doi:10.1371/journal.pcbi.1000146.g001
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overlap was lower than the average overlap found previously for

DBPs with a large standard deviation (68%631% for RBPs).

The smaller overlap between the largest electrostatic patch and

the experimentally verified RNA-binding interface suggests that in

RBPs the interface may not always be a continuous patch, but

rather several clusters of positive charged residues that are

scattered on the protein surface. The large variation in the extent

of the overlap between the positive patch and the interface may be

related to the variability in the structural properties of the RNA.

While DNA usually encompasses a relatively simple double helical

structure, the three-dimensional structure of RNA is much more

diverse, and could interact with the protein via independent

regions that may not be continuous. For example, the tRNA

synthetases usually bind the tRNA via two major regions, one

region that binds the acceptor end of the tRNA and another

region that binds the anticodon stem and loop region [28].

In order to obtain a better representation of the RNA-binding

interface, we analyzed the ten largest positive patches for each

protein as well as the largest negative patch. The negative patch

was defined as a continuous patch of grid points on the protein

surface with an electrostatic potential of less than 22 kT/e (see

Materials and Methods). Table S2 shows the average patch size

and the percent overlap between the patch and the interface

(relative to the interface and to the patch) for all 11 patches.

Though on average the size of the largest positive patch was only

double the average size of the negative patch, the overlap between

the patch and the real binding interface (normalized to the size of

the interface) was approximately five times larger for the largest

positive patch compared to the largest negative patch. However in

order to better represent the interface of RBPs, specifically for

proteins with unique binding strategies such as the rotavirus

protein shown in Figure 1B, we included in our analysis the three

largest positive patches as well as the largest negative patch. Taken

together these four patches cover on average 88% of the real

interface, relative to 96% interface coverage when considering all

11 electrostatic patches (Table S2). Figure 2 illustrates the four

different electrostatic patches on the surface of Aspartyl-tRNA

Synthetase (PDB code: 1asy). As demonstrated, in the specific case

of tRNA synthetase, it seems that the protein binds to the acceptor

end of the tRNA close to the largest negative patch while the

anticodon stem loop interacts with the second largest positive

patch. It has been previously suggested that the positive patch in

the center of the aminoacyl-tRNA synthetase has an important

role in long range interactions, being the driving force for primary

recognition [29]. It is important to note that in our method the

electrostatic calculations were conducted on the monomer while

most tRNA synthetases bind as dimers or tetramers, so the

electrostatic properties of the biological binding interface may

differ from the picture presented in Figure 2.

As expected, we generally found that RBPs tend to have large

positive patches on their surfaces. However, as was reported

previously [11], many NNBPs also have large patches. Figure 3

represents the average potential and size of the largest positive

patches in the data set of RBPs compared to DBPs and to a

random set of NNBPs. The latter two datasets were extracted from

Stawiski et al. [11]. In order to determine if the group of NNBPs

with large patches differs from RNA-binding proteins by other

properties, we sorted the control set of NNBPs based on the size of

the largest positive patch and extracted an equal subset of 76 top-

ranked NNBPs (see Materials and Methods). Our further analyses

were conducted on three different datasets: RBPs, NNBP large-

patch, and NNBP all. Among the features analyzed, we calculated

18 different structural and sequence features related to the largest

positive patch, seven general protein features, four features related

to the clefts on protein surface and the overlap between the clefts

and the patch (a full list of the parameters and their description

can be found in the Materials and Methods section). Averages and

standard deviations were calculated for each feature in each

subgroup. In addition, we applied standard statistic analyses (T-

test and F-test) to test whether the averages and variances showed

significant differences between the groups (Dataset S1). In addition

we calculated the Spearman correlation coefficient for each

parameter; the correlation coefficient (CC) values for the RBP vs.

NNBP are shown in Figure S1. As demonstrated in the table and

figure, when comparing the RBPs to the NNBPs, a number of

parameters showed a significant difference. Among this set of

features, the total clefts-patch overlap and the hydrogen bond

potential donors showed the most significant difference between

the groups (p-value for T-test 4.6E-28 and 2.7E-24, respectively).

As expected, when comparing the patch features between the

RBPs and the subset of the large patch NNBPs, the parameters

related to the patch size were less able to distinguish between the

two subsets. However other parameters of the patch, such as patch

roughness and surface accessibility of the patch were among the

most significant parameters (Dataset S1).

In order to examine whether other positive patches on the

protein surface may contribute to characterize RNA-binding

proteins, we calculated different features of the second and third

patches and examined whether they differed between RBP and

NNBP. Among these parameters, we included properties that are

related to the patches themselves, such as the number of atoms in

the patch, the average distance between the three positive patches

Figure 2. Illustration of the three positive electrostatic patches
in the aspartyl tRNA synthetase (1asy). The largest patch is
colored blue, the second largest patch is magenta, the third largest
patch is cyan, and the negative patch is colored red. Interestingly, for
the tRNA-binding proteins the protein binds via both the positive and
the negative electrostatic patches.
doi:10.1371/journal.pcbi.1000146.g002
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and the distance between each of the positive patches and the

negative patch. Overall, we extracted ten new parameters related

to the additional patches (for details see the Materials and Methods

section). The statistical analyses conducted on these ten param-

eters demonstrate that the sizes of the other positive patches as well

as the largest negative patch were significantly different between

the RBPs and NNBPs, with the largest differences observed for the

third largest positive patch (Dataset S1). We found consistently

that the size of the ‘‘other patches’’ was significantly different

between the RBPs and the subset of large patch NNBPs.

Surprisingly, we found that on average the size of the ‘‘other

patches’’ including the negative patch was smaller in RBPs

compared to the NNBP (Figure S1). Thus, though in unique cases,

such as in tRNA-binding proteins, the secondary electrostatic

patches (i.e., negative and second and third largest patches) may be

involved in interactions with the RNA (either directly or indirectly

via counter ions [30]), in the majority of RBPs the largest positive

patch is the most significant electrostatic surface patch.

It has been shown previously that evolutionary information, i.e.,

the conservation of residues within the electrostatic patch, holds

information on DNA-binding function and improves functional

prediction [11,27,31]. However, evolutionary information may

not be available when predicting novel structures. Furthermore, it

has been claimed that adding evolutionary information to

automatic predictions is time consuming [12,13,32]. Interestingly,

in the current study, the conservation parameters of the patch

were not found to be significantly different between RBPs and

NNBPs, possibly due to the lack of informative evolutionary data

available for the RBPs in our set. Nevertheless, in order to speed

up the method and allow for identification of novel structures, we

did not include evolutionary information within our feature set.

