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a b s t r a c t 

Methylaspartate ammonia-lyase (MAL; EC 4.3.1.2) catalyzes the reversible addition of ammonia

to mesaconate to yield L - threo -(2 S ,3 S )-3-methylaspartate and L - erythro -(2 S ,3 R )-3-methylaspartate as

products. In the proposed minimal mechanism for MAL of Clostridium tetanomorphum , Lys-331 acts as

the ( S )-specific base catalyst and abstracts the 3 S- proton from L - threo- 3-methylaspartate, resulting in

an enolate anion intermediate. This enolic intermediate is stabilized by coordination to the essential

active site Mg 2 + ion and hydrogen bonding to the Gln-329 residue. Collapse of this intermediate re-

sults in the release of ammonia and the formation of mesaconate. His-194 likely acts as the ( R )-specific

base catalyst and abstracts the 3 R -proton from the L - erythro isomer of 3-methylaspartate, yielding the

enolic intermediate. In the present study, we have investigated the importance of the residues Gln-73,

Phe-170, Gln-172, Tyr-356, Thr-360, Cys-361 and Leu-384 for the catalytic activity of C. tetanomorphum

MAL. These residues, which are part of the enzyme surface lining the substrate binding pocket, were

subjected to site-directed mutagenesis and the mutant enzymes were characterized for their structural

integrity, ability to catalyze the amination of mesaconate, and regio- and diastereoselectivity. Based on

the observed properties of the mutant enzymes, combined with previous structural studies and protein

engineering work, we propose a detailed catalytic mechanism for the MAL-catalyzed reaction, in which

the side chains of Gln-73, Gln-172, Tyr-356, Thr-360, and Leu-384 provide favorable interactions with

the substrate, which are important for substrate binding and activation. This detailed knowledge of the

catalytic mechanism of MAL can serve as a guide for future protein engineering experiments. 
C © 2013 The Authors. Published by Elsevier B.V. on behalf of Federation of European Biochemical

Societies. All rights reserved. 
 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. MAL catalyzed reversible amination of mesaconate ( 1 ) to yield l - threo -(2 S ,3 S )- 

3-methylaspartate ( 2 ) and l - erythro -(2 S ,3 R )-3-methylaspartate ( 3 ). 

 

 

 

 

 

 

1. Introduction 

The enzyme methylaspartate ammonia-lyase (MAL; EC 4.3.1.2)

catalyzes the reversible addition of ammonia to mesaconate ( 1 ) to

yield l - threo -(2 S ,3 S )-3-methylaspartate ( 2 ) and l - erythro -(2 S ,3 R )-3-

methylaspartate ( 3 ) as products ( Fig. 1 ) [ 1 , 2 ]. MAL is used by the

bacterium Clostridium tetanomorphum H1 as part of a catabolic path-

way that converts l -glutamate, via 2 , to yield acetyl-CoA [ 1 –3 ]. In

recent years, MAL has gained a lot of interest because of its potential

for application in the asymmetric synthesis of a wide variety of aspar-

tic acid derivatives [ 4 –8 ]. These non-proteinogenic amino acids are

highly valuable as tools for biological research and as chiral building

blocks for pharma- and nutraceuticals [ 9 –14 ]. 

The structure of MAL from C. tetanomorphum (PDB: 1KCZ ) and

that of the isozyme from Citrobactor amalonaticus (PDB: 1KKR ) have
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been solved by X-ray crystallography [ 15 , 16 ]. On the basis of these

structural studies [ 15 –17 ], combined with kinetic isotope measure-

ments [ 18 , 19 ] and mutagenesis experiments [ 20 ], a minimal mech-

anism has emerged for the MAL-catalyzed reaction. In this proposed

mechanism, an ( S )-specific (Lys-331) or ( R )-specific (His-194) cat-

alytic base abstracts the C3 proton of the respective stereoisomer of

3-methylaspartate to generate an enolate anion intermediate that is

stabilized by a hydrogen bond interaction with Gln-329 and coor-

dination to the essential active site Mg 2 + ion [ 20 ]. Collapse of the

enolic intermediate results in the elimination of ammonia and yields

1 . This mechanism, however, is far from complete and the impor-

tance of other residues for the catalytic activity of MAL has not been

investigated yet. 
f European Biochemical Societies. All rights reserved. 
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Fig. 2. Crystal structure of MAL in complex with the natural substrate l - threo -(2 S ,3 S )- 

