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Abstract 

Background:  When dealing with recurrent events in observational studies it is common to include subjects who 
became at risk before follow-up. This phenomenon is known as left censoring, and simply ignoring these prior epi‑
sodes can lead to biased and inefficient estimates. We aimed to propose a statistical method that performs well in this 
setting.

Methods:  Our proposal was based on the use of models with specific baseline hazards. In this, the number of prior 
episodes were imputed when unknown and stratified according to whether the subject had been at risk of present‑
ing the event before t = 0. A frailty term was also used. Two formulations were used for this “Specific Hazard Frailty 
Model Imputed” based on the “counting process” and “gap time.” Performance was then examined in different sce‑
narios through a comprehensive simulation study.

Results:  The proposed method performed well even when the percentage of subjects at risk before follow-up was 
very high. Biases were often below 10% and coverages were around 95%, being somewhat conservative. The gap 
time approach performed better with constant baseline hazards, whereas the counting process performed better 
with non-constant baseline hazards.

Conclusions:  The use of common baseline methods is not advised when knowledge of prior episodes experienced 
by a participant is lacking. The approach in this study performed acceptably in most scenarios in which it was evalu‑
ated and should be considered an alternative in this context. It has been made freely available to interested research‑
ers as R package miRecSurv.
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Background
In epidemiological cohort studies, participants may have 
been at risk of the event of interest before entering follow-
up, especially in observational designs. This can lead to 
unawareness of their history, specifically the time at risk, 
and whether they have experienced the event (including 

how often) at study inception, which is problematic when 
the baseline hazard of the event is time dependent. There 
are two relevant situations to consider. First, if an event 
can only occur once and has already happened, the result 
is already determined and will require specific statistical 
techniques for analysis. Second, if the outcome of interest 
is a recurrent event that can occur more than once, the 
number of prior episodes will be unknown despite the 
potential for new events. This represents left censoring 
where the censored variable is of the discrete type and for 
which we can define different baseline hazards.
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There is a need to clarify how data are handled when 
the prior history is unknown in a cohort and the outcome 
of interest is a recurrent event with event dependence. 
Specifically, this concerns situations where we know the 
moment from when individuals become at risk, but we 
do now know the number of prior episodes. For example, 
concerning the risk of sick leave in a work force, we will 
likely know the start date for employment; however, espe-
cially for people with ample trajectory, we may not know 
how many sick leaves they had prior to this employment. 
Another example can be seen in cohorts where the out-
come is the incidence of infection with the human papil-
loma virus in adult women. It would be relatively simple 
to know how long they have been at risk (first sexual 
intercourse), but we will not know the true number of 
infections because they are typically asymptomatic.

This study has two objectives. The first is to describe 
an analysis proposal for recurrent phenomena in the 
presence of event dependence when the prior history 
is unknown for some or all subjects. The second is to 
compare the performance of our proposed model with 
another that ignores event dependence.

Methods
Event dependence
When analyzing a recurrent event, we often observe 
a phenomenon called event dependency in which the 
baseline hazard of an episode depends on the num-
ber of episodes that have already occurred. To date, the 
phenomenon has been estimated for falls [1], sickness 
absence [2, 3], hospitalizations in heart failure [4], and 
cardiovascular readmission after percutaneous coronary 
intervention [5]. All of these have shown that the baseline 
hazard increased most significantly with the number of 
prior episodes.

Recurrent event analyses in epidemiological studies are 
well described [6–9], typically as extensions of Cox’s clas-
sical model of proportional hazards [10, 11]. Specifically, 
baseline hazard models, also known as conditional mod-
els or Prentice, Williams, and Peterson (PWP) models 
[12], are used to consider the existence of event depend-
ence. These models assume that the baseline hazard of an 
episode differs as a function of episodes that have already 
occurred, stratifying by how many there have been. This 
allows general or specific effects to be calculated for each 
episode, with all at-risk individuals included in the first 
strata, but only those with an episode in the previous 
strata subsequently considered at risk.

PWP models can be formulated in two ways depend-
ing on the risk interval used (i.e., how time is considered) 
[6]. In the first, called “counting process,” time is handled 
typically for the survival analysis, always referenced from 
the start of follow-up such that the beginning of the kth 

episode is always posterior at the end of the k-1st. The 
hazard function is shown below (Eq.  1). In the second 
format, called “gap time,” time is always considered in 
relation to the prior episode such that the start of each 
new episode for a given individual is set at zero (Eq. 2)

where Xi represents the vector of covariables, β repre-
sents the coefficients of regression, k is the kth event epi-
sode for individual i, and h0 k(t) is the function of the 
baseline hazard dependent on k.