The fact that the current method does not rely on any type of

evolutionary information makes it distinctive from all other

available methods for predicting nucleic acid binding properties

from structure (e.g., [11]).

Global protein features. In addition to the features

extracted from the surfaces patches alone, we calculated other

global parameters of each protein, such as the molecular weight of

the protein, the protein’s surface accessibility, the size of the largest

clefts on the protein’s surface, and the overlap between the clefts

and the patches. Among the general properties, the molecular

weight and surface accessibility were significantly lower in the

RBPs compared to NNBPs, both when considering the full set of

NNBPs as well as when analyzing the subset of NNBPs with large

positive patches (Dataset S1). As described above, the most

significant parameter (when considering the full control set) was

the percent overlap between the largest clefts of the protein surface

and the largest positive patch, which was clearly higher in RBPs.

Although the overlap between the surface clefts and the electrostatic

patch was not the most significant parameter when comparing the

RBPs to the NNBPs with large patches, it was still found to be

significantly higher in the RBPs (p-value for T-test 6E-4).

In a previous study, Ahmad and Sarai observed a higher electric

moment in DBPs relative to other non-DNA binding proteins

[33]. Recently, Fedler et al. [34] have shown that a high moment

dipole is characteristic of all nucleic acid binding proteins,

including ribosomal proteins. We calculated the dipole and

quadrupole moments for all the proteins in our dataset. As

Figure 3. Patch size and surface potential of RBPs, DBPs, and NNBPs. Patch size is plotted against the average surface potential for all RBPs
(black diamonds) compared to DNA-binding proteins (crosses) and non-NA binding proteins (open diamonds). As can be noticed, a large number of
NNBP are characterized by relative large patch size.
doi:10.1371/journal.pcbi.1000146.g003
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expected, the dipole moment was significantly higher in the RBPs

compared to NNBPs. When comparing the dipole moment

between the RBPs and the NNBPs with large patches, only the

F-test showed a highly significant difference.

Classifying RNA-Binding Proteins Using a Support Vector
Machine

In order to examine whether the calculated features can be used

to distinguish the RBPs from other proteins (specifically NNBPs

that possess large positive patches), we applied a machine learning

approach, namely, the support vector machine (SVM). SVMs are

supervised learning methods; they take as inputs a set of features,

called feature vectors, to train a model and output a classification

for a query based on the model. After being trained on a set of

feature vectors whose expected outputs were already known,

SVMs are able to classify new input vectors. Recently, SVMs have

been increasingly used in addressing the problems of protein

classification, including fold recognition [35] protein structural

class prediction [36], protein–protein interaction [37], membrane

protein type recognition [38,39], and G-protein coupled receptors

classification [40]. Furthermore, SVMs have been utilized to solve

protein classification problems and were shown to complement

other methods that are based on sequence similarity [41].

We applied an SVM classifier to distinguish between the

nonredundant set of RBPs and the NNBPs, as well as between the

RBPs and the subset of NNBPs with large positive patches. For

training, we applied a normalized feature vector that included all

40 sequence and structural parameters that were extracted from

both the electrostatic patches and from the whole protein. For

testing, we applied a cross-validation (leave one out) test, where for

each SVM run, one protein was extracted from the training and

tested separately. To evaluate the SVM performance, we plotted

the ROC curve (receiver operating characteristic) describing the

relationship between the false positive rate (FPR) and the true

positive rate (TPR). The results of the SVM test are illustrated in

Figure 4; overall we could successfully distinguish RBPs from

NNBPs and from the subset of large-patch NNBPs with 88% and

86% accuracy, respectively (details in Table 1). The areas under

the curve (AUCs) calculated for these experiments were 0.9 and

0.88, for the full and subset, respectively. The high performance

achieved for distinguishing RBPs from other protein with large

patches is extremely encouraging, since by visual inspection of the

physical and electrostatic properties of the proteins one cannot

distinguish between the two functionally different groups.

Furthermore, when calculating each parameter independently,

many of the properties did not show significant differences

between the RBPs and NNBPs with large positive patches; only

by combining all parameters using an SVM could we clearly

distinguish between the groups. These results imply that RBPs

have unique properties that can distinguish them from proteins

that do not bind nucleic acids. Importantly, the distinctive

properties do not relate either to the fold of the protein or to its

binding motif.

To ensure that the good performance of the cross-validation test

was not due to overfitting of the data, we tested an independent set

of hypothetical proteins from the PDB database, which were

solved by structural genomics projects and classified as RNA-

binding proteins. To prevent circularity, the hypothetical proteins

chosen for the test did not share more than 25% identity with any

of the proteins in our training set, each representing a different fold

and a different RNA-binding motif. Furthermore, since in many

cases RNA binding is automatically predicted based on the

existence of a known RNA-binding motif or sequence similarity,

we included in the testing set only proteins that were verified

experimentally to bind RNA (detailed description of the test set is

Figure 4. ROC plots illustrating the SVM results for RBPs classification. In black, RNA-binding proteins versus non-NA-binding proteins
(AUC = 0.90); in red, RNA-binding proteins versus non-NA-binding proteins with large patches (AUC = 0.88); in green, RNA-binding proteins versus
non-NA-binding proteins when including only the electrostatic patch properties (AUC = 0.81).
doi:10.1371/journal.pcbi.1000146.g004
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given in Table S3). Overall we tested 13 proteins verified

experimentally to bind RNA and 10 (78%) were successfully

predicted as RBPs. Interestingly, all three false negative results

were annotated to be involved in tRNA binding.

RNA-Binding Proteins vs. DNA-Binding Proteins
Since RBPs share many common characteristics with DBPs in

terms of their electrostatics and structural features, clearly the most

challenging goal would be to distinguish between these two groups.