3-methylaspartate (PDB: 1KKR ) [ 16 ]. (a) Close-up of the active site showing the 

hydrogen-bond interactions between the substrate’s carboxylate groups (C1 and C4) 

and the side chains of His-194, Gln-329, Gln-172 and Thr-360, or the main chain NH 

of Cys-361. The carbon atoms of the active site residues are shown in green, and those 

of the substrate in cyan. Hydrogen bonds are represented as dashed lines. The distance 

(in Å) between the C3 atom of the substrate and side chain of Lys-331 is shown (atoms 

connected by a solid line). The magnesium ion is shown as a magenta sphere. (b) Close- 

up of the active site showing the hydrogen-bond interactions between the substrate’s 

amino group and the side chains of Gln-73 (via a water molecule) and Gln-172, as well 

as the observed distances (in Å, atoms connected by solid lines) between the substrate’s 

methyl group and the side chains of Leu-384, Phe-170 and Tyr-356. The magnesium 

ion and water molecule are shown as magenta and yellow spheres, respectively. Colour 

scheme as in (a). The figures were prepared with Pymol ( http: // www.pymol.org ) [ 30 ]. 

(For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
The crystal structure of MAL complexed with its natural substrate 

 shows that the surface of the enzyme lining the substrate bind- 

ng pocket is provided, in part, by residues Gln-73, Phe-170, Gln-172, 

yr-356, Thr-360, Cys-361 and Leu-384 ( Fig. 2 ) [ 16 ]. These residues 

re highly conserved in known MALs [ 16 ], but not in other members 

f the enolase superfamily [ 15 ]. In the present study, we performed 

ite-directed mutagenesis experiments on all these residues to pro- 

ide insight into their roles in the catalytic mechanism for the MAL- 

atalyzed reaction. The mutant enzymes were characterized for their 

tructural integrity, ability to catalyze the amination of mesaconate, 

nd regio- and diastereoselectivity. Based on the observed properties 

f the mutant enzymes, combined with previous structural studies 

nd recent enzyme engineering work, we present a detailed catalytic 

echanism for the MAL-catalyzed reaction, with important roles for 

ln-73, Gln-172, Tyr-356, Thr-360, and Leu-384 in substrate binding 

nd activation. 

. Materials and methods 

.1. Materials 

Mesaconic acid and other chemicals were purchased from Sigma–

ldrich Chemical Co. (St Louis, MO, USA), unless stated otherwise. The 

ources for the media components, buffers, solvents, pre-packed PD- 

0 Sephadex G-25 columns, and molecular biology reagents, includ- 

ng PCR purification, gel extraction, and Miniprep kits, are reported 

lsewhere [ 20 –22 ]. Oligonucleotides for DNA amplification were syn- 

hesized by Operon Biotechnologies (Cologne, Germany). 

.2. Bacterial strains, plasmids and growth conditions 

Escherichia coli strain XL1-Blue (Stratagene, La Jolla, CA) was used 

or cloning and isolation of plasmids. E. coli strain TOP10 (Invitrogen) 

as used in combination with the pBAD / Myc -His A vector (Invitro- 

en) for recombinant protein production. E. coli cells were grown in 

uria–Bertani (LB) medium. When required, Difco agar (15 g / L), ampi- 

illin (Ap, 100 μg / mL), and / or arabinose (0.004% w / v) were added to 

he medium. 