If the phenomenon under study lacks event depend-
ence, these models can be simplified to a function of the 
common baseline hazard. These are known as Andersen–
Gill models [13] and assign the same baseline hazard 
independent of the episodes that have already been expe-
rienced (Eq. 3).

where h0(t) is the common baseline hazard.

Individual heterogeneity
If a model is perfectly specified, with all possible covari-
ates accounted for, then the baseline hazard reflects the 
randomness of the event time given the value of the 
covariates. In practice, however, it is rarely possible to 
account for all relevant covariates [14]. This requires 
another aspect to be considered: the unmeasured effects 
produced by between-subject variability, presumably due 
to unobserved exposures. This phenomenon is called 
individual heterogeneity and in practice is analyzed by 
adding a frailty to the model, νi, making an individual 
random effect to account for the “extra” variability. Given 
that νi has a multiplicative effect, we can imagine that it 
represents the cumulative effect of one or more omit-
ted covariates [15]. The most commonly adopted frailty 
terms are E [νi] = 1 and V [νi] = θ [16–18]. Thus, the 
models specified in Eq. 1, Eq. 2, and Eq. 3 change to those 
specified in Eq. 4 for “Conditional Frailty Model - Count-
ing Process,” Eq. 5 for “Conditional Frailty Model - Gap 
Time,” and Eq. 6 for “Shared Frailty Model,” respectively.

(1)�ik(t) = �0k(t)e
Xiβhik(t) = h0k(t)e

Xiβ

(2)hik(t) = h0k

(

t − tk−1

)

e
Xiβ

(3)hi(t) = h0(t)e
Xiβ

(4)hik(t) = νih0k(t)e
Xiβ

(5)hik(t) = νih0k
(

t − tk−1

)

e
Xiβ

(6)hi(t) = νih0(t)e
Xiβ
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The problem of being unaware of the previous history 
for some individuals
Specific baseline hazard methods, either with or without 
frailties, can be applied when all required information 
is known, particularly the number of prior episodes for 
each individual. In practice, however, this information 
is not always available, preventing the inclusion of basic 
information needed to consider event dependence.

Figure  1 shows representative data for two subjects 
with their respective risk intervals. These are shown 
according to the counting process on the top and accord-
ing to gap time on the bottom. Notice that the difference 
between these formulations is that the gap time “restarts” 
time to risk at t = 0 after each episode. When starting our 
study, the first subject (id = 1) had two prior episodes 
and had been at risk for a considerable amount of time, 
making this a left-censored observation. However, we are 
only aware of the two episodes that occur from the start 
of follow-up. By contrast, for the second subject (id = 2), 
exposure starts at t = 0, they have an episode at t = 5, and 
follow-up stops at t = 7. The data tables show the result-
ing analysis: note that the prior history for Subject 1 
“disappears” in both approaches such that the risk only 
appears at the same instant as it does for Subject 2.

Thus, two problems exist. First, if there is event 
dependence, and we fail to stratify by number of 

episodes, we will mix individuals that have different 
baseline hazards at that instant (e.g., risk starts for Sub-
ject 2 at baseline, when Subject 1 is already at risk of 
a third). Second, we mix temporal scales: on one side 
there will be subjects (e.g., Subject 2) whose follow-up 
time corresponds with their time at risk, but on the 
other side there will be subjects (e.g., Subject 1) whose 
follow-up time does not correspond with their time 
at risk. Consequently, two subpopulations with differ-
ent baseline hazards are mixed, which goes against the 
assumptions of the Cox model and its extensions for 
recurrent phenomena.

When there is missing data for prior history and spe-
cific baseline hazard models are unsuitable, an alter-
native approach is to ignore that history and fit the 
models based on common baseline hazards (i.e., eqs. 3 
and 6). However, these assign the same baseline hazard 
to all episodes, and as such, they consider neither the 
possible effect of the number of prior episodes nor the 
effect of comparing two subjects at the same instant 
who have times to risk that can be radically different. 
The use of such models with common baseline hazards 
for analyzing recurrent phenomena with event depend-
ence has been shown to be highly inefficient, generating 
high levels of bias in parameter estimates and confi-
dence intervals. Results can be unsound, even if when 

Fig. 1  Example history of two individuals presented according to the counting process and gap time formulation. The counting process is shown 
in the top image and table, and the gap time approach is shown below for two patients (id 1, 2) at time points (t) 0, 3, 5, and 7
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the event dependence is of small intensity [19]. Thus, 
alternative analytic methods are necessary for this 
context.