Several studies have demonstrated that RNA-protein recognition

differs from DNA recognition in several aspects [22,42,43]. Since

the RNA and the DNA adopt different helical parameters, dsDNA

usually adopting a B-form while dsRNA adopts A-form helices

frequently interrupted by internal loops and bulges [44], it is

expected that the electrostatic patches will differ between the two

types of NA binding proteins. As a first step we examined whether

the new feature set selected for predicting RBPs would be as

efficient for predicting DBPs. To test this, we calculated the 40

features for the set of nonredundant DNA binding proteins and

built an SVM classifier for DBPs vs. NNBP. As for the RBP

classifier, here too we tested the DBPs against the set of

nonredundant NNBPs applied in Stawiski et al. [11,45]. Overall

the SVM performed similarly to the RBP vs. NNBP classifier,

though with lower accuracy (85%). Interestingly, the current SVM

results were slightly inferior to those previously reported with

artificial neural network (ANN) classifiers [11]. These results are as

expected, since the feature set we used in the current study was

specifically designed for predicting RBPs and excluded the

evolutionary information. Nevertheless, the relatively high perfor-

mance achieved for predicting DBPs reinforces that the two sets of

NA binding proteins have much in common. Next, we examined

how well the SVM classifier discriminates between RBP and

DBPs. Using the set of 40 features we were not able to distinguish

RBPs from DBPs (Table 1).

It is well established that certain RNA-binding motifs can also

bind DNA and vice versa (e.g., [46]). Furthermore, it is anticipated

that nucleic-acid binding proteins have several roles in gene

expression pathways and thus potentially have the intrinsic ability

to bind both DNA and RNA [47]. Nevertheless, after excluding from

our training data all proteins that bind via motifs known to bind both

DNA and RNA (e.g., C2H2 zinc finger) and generating two unique

data sets, single strand RBPs (ssRBPs) vs. double stranded DBPs

(dsDBPs), we still could not distinguish between the RPBs and DBPs

based on the above parameters. When testing on 36 dsDNA vs. 40

ssRNA-binding proteins (full list given in the Materials and Methods

section), we classified only 19 as DNA-binding and 21 as RNA-

binding, achieving a weak overall accuracy of 47%. This suggests

that further refinement of nucleic-acid binding function will be

required in order to build a classifier to distinguish exclusively RNA-

binders from DNA binding proteins.

Feature Selection
To further study the role of the electrostatic properties in

discriminating RBSs from NNBPs we excluded from the SVM

classifier all features related to the protein parameter group

(features 19–25 in Dataset S1). Though the SVM performance was

evidently reduced upon eliminating these features (Table 1 and

Figure 4), we still found that the electrostatic features were

sufficient for distinguishing RBPs from NNBPs. Further, to test

which of the calculated features contributes most to the RNA-

binding prediction, we performed a Recursive Feature Elimination

procedure (RFE) (see Materials and Methods). When applying the

RFE algorithm to our data, eliminating 50% of the features at

each iteration, for the first three rounds of selection we did not

observe notable changes in the AUC value. Only in the fourth

iteration did the SVM performance decrease dramatically. The

lists of the selected features that were retained in the third iteration

(both when testing RBPs vs. all proteins and the RBPs versus

NNBPs with large-patches) are shown in Table 2. As expected, the

majority of features (8/10) selected among the top ten properties in

the RBPs vs. NNBPs classifier were electrostatic-related features.

Interestingly, there was a large overlap between the top ten

parameters that were selected with the RFE algorithm in both

classifiers. These results reinforce that the differences between the

RBPs and the NNBPs are related to the function of the RBP and

not simply to the size of the patch.

To further test the contribution of each one of the top ten

parameters to the final SVM performance we conducted a

backwards feature selection procedure and eliminated, in turn,

each one of the parameters from the feature set and repeated the

SVM testing (using the same cross-validation approach). For each

test, we calculated the DAUC, which is the difference between the

AUC achieved when including the feature and the AUC after

excluding the feature. When testing on the full dataset of RBPs vs.

NNBPs, no notable reduction was observed after eliminating a

single parameter from the top ten list. Generally, the DAUC

analysis suggests that all features that were selected by the RFE

contribute equally to the SVM performance. Nevertheless, as

shown in Table 1, when including only the top ten features in the

RBP vs. NNBP classifier, the SVM achieved the same results as

with the full parameter set. However, in the more challenging case

of RBPs vs. the large patch NNBP set, all 40 features were needed

to achieve the best performance (both in terms of sensitivity and

selectivity). Thus for achieving the best performance for RNA-

Table 1. Summary of SVM results for different classifiers.

FP FN TP TN AUC Sensitivity (%) Specificity (%) Accuracy (%) MCC

RBPs vs. NNBPs 40 parameters 24 16 60 222 0.90 80 90 88 0.67

RBPs vs. NNBPs 10 to parameters 31 14 44 215 0.90 76 87 80 0.54

RBPs vs. NNBPs electrostatics features only 99 11 65 147 0.81 86 60 66 0.38

RBPs vs. NNBPs large patches 7 15 61 69 0.88 80 91 86 0.72

RBPs vs. DBPs 29 36 40 29 0.51 53 50 51 0.03

The table summarizes the SVM results for four different classifiers: RBPs vs. NNBPs (40 parameters), RBPs vs. NNBPs (10 top parameters), RBPs vs. NNBPs including only
electrostatic patch features (34 parameters), RBP vs. large-patch NNBPs, and RBP vs. DBP.
TP, true positives; TN, true negatives; FP, false positive; FN, false negatives; AUC, area under the curve. Sensitivity, specificity, accuracy, and MCC (Matthew’s correlation
coefficient) were calculated as described in Materials and Methods section.
doi:10.1371/journal.pcbi.1000146.t001
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binding classification in general, we consistently use the extended

classifier.

Independent Testing on an RNA-Binding Motif: The RRM
as a Test Case

Although the 76 RBPs in our positive set were cleaned for

redundancy both at the sequence and structural (family) level,

within the structural groups we still had representatives of RBPs

with a common binding motif (e.g., two proteins with an RRM

motif). In order to be confident that the SVM results do not

depend on having several proteins sharing the same binding motif

within our dataset, we applied a motif-independent test. In this test

we withheld, in turn, all proteins sharing a common binding motif

and trained the SVM on the remaining proteins (Table S4). We

then tested each member of the binding motif family on an SVM

classifier from which that group had been completely withheld. As

shown, the motif test performed exactly the same as the original

test did, with very slight differences in the discriminating values

obtained for each tested protein (Table S5). Interestingly, there

was one motif group of tRNA-binding proteins which was

completely misclassified (seven out of seven proteins) using both

the RBP classifiers (leave-one-out vs. leave-family-out).