.3. General methods 

Techniques for restriction enzyme digestions, ligation, transfor- 

ation, and other standard molecular biology manipulations were 

ased on methods described elsewhere [ 23 ] or as suggested by the 

anufacturer. PCR was carried out in a DNA thermal cycler (model 

S-1) obtained from Biolegio (Nijmegen, The Netherlands). DNA se- 

uencing was performed by Macrogen (Seoul, South Korea). Protein 

as analyzed by polyacrylamide gel electrophoresis (PAGE) under 

ither denaturing conditions using sodium dodecyl sulfate (SDS) or 

ative conditions on gels containing polyacrylamide (10%). The gels 

ere stained with Coomassie brilliant blue. Protein concentrations 

ere determined by the Waddell method [ 24 ]. Kinetic data were 

btained on a V-650 spectrophotometer from Jasco (IJsselstein, The 

etherlands). The kinetic data were fitted by nonlinear regression 

ata analysis by using the Grafit program (Erithacus, Software Ltd., 

orley, UK) obtained from Sigma Chemical Co. The CD spectra were 

ecorded on a model 62A-DS spectropolarimeter from AVIV Biomed- 

cal Inc. (Lakewood, NJ, USA). 1 H NMR spectra were recorded on a 

arian Inova 500 (500 MHz) spectrometer using a pulse sequence for 

elective presaturation of the water signal. Chemical shifts for pro- 

ons are reported in parts per million scale ( δ scale) downfield from 

etramethylsilane and are referenced to protium (H 2 O: δ = 4.80). 
2.4. Construction, expression and purification of MAL mutants 

The MAL mutants were generated by the overlap extension PCR 

method [ 25 ] using plasmid pBAD(MAL-His), which contains the wild- 

type MAL gene under the transcriptional control of the araBAD pro- 

moter [ 20 ], as the template. The final PCR products were gel-purified, 

digested with Nde I and Hin dIII restriction enzymes, and ligated in 

frame with both the initiation ATG start codon and the sequence that 

codes for the polyhistidine region of the expression vector pBAD N / 

Myc -His A. All mutant genes were completely sequenced (with over- 

lapping reads) to verify that only the intended mutation had been 

introduced. Wild-type MAL and the mutant enzymes were overpro- 

duced in E. coli TOP10 cells and purified to near homogeneity by 

following a previously described protocol [ 20 ]. 

http://www.rcsb.org/pdb/explore.do?structureId=1KKR
http://www.pymol.org
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Table 1 

Apparent kinetic parameters for the amination of mesaconate ( 1 ) catalyzed by wild- 

type or mutant MAL. a 

Enzyme k cat (s 
−1 ) K m for 1 (mM) k cat / K m (M 

−1 s −1 ) 

MAL b 61 ± 1 0.7 ± 0.02 8.7 × 10 4 

T360A 0.6 ± 0.1 15 ± 2.5 40 

T360S 35 ± 1 1.4 ± 0.3 2.5 × 10 4 

C361A 27.5 ± 2.5 2.9 ± 0.5 9.5 × 10 3 

C361K ND ND < 0.1 

Q172A > 20 > 60 3.4 × 10 2 

Q172N ND ND < 0.1 

Q73A 0.7 ± 0.1 0.2 ± 0.02 3.5 × 10 3 

Q73N ND ND < 0.1 

F170A 10 ± 1 0.9 ± 0.1 1.1 × 10 4 

Y356A > 0.7 > 60 12 

L384A > 16 > 60 2.7 × 10 2 

a The steady state kinetic parameters were determined in 500 mM Tris–HCl buffer 

(pH 9.0) containing 20 mM MgCl 2 and 400 mM NH 4 Cl at 30 o C. Errors are standard 

deviations from each fit. ND, not determined. 
b These kinetic parameters were obtained from Raj et al. [ 20 ]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5. Circular dichroism spectroscopy 

Circular dichroism (CD) spectra of the purified wild-type MAL and

the purified mutants were measured in Tris–HCl buffer (5 mM, pH

8.0), containing MgCl 2 (2 mM) and KCl (0.1 mM), at a concentration

of approximately 3.0 μM in a CD cell with an optical path length of

1.0 mm. 

2.6. Kinetic assay 

The amination of 1 catalyzed by wild-type or mutant MAL was

monitored by following the depletion of 1 at 240 nm or 270 nm

in 500 mM Tris–HCl buffer (pH 9.0), containing 20 mM MgCl 2 and

400 mM NH 4 Cl, at 30 ◦C as described previously [ 20 ]. The concentra-

tion of 1 used in the assay varied in the range 0.1–60 mM. 