Proposal
Our proposal starts with the assumption that, even 
though the history of a given subject may be unknown, 
we do know who was at risk before starting follow-up. 
This is based on three fundamental considerations: 1) 
imputing k, the number of previous episodes for those 
subjects at risk before follow-up starts; 2) treating the 
subpopulation “previously at risk” separately from that 
“not previously at risk” and 3) using a frailty term to cap-
ture the impact of unobserved effects, including uncer-
tainty related to the imputation process. This gives two 
formulations that we call “Specific Hazard Frailty Model 
Imputed,” as shown in Eq.  7 for the counting process 
(SPECIFIC.CP) and Eq. 8 for gap time (SPECIFIC.GT).

where k is the number of previous episodes in individual 
i when they are known or the imputed value when they 
are not known; r indicates the “previously at risk” or “not 
previously at risk” subpopulation to which the individual 
belongs.

In practice, this proposal means that we stratify by the 
interaction between risk prior to the start of follow-up 
and the number of prior episodes. Therefore, the use of 
the individual random error term υi intends to capture 
the error that will be made when imputing, as well as the 
effect of any variable with a non-nil effect not being con-
sidered in the analysis. Stratifying by the number of prior 
episodes intends to safeguard event dependence: doing 
it as an interaction with the fact that it is an individual 
previously at risk, or not, separates the two subpopula-
tions to avoid mixing times that are not comparable on 
the same scale.

To impute the prior history, a generalized linear model 
(GLM) based on the Conway–Maxwell Poisson distribu-
tion (COMPoisson) [20] is fitted to the observed number 
of events. Imputed values are randomly sampled from the 
corresponding distribution with the parameters obtained 
in the previous step, including random noise generated 
from a normal distribution. To produce proper estima-
tion of uncertainty, the described methodology is used 
within a multiple imputation framework. The data in the 
Results section reflect the combination of 5 imputed data 
sets (following the classic advice to use a low number 
of imputed data sets and considering that there is little 
to gain from using more [21–23]), according to Rubin’s 

(7)hikr(t) = νih0kr(t)e
Xiβ

(8)hikr(t) = νih0kr
(

t − tk−1

)

e
Xiβ

rules [23] and based on the following steps in a Bayesian 
context:

1.	 Fit the corresponding COMPoisson model and find 
the posterior mean β̂ and variance V

(

β̂

)

 of model 
parameters β.

2.	 Draw new parameters β∗ from N
(

β̂ ,V

(

β̂

))

.
3.	 Draw imputations from the COMPoisson distribu-

tion using the scores obtained in the previous step as 
parameters.

A detailed description of the whole imputation process 
can is reported by Hernández et al. (2020) [24].

Simulation study
Six populations were simulated through the R package, 
survsim [25], corresponding to previously described 
cohorts of workers [19, 26]. The first three simulated 
worker history depending on the occurrence of long-
term sick leave with several intensities of event depend-
ence. Given that the simulations are carried out through 
Weibull distributions with ancillary parameters equal 
to 1 (that is, exponential distributions) the hazard 
was deemed constant within each episode, but differ-
ent between episodes (in other words, there was event 
dependence). For the fourth, fifth, and sixth populations, 
the outcome was sick leave according to diagnosis (i.e., 
respiratory system, musculoskeletal system, and mental 
and behavioral disorders). In this case, the hazard func-
tions were not constant within the episode.

Table  1 shows the characteristics of each episode in 
each population. The maximum number of episodes that 
a subject may suffer was not fixed, but the baseline haz-
ard was considered constant when k ≥ 3. The exposure is 
represented by covariates X1, X2, and X3, with Xj ≈ Ber-
noulli (0.5) and β1 = 0.25, β2 = 0.5, and β3 = 0.75 repre-
senting effects of different magnitudes set independently 
of the episode k to which the worker is exposed.