Overall the SVM results suggested that in the majority of cases

RBPs can be uniquely characterized, independent of their binding

motif. These results encouraged us to further test whether our

method could discriminate RNA from non-RNA-binding proteins

that possess a common binding motif. The RRM is one of the

most abundant protein domains in eukaryotes. This motif is a

classical RNA-binding motif, however it has been found to appear

in a few ssDBPs, and most interestingly, in many proteins the

RRM motif is involved in protein-protein interactions [24]. While

the RRMs that mediate protein interactions commonly interact

both with RNA and protein (frequently the protein-protein

interactions are between two RRMs), in unique cases the RRM

is solely involved in protein–protein interactions [24]. To test

whether our method can distinguish between these cases, we

obtained from the PDB a nonredundant set of protein chains that

possess an RRM domain (Table S6). The structures were

extracted automatically from PDB using a 35% sequence identity

cutoff. The existence of the RRM motif was further verified

against the pfam database [48]. Further, we tested each of the 27

protein chains with our SVM classifier using all 40 features.

Consistent with the motif-independent test, the proteins were

tested against a classifier in which the two original proteins

including an RRM were excluded from the training. Overall,

amongst the 27 protein chains, 21 were classified as RBPs, with

one marginal prediction and six chains classified as NNBPs (Table

S6).

Amid the six protein chains that were classified as NNBPs was

the RRM domain of Y14 from the Y14-Magoh complex (PDB

code: 1rk8A), which has been confirmed experimentally to be

involved only in protein-protein interactions [24,49]. In addition,

the RRM1 domain of the SET1 histone methyltransferase (PDB

code: 2j8aA) was classified as NNBP. The latter result is consistent

with experimental studies which have shown that the RRM1 of

the SET1 protein does not bind RNA in vitro, suggesting that the

protein may be involved in RNA binding in vivo only via RRM–

RRM interactions [50]. Three other chains that were predicted as

NNBPs are the RRM of U2AF 35 (PDB code: 1jmtA) and the

atypical RRMs (U2AF-homology motif) of U2AF65 and SFP45

(PDB codes: 1opiA and 2pe8A, respectively); all three were

confirmed to be involved in protein–protein interactions in the

spliceosome [51]. Interestingly the protein chain of the splicing

factor SRp20, including an RRM and a TAP binding motif (PDB

code: 2i2yA), was also classified as NNBP. It is plausible that these

results are influenced by the existence of the TAP protein binding

domain within the protein chain [52]. Notably, among the chains

classified as RBPs, only in the case of elF3 (PDB code: 2nlwA) was

our classification in contradiction to the experimental data, which

suggests that the RRM motif does not bind RNA directly [53].

The elFj is part of a large multiprotein complex involved in

initiation of translation in eukaryotes, binding the 40s ribosomal

subunit. Recent studies have shown that the RRM of elFj interacts

with elFb, which directly binds the ribosome [53]. Interestingly,

we found the largest positive patch of the surface of elFj is on the

opposite side of the RRM (data not shown), suggesting that the

protein might not be interacting with the rRNA via the RRM.

Consistent with our previous result, the RRMs of UP1, which

binds RNA and ssDNA, was classified as RNA binding.

Overall, our results suggest that we can distinguish between

RRM motifs involved in nucleic acid binding from those that are

involved in protein–protein interactions. However, since our

current method can only distinguish RNA from non-NA binding,

in the ambiguous cases where the protein is involved in both RNA

and protein interactions (either via the RRM motif or another

motif), the SVM results may not be sufficient for prediction. To

better understand which of the features used for the SVM training

contributed to the ability of the classifier to distinguish the RNA

from non-RNA-binding RRMs, we split the data into positive and

negative predictions and applied the Mann–Whitney–Wilcoxon

test on each one of the 40 parameters. Interestingly, the features

that showed the most significant differences between the positive

and negative groups were the features related to the electrostatic

patches (Table S7). Figure 5 illustrates the largest positive patch in

the U2B0–U2A9 complex (PDB code: 1a9nA), including an RRM

known to be involved both in RNA and protein interactions, in

comparison to the largest electrostatic patch in the Y14 proteins

Table 2. Summary of the discriminating features selected by
SVM-RFE.

Feature

RNA-binding vs.
non-RNA-binding

RNA-binding vs.
non-RNA-binding
largest patches

F-test T-test T-test F-test

Molecular weight 2.7E-07 8.5E-02 9.8E-08 8.8E-01

Protein surface accessibility 4.9E-03 8.2E-01 5.2E-05 2.7E-09

Patch potential 5.5E-15 8.5E-15 2.2E-01 2.3E-07

Patch surface accessibility 1.9E-21 1.9E-13 3.0E-01 2.7E-09

Quadrupole 2.5E-02 1.7E-07 NA NA

Dipole 2.0E-10 1.5E-31 8.5E-02 5.5E-12

Patch size 1.3E-19 1.8E-17 1.9E-01 1.0E-08

Number of atoms in largest
positive patch

8.6E-08 1.8E-03 4.8E-01 6.6E-02

Patch surface overlap 4.6E-28 5.7E-09 6.1E-04 5.8E-05

Number of atoms in the
negative patch

4.4E-03 7.1E-11 3.4E-04 1.0E-07

Size of largest cleft NA NA 1.5E-02 6.4E-01

P-values are given for the T and F statistics for the two different classifiers: RBPs
vs. NNBP (left) and RBPs vs. NNBPs with large patch (right). Bold numbers
represent statistically significant results, where the Bonferroni correction was
applied for multiple testing. NA denotes that the parameter was not selected by
the RFE procedure for the specific classifier, and thus statistical analysis was not
applied.
doi:10.1371/journal.pcbi.1000146.t002
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(PDB code: 1rk8A), including an RRM motif which is involved

only in protein-protein interactions. In the U2B0–U2A9 complex,

the large positive patch (blue) overlaps the RRM (green), which

interacts directly with the RNA, while in the Y14 complex the

largest positive patch is relatively small and does not overlap with

the RRM motif, which is involved in the interaction with the

Magoh protein.