2.7. Product analysis by 1 H NMR spectroscopy 

The amino acid products of the amination of 1 catalyzed by wild-

type or mutant MAL were identified by 1 H NMR spectroscopy. Reac-

tion mixtures consisted of 500 μL of a 1 M stock solution of NH 4 Cl in

water (pH 9.0, containing 20 mM MgCl 2 ), 100 μL of a 500 mM stock

solution of 1 in water (pH 9.0, containing 20 mM MgCl 2 ), and 100 μL

of D 2 O. Reactions were started by the addition of 200 μg of freshly

purified enzyme, and the reaction mixtures were incubated at 25 ◦C.
1 H NMR spectra were recorded 2 h and 7 days after the addition of

enzyme. Given that MAL catalyzes the fast anti -addition and much

slower syn -addition of ammonia to 1 [ 20 , 26 , 27 ], leading to threo -

(2 S ,3 S )-3-methylaspartate ( 2 ) and erythro -(2 S ,3 R )-3-methylaspartate

( 3 ), respectively, we allowed the amination reactions to run for 7 days

to detect the formation of low amounts of erythro product isomer, if

present. Product amounts were estimated by integration of the sig-

nals corresponding to 2 and 3 (if present). The 1 H NMR signals for 1 ,

2 and 3 have been reported previously [ 20 ]. 

3. Results 

3.1. Production, purification and characterization of the MAL mutants 

The surface of the protein lining the substrate binding site is pro-

vided by the residues shown in Fig. 2 [ 16 ]. In a previous study, the

roles of residues His-194, Gln-329 and Lys-331 in the catalytic mech-

anism of the MAL-catalyzed reaction have been investigated by site-

directed mutagenesis [ 20 ]. The residues selected for mutagenesis in

the present study were Gln-73, Phe-170, Gln-172, Tyr-356, Thr-360,

Cys-361 and Leu-384 ( Fig. 2 ). Similar to wild-type MAL, all mutant

proteins were constructed as His 6 -tagged fusion proteins, produced

in E. coli TOP10 cells, and purified to > 95% homogeneity (as assessed

by SDS-PAGE) using a one-step Ni-based immobilized metal affin-

ity chromatography procedure [ 20 ]. This yielded about 20–30 mg of

homogenous protein per liter of cell culture. 

Each MAL mutant was analyzed by non-denaturing PAGE (data

not shown). The mutant enzymes were found to migrate comparably

with the wild-type enzyme, which suggests that the homodimeric

association of the mutants was still intact. The structural integrity

of each mutant was also assessed by circular dichroism (CD) spec-

troscopy. The CD spectra of the mutants were comparable to that of

wild-type MAL, suggesting that the mutations did not result in any

major conformational changes (data not shown). 

3.2. Residues that interact with the substrate’s 1-carboxylate group 

The crystal structure of MAL in complex with 2 shows that the 1-

carboxylate group of the substrate has hydrogen-bonding interactions

with the main chain NH of Cys-361, the oxygen atom (O γ) of Thr-360,
and the nitrogen atom (N ε2) of Gln-172 ( Fig. 2 a) [ 16 ]. Residue Gln-

172 also interacts, via hydrogen-bonding, with the 2-amino group of

the substrate ( Fig. 2 b) [ 16 ]. To investigate the importance of these

residues for the catalytic activity and regio- and diastereoselectivity

of MAL, six single site-directed mutants were constructed in which

Thr-360 was replaced with either an alanine or a serine (T360A and

T360S), Cys361 with either an alanine or a lysine (C361A and C361K),

and Gln-172 with either an alanine or an asparagine (Q172A and

Q172N). The amination activities of the mutants were assayed using

1 as the substrate. 

The mutation of Thr-360 to an alanine has a large effect on the cat-

alytic efficiency of MAL. For the T360A mutant, a ∼100-fold decrease

in k cat and a ∼22-fold increase in K m 

was observed, which results in

a ∼2200-fold decrease in k cat / K m 

( Table 1 ). Hence, the major effect of

this mutation is on the value of k cat . The mutation of Thr-360 to an-

other residue with an aliphatic hydroxyl group (serine), however, has

a less drastic effect on the catalytic efficiency. For the T360S mutant,

the k cat / K m 

is reduced only approximately 3.5-fold ( Table 1 ). 

Obviously, mutations at position 361 can not eliminate the main

chain NH interaction with the substrate. As might therefore be ex-

pected, the removal of the side chain at this position, by the substitu-

tion of Cys-361 with an alanine, has hardly any effect on the catalytic

efficiency of MAL. For the C361A mutant, there is a ∼2.2-fold decrease

in k cat and an approximately 4.2-fold increase in K m 

. As a result, the

k cat / K m 

is reduced only ∼9-fold ( Table 1 ). However, the introduc-

tion of a new side chain at position 361, by mutation of Cys-361 to a

lysine, essentially abolished enzymatic activity ( Table 1 ). Under the

conditions of the kinetic assay, no activity could be detected for this

mutant. 

The mutation of Gln-172 to an alanine (i.e., removal of the func-

tional side chain) has a large effect on the values of K m 

and k cat / K m 

.

For the Q172A mutant, a plot of various concentrations of 1 versus

the initial rates measured at each concentration remained linear up

to 60 mM. Hence, the Q172A mutant could not be saturated. Accord-

ingly, only the k cat / K m 

was determined, and this parameter is reduced

∼255-fold compared to that of wild-type MAL ( Table 1 ). Because the

increase in K m 

for the Q172A mutant is > 85-fold, the k cat must be > 20

s −1 . Surprisingly, the mutation of Gln-172 to an asparagine, which has

a side chain with a similar functional group, essentially abolished en-

zymatic activity ( Table 1 ). 

The amination of 1 catalyzed by wild-type MAL and the mutants

was also monitored by 1 H NMR spectroscopy to identify the products

of the reaction. This spectroscopic analysis showed that the ammonia

additions to 1 catalyzed by the MAL mutants lead to the same amino

acid product (i.e., 3-methylaspartate) as the corresponding wild-type
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Table 2 

Conversions and diastereomeric product ratios for the ammonia additions to 

mesaconate catalyzed by wild-type and mutant MAL. a 

Enzyme Con. (%) 2 h 

d.r. 

( threo:erythro ) b 

after 2 h Con. (%) 7 d 

d.r. 

( threo:erythro ) b 

after 7 d 

MAL 73 89:11 81 51:49 

T360A 38 93:7 82 54:46 

T360S 76 86:14 85 51:49 

C361A 47 > 95:5 78 53:47 

C361K 10 > 95:5 70 > 95:5 

Q172A 16 > 95:5 74 89:11 

Q172N 6 > 95:5 68 > 95:5 

Q73A 37 91:9 71 69:31 

Q73N 18 > 95:5 74 > 95:5 

F170A 63 > 95:5 83 55:45 

Y356A 24 > 95:5 74 80:20 

L384A 61 > 95:5 75 86:14 

a Reactions were monitored by 1 H NMR spectroscopy. 
b The d.r. [defined as threo - 3 -methylaspartate ( 2 ): erythro - 3 -methylaspartate ( 3 )] of the 

amino acid product was determined by comparison of its 1 H NMR signals in the crude 

reaction mixture to those of authentic standards of 2 and 3 . 
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AL-catalyzed reaction. This demonstrates that the mutations at po- 

itions 172, 360 and 361 do not affect the regioselectivity of MAL. 

owever, varying diastereomeric product ratios were observed. Con- 

istent with the fact that MAL catalyzes the fast anti -addition and 

he much slower syn -addition of ammonia to 1 [ 20 ], leading to the 

hreo and erythro isomers of 3-methylaspartate, respectively, the 1 H 

MR spectra recorded after 2 h predominantly showed the forma- 

ion of 2 , whereas the signals corresponding to 3 mainly appeared in 

ater spectra ( Table 2 ). After 7 days of incubation, the Q172A, T360A, 

360S, and C361A mutant-catalyzed amination reactions resulted in 

4%, 82%, 85%, and 78% conversion of 1 into the amino acid product 

ith a diastereomeric ratio (d.r.) of 89:11, 54:46, 51:49, and 53:47, re- 

pectively ( Table 2 ). The reactions catalyzed by the Q172N and C361K 

utants, which have low-level amination activities, resulted in ∼70% 

onversion of 1 into 3-methylaspartate with a d.r. of > 95:5 ( Table 2 ). 