The Unique Properties of tRNA-binding Proteins
A critical step in evaluating the strength of a classifier is to

carefully examine the cases were it fails (i.e., the false negatives and

the false positives). As mentioned earlier, when we analyzed the

results of the SVM, we discovered that amongst the false negative

results there were several tRNA-binding proteins. Previous

structure analysis of the aminoacyl-tRNA synthetases demonstrat-

ed that these proteins bind tRNA via multiple domains, each of

which independently recognizes different sites on the RNA [54].

In addition, it has been observed that the aminoacyl tRNA

synthetases possess an unexpectedly negatively charged surface

[29]. Other RBPs, such as the bacterial release factors that mimic

tRNA also have highly negatively charged surfaces [55]. To

further explore the unique properties of tRNA-binding proteins,

we generated a set of 13 nonredundant tRNA-binding proteins

that share not more than 25% sequence identity among them (six

of them were in our original dataset). Further, we built a new SVM

classifier for the 13 tRNA-binding proteins against all RBPs

(excluding the tRNA-binding proteins). Applying a cross validation

test, the SVM was able to separate the two data sets with very high

accuracy (AUC = 0.94). Interestingly, when testing the misclassi-

fied proteins from the hypothetical test (Table S3) against the

tRNA vs. RBPs classifier, all three proteins were classified correctly

as tRNA-binding. These results are consistent with previous

studies on tRNA-binding proteins that showed a very different

mode of binding to RNA relative to other RNA-binding proteins

[56], and are also consistent with recent sequence-based RNA-

binding predictions, which demonstrated high prediction accuracy

for tRNA-binding proteins [17,18].

To test which are the most significant features for distinguishing

between the tRNA-binding proteins and all other RBPs, we

calculated the Spearman correlation coefficient (CC) of each one

of the 40 features. Figure 6 demonstrates the correlation values (r)

for the 40 features (numbered as in Dataset S1). Interestingly, the

features that showed the highest correlations were the molecular

weight and surface accessibility of the whole protein (colored in

red); both were significantly higher in the tRNA group (p,10216),

suggesting that tRNA-binding proteins are generally larger than

other RBPs in our data. In addition, the roughness of the large

positive patch was significantly greater in the tRNA group, while

the average surface accessibility was lower in the group of tRNA

binders compared to other RBPs. Strikingly, as can be noticed on

the right hand side (blue bars) of Figure 6, all the ten features

related to the ‘‘other patches’’ (i.e., the size of the negative, second

and third patch, distances between the patches, etc.) were among

the top ranked features that showed a significant, high CC. These

results emphasize that the tRNA-binding proteins have unique

electrostatic properties that can be utilized for identifying novel

proteins possibly involved in tRNA processing. Moreover, we

noticed that the electrostatic properties distinguishing between the

tRNA and the other RBPs are mainly related to the secondary

patches and not to the largest positive patch.

Multiclass SVM
Following these observations, we were encouraged to test

whether we could automatically distinguish between different

RNA-binding strategies of known RNA-binding proteins. Previ-

ously, a multi-SVM approach was applied for classifying genes

involved in different stages of the gene-expression pathway into

subclasses based on microarray data [47,56]. To test whether a

multiclass approach could be applied for classifying subsets of

RBPs based on the type of RNA they bind, we built three new

SVM classifiers, which were trained on experimentally verified

RBPs: an rRNA-binding protein classifier, an mRNA-binding

protein classifier and a tRNA-binding protein classifier (see

Materials and Methods). It is important to note that the groups

were not split based on the RNA-binding motif and in several

cases the same motif (such as the KH motif or the zinc finger

motif) was found in different subsets. The 82 RBPs were tested

subsequently on each of the three classifiers (in each case, the

tested protein was held out from the training set). Finally, a protein

was assigned a value based on the classifier in which it achieved

the highest positive discriminating value. The results of the multi-

SVM test are shown in Figure 7 and summarized in Table 3

(detailed results are given in Table S8). As demonstrated in

Table 3, in all three subclasses the highest number of proteins was

correctly assigned to the appropriate subgroup. As expected, the

best results were obtained for the tRNA-binding proteins, where

13 of the 13 tRNA-binding proteins were clearly assigned as

tRNA-binding. As can be observed in Figure 7C, the majority of

tRNA-binding proteins also achieved a positive score in the

mRNA classifier, though in all cases the scores were lower than for

the tRNA classifier. Different studies have demonstrated that

tRNA synthetases are also involved in mRNA-binding; for

example, it was recently shown that the Glu-Pro tRNA synthetase

has a role in blocking the synthesis of specific proteins by binding

to the 39 UTR of their mRNA [57]. In the rRNA-binding protein

group, while the majority of the proteins (70%) scored the highest

in the correct rRNA classifier, some proteins were still misclassi-

fied. Among the 14 misclassified proteins, nine were classified as

mRNA and five as tRNA (Figure 7B and Table S8). These results

are consistent with the notion that ribosomal proteins have several

other functions in the gene expression pathway [58]. Interestingly,

included in the set of rRNA proteins that were misclassified as

tRNA, was the ribotoxin restrictocin bound to the sarcin/ricin

Figure 5. The largest electrostatic patch mapped on the
protein structure of two RRM domains. (A) The U2 snRNP A9 from
the U2B0–U2A9 complex (1a9nA) and (B) the Y14 protein from the Y14-
Magoh complex (1rk8A). Blue represents the largest electrostatic patch
and green the RRM motif as defined by pfam. For the RNA-binding RRM
domain the largest electrostatic patch overlaps the RNA-binding
interface, while no overlap is observed between the largest electrostatic
patch and the protein-protein interface of the Y14 protein. Notably, the
largest positive patch is much smaller in the latter case.
doi:10.1371/journal.pcbi.1000146.g005
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domain (SRD) from the large ribosome subunit (PDB code 1jbr).

This toxin disrupts elongation factor binding to the SRD domain

that also binds tRNA [59]. Notably, our classification is purely

based on structural information and does not rely on homology

information, and thus it is expected to achieve lower performance

compared to available sequence-based rRNA classification [17].

Finally, for the mRNA group we collected 23 nonredundant

proteins: 13 proteins that bind mRNA at the different stages of the

gene expression pathway (transcription, splicing, polyadenylation,

etc.) and ten other proteins that bind mRNA such as hydrolases,

export factors, viral mRNA, binding, etc. (for details see Table S8).