.3. Residues that interact with the substrate’s 2-amino group 

The crystal structure of MAL in complex with 2 shows that the 

-amino group of the substrate has hydrogen-bonding interactions 

ith the oxygen atom (O ε1) of Gln-172 and, via a water molecule, 

ith the nitrogen atom (N ε2) of Gln-73 ( Fig. 2 b) [ 16 ]. The importance

f Gln-172 for the catalytic activity of MAL is described above. To 

nvestigate the importance of the Gln-73 residue for the catalytic 

ctivity and regio- and diastereoselectivity of MAL, this residue was 

utated to either an alanine or an asparagine. These mutations are 

xpected to completely remove the functional side chain (Q73A) or to 

eplace the side chain with another one that has a similar functional 

roup (Q73N). The replacement of Gln-73 with an alanine resulted 

n an active enzyme with a 87-fold reduction in k cat and a 3.5-fold 

ecrease in K m 

, resulting in a ∼25-fold lower k cat / K m 

compared to 

ild-type MAL ( Table 1 ). Hence, the major effect of this mutation 

s on the value of k cat . Surprisingly, the Q73N mutant showed very 

ow-level amination activity, preventing the measurement of kinetic 

arameters ( Table 1 ). 

The ammonia additions to 1 catalyzed by the Q73A and Q73N mu- 

ants were also monitored by 1 H NMR spectroscopy to identify the 

mino acid products of these reactions. After a 7 days incubation pe- 

iod, the Q73A- and Q73N-catalyzed amination reactions resulted in 

1% and 74% conversion of 1 into 3-methylaspartate with d.r. values 

f 69:31 and > 95:5, respectively ( Table 2 ). No other amino acid prod- 

cts were observed, indicating that the regioselectivity of the enzyme 

s not influenced by the mutations at position 73. 
3.4. Residues lining the binding site for the substrate’s 3-methyl group 

The crystal structure of MAL in complex with 2 suggests that the 

side chains of Phe-170, Tyr-356 and Leu-384 are involved in the for- 

mation of the binding pocket for the 3-methyl group of the substrate 

( Fig. 2 b) [ 16 ]. To study the importance of these residues for the cat- 

alytic activity and regio- and diastereoselectivity of MAL, each residue 

was replaced with an alanine. The mutation of Phe-170 to an alanine 

resulted in a mutant enzyme with a ∼6-fold decrease in k cat and a 

∼1.3-fold higher K m 

, which results in an approximately 8-fold de- 

crease in k cat / K m 

( Table 1 ). The substitutions of Tyr-356 and Leu-384 

to an alanine, however, have a larger effect on the catalytic efficiencies 

of MAL ( Table 1 ). For both the Y356A and L384A mutants, saturation 

by substrate 1 (up to 60 mM) could not be achieved and therefore 

only the k cat / K m 

was determined. A 7250- and 320-fold reduction in 

k cat / K m 

was observed for the Y356A and L384A mutants, respectively. 

Hence, it is clear that the mutations at positions Tyr-356 and Leu-384 

largely influence the K m 

for 1 ( Table 1 ). 

The amination reactions catalyzed by the F170A, Y356A and L384A 

mutants were also followed by 1 H NMR spectroscopy. After an incu- 

bation period of 7 days, the F170A-, Y356A- and L384A-catalyzed 

reactions resulted in about 83%, 74% and 75% conversion of 1 into 

3-methylaspartate with d.r. values of 55:45, 80:20 and 86:14, respec- 

tively ( Table 2 ). No other amino acid products were observed, which 

indicates that the regioselectivity of the enzyme is also not influenced 

by the mutations at positions 170, 356 and 384. 