Overall, amongst the 23 mRNA-binding proteins composed of

different binding motifs, 73% of the proteins were assigned

correctly (Figure 7A). Among the false negatives, five were

predicted as rRNA. Notably, the false negative mRNA-binding

proteins did not belong to a certain binding motif or fold (2 KH, 1

RRM, 1 LRR, 1 PUF, and 1 Zinc Finger), again reinforcing that

our classification is motif-independent.

Electrostatic Patch and RNA-Binding Interface
As noted, the basic assumption behind our algorithm was that

the electrostatic patch is related to the nucleic acid binding

interface. Thus it is expected that the success of the method would

depend on the correlation between the patch residues (identified

automatically by our algorithm) and the experimentally defined

RNA-binding interfaces. We previously found that in DNA

binding proteins the largest positive patch of the protein

encompasses, on average 80% of the protein-DNA interface

[11]. As demonstrated in Figure 1, the positive patch of the RBPs

does not always coincide with the real binding interface. Here we

tested the correlation between the patch–interface overlap and the

confidence of the RNA-binding classification, as derived from the

SVM. Applying an SVM, each tested protein was assigned a

discriminating value (generally the distance of the protein from the

hyper plane). As illustrated in Figure 8, when applying a Spearman

correlation coefficient, we found a significant positive correlation

(r= 0.64, p,1028) between the percent overlap of the positive

electrostatic patch and RBP interface and the discriminating value

obtained by the SVM. These results imply that the success of the

method at classifying RBPs from NNBP strongly relies on the

degree of overlap between the largest positive patch and the

binding interface. The correlation between the patch-interface

overlap and the SVM performance is also consistent with the

feature selection results that showed that the majority of the

features contributing to the performance were associated with the

largest positive patch.

Conclusions
In this study we applied a machine learning approach to classify

RNA-binding function from the 3D structure of the protein. Using

features extracted from the positive electrostatic patches on RNA

and non-nucleic-acid binding proteins, we trained an SVM to

classify RBPs. We show that our method successfully distinguishes,

with relatively high accuracy (88%), the RBPs from other proteins

that do not bind nucleic acids. Similar results were achieved both

when applying a cross-validation (leave one out) approach and

when testing an independent set of proteins solved by a structural

genomics initiative and confirmed experimentally to bind RNA.

However, our method was not able to distinguish between RNA

and DNA binding proteins. Interestingly, although the RBPs were

distinguished from non-nucleic acid binding proteins by a

combination of properties, we show that the success of the

Figure 6. Spearman correlation coefficient values (r) calculated for each one of the 40 features comparing tRNA vs. all RBPs. The
features are colored by group ( detailed numbers are given in Dataset S1): Dark blue represent features related to the largest positive patch, in red are
features related to the whole protein, in green are cleft-patch related features, and in cyan are the ‘‘other patches’’ features. The protein feature and
the features related to the secondary electrostatic patches showed the highest CC with a positive sign, denoting that these features are greater in the
tRNA group.
doi:10.1371/journal.pcbi.1000146.g006
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classification strongly depends on the degree of overlap between

the largest positive patch and the real binding interface.

Furthermore, we could show that the results do not depend on

the RNA-binding motif, and correct classification was also

achieved when we withheld all proteins that share a similar

binding motif. Overall, our method is applicable for classifying

RBPs that are generally very diverse in terms of their structure,

function, and RNA recognition motifs. Moreover, since the

method does not rely on sequence or structure conservation, we

suggest that it could be applied to identify novel nucleic acid

binding proteins with unique binding motifs.

One of the great challenges in classifying ligand binding proteins

(such as RBPs) is to be able to identify to which ligand it will bind.

For this purpose, we have applied a multiclass SVM classifier, which

was trained on three different groups of known RBPs classified

according to their RNA target: tRNA, rRNA, or mRNA. In the

majority of cases, given that a protein is a RBP, we could assign it to a

specific subgroup. Consistent with sequence-based predictions, we

succeeded in correctly predicting all tRNA-binding proteins,

whereas only 70–73% of rRNA and mRNA-binding proteins were

assigned correctly. Overall, the results we obtained are very

encouraging, reinforcing the idea that structural properties of

proteins that are not directly related to the protein fold can give

clues to the protein’s interacting partner. It is important to note that

subclassification of the RBPs to the three subgroups (mRNA, rRNA,

or tRNA) using our multiclass approach is only possible given the

prior knowledge that the protein binds RNA. Finally, consistent with

other recent studies, our results suggest that electrostatic features of

the protein surface can contribute to fine-tuning predictions of

nucleic-acid binding proteins.

Materials and Methods

Dataset Construction
A nonredundant set of RBPs was constructed based on the RNA

recognition motifs definition in Chen and Varani [5]. Additional

proteins have been added to the data set based on manual data

mining of the RCSB Protein Data Bank using the SCOP family

definition [60]. From each SCOP family, only one representative

protein was added to the dataset. From each protein included in our

dataset, only the chain or chains containing the RNA-binding

domain were analyzed. The chains involved in RNA binding were

selected by manual inspection using the PyMOL viewer [61]. All

selected chains were further cleaned for redundancy, including only

proteins that share less than 25% sequence identity. In addition, the

PISCES program [62] was applied to automatically select for

proteins with resolution better than 3.5 Å, R-factor #0.3, and a

sequence length from 40 to 1000 amino acids.

The NNBP data set was constructed from Hobohm and Sander’s

‘‘pdb select’’ list of proteins [63] used previously in Stawiski et al.

[11], excluding all proteins involved in binding NAs. Similarly to the

RBP set, the control data set was further cleaned by excluding

sequences with more than 25% identity. The subset of large-patch

NNBPs was selected from the control set by sorting the proteins by

the size of the largest patch; the top 76 proteins were chosen: 1skf,

1a6oA, 1pbe, 1a17, 1hcl, 1a7s, 1oaa, 1gox, 1ayl, 1uae, 1oyc, 1fnc,

1hcz, 1cpt, 1pda, 1lam, 1frb, 1ido, 1drw, 1fds, 1axn, 1gky, 1opr, 1lfo,

1ciy, 1fmk, 1csn, 1nsj, 1ndh, 1a8p, 1atg, 1bg2, 1csh, 1lit, 1rcb, 1cot,

1lid, 1bdb, 1fit, 1pbv, 1br9, 1ppn, 1a53, 1czj, 1a8e, 1mai, 1dhr, 1lki,

1c52, 1mrp, 1sbp, 1php, 1gnd, 1nfp, 1af7, 1aj2, 1alu, 1rhs, 1ddt,

1amf, 1ng1, 1al3, 1koe, 1mla, 1bhp, 1lbu, 1kte, 1nox, 1amm, 1a6m,

1phd, 1gen, 1b6a, 1gsa, 1ash, 1moq

A nonredundant set of RBPs that bind ssRNA was constructed

from the original dataset and includes the following 40 protein

chains: 1a1tA, 1a9nB, 1aq3A, 1asyA, 1b23P, 1b34A, 1cx0A, 1ddlA,

1e8Ob, 1ec6A, 1f7uA, 1fjgB, 1fjgC, 1fjgF, 1fjgG, 1fjgI, 1fjgJ, 1fjgK,

1fjgL, 1fjgM, 1fjgN, 1fjgO, 1fjgP, 1fjgR, 1fjgS, 1fjgT, 1gtfA, 1h2cA,

1hq1A, 1i6uA, 1jidA, 1k8wA, 1knzA, 1kq2A, 1m8wA, 1mmsA,

1mzpA, 1rgoA, 1ropA, 2fmtA. The set of dsDNA binding proteins

was selected from the DNA binding proteins dataset [11]. The 36

selected protein chains were: 1a02F, 1a31A, 1a3qA, 1a73A, 1aayA,

1am9A, 1b3tA, 1bdtA, 1bnkA, 1cktA, 1cmaA, 1d66A, 1ddnA,

Figure 7. Multiclass SVM analysis for 3 subgroups. (A) mRNA, (B)
rRNA, and (C) tRNA. Each protein in each of the subgroups was tested
against the three different classifiers. For each subgroup, the SVM
results for the mRNA classifier are shown in the most left column,
results for the rRNA classifier in the middle column, and for the tRNA
classifier in the right column. SVM results are color-coded: red
representing high positive results and shaded blue representing low
negative results (see color bar).
doi:10.1371/journal.pcbi.1000146.g007

Table 3. A table summarizing the multi-SVM results for 3
subclasses of RNA-binding proteins: tRNA, rRNA, and mRNA.

Predicted as
mRNA

Predicted
as rRNA

Predicted as
tRNA Total

tRNA 0 0 13 13

rRNA 9 32 5 46

mRNA 17 5 1 23

Bold numbers represent the classifier in which the majority of proteins were
predicted. As can be noticed by the diagonal the majority of predictions were
assigned to the correct subclass.
doi:10.1371/journal.pcbi.1000146.t003
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1ecrA, 1fokA, 1hmiA, 1ignA, 1ihfA, 1lmb3, 1mnmA, 1pdnC,

1pnrA, 1sknP, 1tc3C, 1trrA, 1tupA, 1wetA, 1xbrA, 2bopA, 2dgcA,

2hmiA, 2irfG, 2nllA, 3croL 3mhtA, 3pviA

For the independent test set we extracted from PDB RNA-

binding proteins that were classified as ‘‘hypothetical’’ or

‘‘structure genomics.’’ The RNA-binding function was defined

based on Gene Ontology (GO) terms, considering the molecular

function level http://www.geneontology.org/. In cases where GO

annotation was not available, we included proteins that were

defined as RNA-binding proteins in the primary citation. Further,

the list was manually curated, including only proteins that were

verified experimentally (based on the literature) to bind RNA.

Importantly, proteins which were defined by GO as RBP based on

the existence of an RNA-binding domain or on high sequence

similarity to a known RBP were not included in the final list. The

detailed list of the hypothetical proteins is given in Table S3.

Feature Calculations
Overall, 40 different input features were calculated; the features

can be roughly classified into four major subgroups:

I. Largest patch parameters including the patch size and

potential number of atoms/ residues in patch, percent of a/

b/loop in patch, patch surface accessibly, average surface

accessibility per residue, patch roughness, number of Lys,

Arg, overall polar amino acids in patch, potential hydrogen

bond acceptors/donors in patch, satisfied acceptors/donors

in patch, percent hydrogen bond in patch.

II. Protein parameters including molecular weight and

molecular weight per residue, radius of gyration/normal-

ized radius of gyration, protein surface accessibility,

dipole, and quadrupole moment.

III. Cleft/patch parameters including the overlap be-

tween the largest, second largest, and third largest clefts,

and largest patch, as well as the overlap between all three

clefts and the largest electrostatic patch.

IV. Parameters related to other surface patches
including number of residues in the lysine out patch [11]

and in the negative patch, number of atoms in the second

and third largest patch, number of atoms in the negative

patch, distance from the largest positive patch to the

second and third largest positive patches, and distances

from the largest negative patch to the largest, second

largest and third largest positive patches.

The PatchFinder algorithm[11] was applied to extract all

continuous positive patches on the proteins surface with a cutoff of

.2kT/e [23]. The patches were sorted based on the number of

grid points included within the patch, and the largest three patches

were selected. The largest negative patch (,22kT/e) was

extracted as described in Stawiski et al. [11]. The distances

between the patches were calculated from the center of mass of

each patch. Protein features were calculated as described in [11].

In addition, the dipole and quadrupole moments were calculated

using the Protein Dipole Moments Server [64]. Interface residues

were calculated using the Intervor web server [65]. Intervor

Figure 8. The correlation between the patch-interface overlap and the discriminate value obtained from the SVM classifier. As
illustrated, the prediction power of the algorithm depends on the success in identification of the functional interface.
doi:10.1371/journal.pcbi.1000146.g008
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calculated macromolecular interface using the Voronoi cells

approach. This approach was shown to be highly compatible

with classical surface accessibility calculations [66]. The Voronoi

cells represent a convex polyhedron that contains all points of

space closer to that atom than to any other atom. Two atoms are

in contact if their Voronoi cells have a facet in common [66]. The

overlap between the patch and the interface was calculated as the

number of patch residues included in the interface divided by the

total number of residues in the interface.

Statistical Analysis
The F-test, Student’s t-test (assuming equal variance), Mann–

Whitney–Wilcoxson, and the Spearman correlation coefficient

(CC) were performed using the R Stats package [67]. To account

for multiple testing, the P-value was adjusted using the Bonferroni

correction.