4. Discussion 

On the basis of previous kinetic isotope measurements [ 18 , 19 ], 

structural studies [ 15 , 16 ], and mutagenesis experiments [ 20 ], a min- 

imal mechanism has emerged for the MAL-catalyzed reaction. In this 

proposed mechanism, Lys-331 acts as the ( S )-specific base catalyst 

and abstracts the 3 S- proton from l - threo- 3-methylaspartate ( 2 ), re- 

sulting in an enolate anion intermediate ( 4 in Fig. 3 ). This enolic inter- 

mediate is stabilized by coordination to the essential active site Mg 2 + 

ion [ 28 ]. Residues His-194 and Gln-329 are thought to assist the Mg 2 + 

ion in binding the substrate’s 4-carboxylate group and stabilizing the 

enolate intermediate. Collapse of this intermediate results in the re- 

lease of ammonia and the formation of mesaconate ( 1 ). In addition to 

its proposed role in binding the 4-carboxylate group of the substrate, 

His-194 is believed to also act as the ( R )-specific base catalyst and ab- 

stracts the 3 R -proton from the l - erythro isomer of 3-methylaspartate, 

yielding the enolic intermediate 4 . The strongest support for this cat- 

alytic role of His-194 comes from the observation that the H194A 

mutant of MAL is highly diastereoselective and can be used as bio- 

catalyst in the synthesis of exclusively the threo isomers of various 

3-substituted aspartic acids [ 20 , 29 ]. In the present study, guided by 

the crystal structure of MAL complexed with the natural substrate 

2 , we have selected seven other active site residues for site-directed 

mutagenesis to provide further insight into the catalytic mechanism 

of MAL. The obtained results allow us to present a full catalytic mech- 

anism for the MAL-catalyzed reaction, detailed knowledge of which 

can serve as an important guide for future protein engineering exper- 

iments. 

The crystal structure of MAL in complex with 2 shows that the 

1-carboxylate group of the substrate has hydrogen-bond interactions 

with the main chain NH of Cys-361, O γ of Thr-360, and N ε2 of Gln- 

172 ( Fig. 2 a) [ 16 ]. To examine the role of Gln-172 and Thr-360 in the

mechanism of the MAL-catalyzed reaction, we have mutated these 

two residues. Complete removal of the functionality at position Thr- 

360 by replacement with an alanine leads to a ∼2200-fold decrease in 

k cat / K m 

with a ∼22-fold increase in the K m 

for 1 . The same substitu- 

tion at position Gln-172 also results in a reduced catalytic efficiency 

with a large increase ( > 85-fold) in the K m 

for 1 . These observations, 

combined with the increase in activity and decrease in K m 

observed 
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Fig. 3. A schematic representation of the proposed catalytic mechanism of the MAL- 

catalyzed reaction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with a serine mutation at position Thr-360, support a role for the

side chains of Thr-360 and Gln-172 in assisting the main chain NH

of Cys-361 to bind and position the substrate ( 1 , 2 or 3 ) through

hydrogen-bond interactions with its 1-carboxylate group. 

The crystal structure of MAL in complex with 2 shows that the

2-amino group of the substrate has hydrogen-bond interactions with

O ε1 of Gln-172 and, via a water molecule, with N ε2 of Gln-73 ( Fig. 2 b)

[ 16 ]. This suggests roles for the functional groups of these residues

in binding the amino group of 2 (or 3 ) in the deamination reaction

or ammonia in the reverse addition to 1 . Examination of the kinetic

properties of the amination reaction catalyzed by the Q73A mutant,

which is the only mutation at this position that resulted in an enzyme

with significant activity, shows that there is only a minor effect on

the value of K m 

for 1 ( Table 1 ), suggesting that Gln-73 indeed does

not play a role in binding this substrate. One potential explanation for

the loss in activity (i.e., reduced k cat value) of the Q73A mutant is that

Gln-73 could bind and position ammonia in a favorable orientation

for amination of 1 . Support for this view is provided by a recent study

in which engineering of the amine binding pocket (i.e., saturation

mutagenesis at positions Gln-73 and Gln-172), followed by screen-

ing of mutants for enhanced activity towards methylamine addition

to 1 , also yielded mutant Q73A [ 21 ]. Interestingly, the Q73A muta-

tion moved the specificity of MAL away from ammonia and towards

alkylamines. For example, a comparison of k cat / K m 

values shows that

wild-type MAL is ∼500-fold more efficient in ammonia addition to 1

than the Q73A mutant, whereas the Q73A mutant is at least 140-fold

more efficient in the addition of methylamine to 1 . These observations

clearly indicate that Gln-73 is one of the residues that influences the

amine specificity of MAL, strongly supporting the proposed role for

Gln-73 in binding the amino group of 2 (or 3 ) in the deamination

reaction or ammonia in the reverse addition to 1 . 