Support Vector Machine. SVM experiments were carried

out with Gist Program version 2.1.1 (http://microarray.cpmc.

columbia.edu/gist/). Input data were normalized by rescaling the

columns to values between 21 and 1. A linear kernel was applied

for all SVM classifiers. General tests were conducted by applying a

‘‘leave one out’’ cross-validation procedure. To evaluate the SVM

performance, a ROC (receiver operating characteristic) curve

describing the relationship between the false positive rate (FPR)

and the true positive rate (TPR) was plotted. The area under the

ROC curve (AUC) ranges between 0 to 1 and can be interpreted

as the probability that when we randomly pick one positive and

one negative example, the classifier will assign a higher score to the

positive example than to the negative example. The AUCs are

reported for each SVM test. In addition, we calculated the total

accuracy, sensitivity, specificity and Matthews’s correlation

coefficient (MCC).

Accuracy~
TPzTN

TPzTNzFPzFN
|100%

Sensitivity~
TP

TPzFN
|100%

Specificity~
TN

TNzFP
|100%

MCC~
TPð Þ TNð Þ{ FPð Þ FNð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFNð Þ TPzFPð Þ TNzFNð Þ TNzFPð Þ

p

Feature selection. SVM-RFE feature selection method was

applied for selecting the top ten features. RFE was originally

proposed by Guyon et al. [68] to conduct gene selection for cancer

classification. In the RFE algorithm, nested subsets of features are

selected in a sequential backward elimination manner. At each

step, the coefficients of the weight vector are used to compute the

feature ranking score. In each of the iterations, 50% of the features

with the lowest ranking scores were eliminated.

Multiclass SVM. The multiclass SVM approach, also called

the one versus all approach [69], is generally a series of binary SVM

classifiers, where in each classifier the members of one subclass (one)

are separated from the rest of the data (all). Subsequently each

member (protein) is held out from the training and tested against the

different classifiers. The predicted subclass is defined according to

the classifier for which the tested protein achieved the highest

positive discriminating value. In the current study, we built three

subclassifiers: (1) 46 rRNA-binding proteins against all other RBPs,

(2) 23 mRNA-binding proteins against all other RBPs, (3) 13 tRNA-

binding proteins against all other RBPs. For the multi-SVM

experiment, we eliminated the viral RNA proteins that could not be

classified into one of the three major groups. In addition, in order to

have a reasonable number of RBPs in each subset, we extended the

original set by adding new RBPs that do not share more than 25%

sequence identity with the other proteins.

Availability
A standalone package, NAbind, for nucleic-acid binding

prediction (suitable for linux OS) is available for download

(Dataset S2).

Supporting Information

Dataset S1 P-values are given for F and t tests (bold number

denote statistically significant after Bonferroni correction).

Dataset S2 RNbind Package-A standalone package for nucleic-

acid-binding prediction (suitable for linux OS).

Figure S1 Spearman correlation coefficient values (r) calculated

for each one of the 40 features comparing RBP vs. NNBP. The

features are colored by group (detailed numbers are given in

Dataset S1): Dark blue represents features related to the largest

positive patch, in red are features related to the whole protein, in

green are cleft-patch related features, and in cyan are the ‘‘other

patches’’ features.

Found at: doi:10.1371/journal.pcbi.1000146.s002 (0.90 MB TIF)

Table S1 Patch-interface overlap. Results are given for all

protein-RNA complexes for which the interface could be defined.

*Numbers denote number of residues.

Found at: doi:10.1371/journal.pcbi.1000146.s003 (0.08 MB

DOC)

Table S2 Patch interface overlap for positive and negative

patches. Average and standard deviation of patch interface

overlapping residues for ten positive patches and the largest

negative patch. In the first row the number of overlapping residues

is given. In the second and third rows are the normalized values,

normalized to the interface and to the patch, respectively.

Found at: doi:10.1371/journal.pcbi.1000146.s004 (0.03 MB

DOC)

Table S3 RNA binding predictions for hypothetical proteins.

The table summarizes the SVM results for the hypothetical RBPs

that were verified experimentally to be involved in RNA-binding.

Gene Ontology, protein function, structural motif, and SVM

results are given. Shaded rows mark hypothetical RBPs that were

predicted as non-RBPs.

Found at: doi:10.1371/journal.pcbi.1000146.s005 (0.04 MB

DOC)

Table S4 List of 76 representative RBPs grouped by family. *15

chains : 1fjgB 1fjgC 1fjgD 1fjgF 1fjgG 1fjgI 1fjgJ 1fjgL 1fjgM 1fjgN

1fjgO 1fjgP 1fjgR 1fjgS 1fjgT. ** 24 chains : 1jj21 1jj22 1jj2B

1jj2C 1jj2D 1jj2E 1jj2F 1jj2G 1jj2H 1jj2I 1jj2J 1jj2K 1jj2L 1jj2O

1jj2P 1jj2Q 1jj2R 1jj2T 1jj2U 1jj2V 1jj2W 1jj2X 1jj2Y 1jj2Z

Found at: doi:10.1371/journal.pcbi.1000146.s006 (0.03 MB

DOC)

Table S5 Detailed SVM results for ‘‘leave one out’’ vs. ‘‘leave

family out’’ tests. *Numbers denote the discriminating value obtain

from the SVM
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Found at: doi:10.1371/journal.pcbi.1000146.s007 (0.09 MB

DOC)

Table S6 Detailed SVM results for the RRM family. Predictions

are based on the discriminant value obtained by the SVM:

1 = predicted as an RBP ; 21 = predicted as NNBP; NA = could

not be predicted based on SVM results.

Found at: doi:10.1371/journal.pcbi.1000146.s001 (0.06 MB

DOC)

Table S7 Mann-Whitney-Wilcoxon test results RRM-protein vs.

RRM-RNA. Results of the Mann-Whitney-Wilcoxon test com-

paring the values of each of the 40 features between the RRM

predicted as RBPs and the RRM predicted as NNBP.

Found at: doi:10.1371/journal.pcbi.1000146.s008 (0.06 MB

DOC)

Table S8 Multiclass SVM results. Multiclass SVM analysis for 3

subgroups: (A) mRNA, (B) rRNA, and (C) tRNA. Each protein in

each of the subgroups was tested against the three different

classifiers. The SVM results of each protein against the three

different classifiers are given. A protein was classified into the

subgroup in which it achieved the highest positive value, marked

in red.

Found at: doi:10.1371/journal.pcbi.1000146.s009 (0.16 MB

DOC)
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