The crystal structure of MAL complexed with 2 suggests that the

enzyme surface lining the binding site for the 3-methyl group of the

substrate is composed almost entirely of side chains, including those

of Phe-170, Tyr-356 and Leu-384 ( Fig. 2 b) [ 16 ]. To assess their role in

catalysis, we have mutated these residues to an alanine. Examination

of the kinetic properties for the Y356A and L384A mutants shows that

there is a significant reduction in catalytic efficiency and a large in-

crease ( > 85-fold) in the K m 

for 1 , suggesting that these residues play

a major role in binding the methyl group of the substrate. By contrast

to these observations, examination of the kinetic properties for the

F170A mutant shows that there is only a small effect of replacing

Phe-170 to an alanine on the values of K m 

and k cat / K m 

, suggesting

that Phe-170 is not directly involved in binding the methyl group of

the substrate. Consistent with the observed distances between the

substrate’s methyl group and the side chains of Leu-384, Phe-170 and

Tyr-356 ( Fig. 2 b) [ 16 ], our results suggest that additional stabiliza-

tion of the substrate in the active site is provided by favorable van der

Waals packing interactions between the substrate’s methyl group and
the side chains of Tyr-356 and Leu-384, while the side chain of Phe-

170 is likely too far away to provide a stabilizing interaction. Strong

support for the interaction between Leu-384 and the methyl group

of the substrate also comes from a recent protein engineering study,

in which position Leu-384 was randomized, followed by screening of

mutants for amination activity towards 2-hexylfumarate [ 21 ]. This

approach yielded mutants L384G and L384A, and both mutations

moved the specificity of MAL away from mesaconate and towards the

unnatural substrate 2-hexylfumarate. Intriguingly, the L384A mutant

was shown to exhibit a broad substrate scope, including fumarate

derivatives with alkyl, aryl, alkoxy, aryloxy, alkylthio and arylthio

substituents at the C2 position. These observations indicate that Leu-

384 is one of the residues that influences the substrate (i.e., fumarate)

specificity of MAL, supporting a role for Leu-384 in assisting Tyr-356

to bind and position the substrate through van der Waals interactions

with its methyl group. 

Notably, all mutants described in this study retained the high re-

gioselectivity of the wild-type enzyme, producing 3-methylaspartate

as single amino acid product in the amination reaction. Hence, al-

tering the regioselectivity of MAL probably requires the synergistic

effects encountered by multiple simultaneous mutations. However,

although all mutants exclusively produce 3-methylaspartate, varying

diastereomeric ratios (i.e., mixtures of l - threo and l - erythro isomers of

3-methylasparate) were observed. Whereas the amination reactions

catalyzed by most mutants provided a mixture of threo and erythro

isomers, the amination reactions catalyzed by the C361K, Q172N, and

Q73N mutants provided a single diastereoisomer having the threo

configuration ( Table 2 ). It is important to emphasize that the latter

mutants have very low-level amination activities. Given that for wild-

type MAL the rate of anti -addition is approximately 100-fold higher

than the rate for syn -addition [ 20 , 22 , 26 , 27 ], and assuming that for

these mutants both rates are equally reduced by the mutation, the

amount of syn -addition product (i.e., the erythro isomer) formed in

the reaction mixture might be too low to detect by 1 H NMR spec-

troscopy. Hence, these mutant enzymes do not necessarily have al-

tered diastereoselectivities. 

On the basis of the results described in this study, the previously

proposed minimal mechanism for the MAL-catalyzed deamination re-

action can now be extended ( Fig. 3 ). As described above, residues Lys-

331, His-194 and Gln-329 and the Mg 2 + ion play important roles in

formation and stabilization of the enolate anion intermediate 4 . In the

next step, this enolic intermediate collapses and eliminates ammonia

to form the mesaconate ( 1 ) product. Residues Gln-73 (via a water

molecule) and Gln-172 could position and ‘lock ’ the amino group in a

favorable orientation for deamination, whereas Thr-360 and Cys-361,

assisted by Gln-172, play important roles in binding the substrate’s

1-carboxylate group. In addition, residues Tyr-356 and Leu-384 pro-

vide stabilizing interactions with the substrate’s 3-methyl group. To-

gether, these interactions are important for the optimal positioning

and activation of the substrate, and are important determinants of the

substrate specificity of MAL. This detailed understanding of the cat-

alytic mechanism of MAL can serve as an important guide for future

engineering experiments that aim to further expand the substrate

scope of this fascinating enzyme. 
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