Four different situations, which were combinations 
between two possible follow-up times (2 and 5 years) 
and two maximum times at risk prior to the beginning 
of the cohort (2 and 10 years), were simulated for each 
population. For example, for 10 years’ maximum time 
at risk and 5 years’ follow-up, we generated dynamic 
populations with 15 years’ history and selected sub-
jects who were either present at 10 years’ follow-up or 
incorporated after that date. Follow-up time was then 
re-scaled, setting t = 0 at 10 years for subjects already 
present in the population, and setting t = 0 as the begin-
ning of the follow-up period for those incorporated 
later. This procedure allowed us to obtain a cohort in 
which some subjects had worked up to 10 years and 
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were treated as unknown with 5 years of effective fol-
low-up (observed between 10 and 15 years in the origi-
nal simulated follow-up). In each case, m = 100 samples 
of sizes 250, 500, and 1000 were simulated with differ-
ent proportions of subjects at risk prior to entering the 
cohort (0.1, 0.3, 0.5, 0.75 and 1).

Our proposal was compared to a model with frailty 
and common baseline hazard in terms of the number 
of previous events, but with different risk per subpop-
ulation. We named this the “Common Hazard Frailty 
Model with stratification by subpopulation” (COM-
MON). Importantly, this model does not take event 
dependence into account, as expressed in Eq.  6, but 
separates individuals by prior risk:

Additionally, a second simulation study was conducted 
with the same technical settings but with m = 1000 simu-
lation instances to avoid spurious fluctuations and with 
only one covariate with no effect (β = 0), to assess type I 
error rates for rejecting the null hypothesis of no expo-
sure effect. Table  2 presents the performance measures 
used for evaluating the different methods.

Results
The presented results refer to n = 1000 and 5 years’ fol-
low-up because the differences observed for n = 250, 
n = 500, and 2 years’ follow-up were not considered rele-
vant (see Supplementary Material). Regarding bias, Fig. 2 
highlights that the COMMON model only obtained val-
ues under 10% in population 1 and in some cases when 
100% of individuals were at prior risk. Models SPECIFIC.
CP and SPECIFIC.GT generally obtain biases < 10% in 
most situations, except for SPECIFIC.GT in populations 
4 and 5, which is slightly above this threshold, and for 
SPECIFIC.CP, especially in population 3 when 100% of 
individuals had prior risk at t = 0, which seemed more 
sensitive. For the first three populations, SPECIFIC.GT 
shows equal or less bias than SPECIFIC.CP, whereas the 
converse is true for the second three populations, pro-
vided that risk starts during follow-up for at least 50% of 
the cohort.

The average 95%CIs are largest in the COMMON 
model, excluding population 1, when up to 30% of indi-
viduals were at previous risk, always overcoming the 
accuracy of the SPECIFIC.CP model in populations 1, 
2, and 3, with the SPECIFIC.GT model most accurate in 
populations 4, 5, and 6 (Fig. 3).

The 95%CI coverage of the COMMON model was 
clearly under 95% in most cases, decreasing as the event 
dependence increases, and for the first four populations, 
the proportion at risk prior to t = 0. The coverages for 
models SPECIFIC.CP and SPECIFIC.GT were gener-
ally acceptable, even when excessively conservative in 
some cases (> 95%). The SPECIFIC.CP model failed in 

(9)�ir(t) = νi�0r(t)e
XiβTable 1  Characteristics of the simulated populations

Weibull distribution: f (t) = �ptp−1e−�tp , � = e−pβ0

Lognormal distribution: f (t) = 1

tσ
√
2π

e

[

−1

2σ2
{log(t)−µ}2

]

,µ = β0

Loglogistic distribution:
 
f (t) = �

1/γ t1/γ−1

γ

{

1+(�t)1/γ
}2 , � = e−β0

Episode Distribution β0 Ancillary HR

1 Weibull 8.109 1 1

2 Weibull 7.927 1 1.20

≥ 3 Weibull 7.745 1 1.44

1 Weibull 8.109 1 1

2 Weibull 7.703 1 1.50

≥ 3 Weibull 7.298 1 2.25

1 Weibull 8.109 1 1

2 Weibull 7.193 1 2.50

≥ 3 Weibull 6.276 1 6.25

1 Log-normal 7.195 1.498 1

2 Log-logistic 6.583 0.924 1.77

≥ 3 Weibull 6.678 0.923 2.53

1 Log-logistic 7.974 0.836 1

2 Weibull 7.109 0.758 3.81

≥ 3 Log-normal 5.853 1.989 7.19

1 Log-normal 8.924 1.545 1

2 Log-normal 6.650 2.399 10.13

≥ 3 Log-normal 6.696 2.246 11.19

Table 2  Performance evaluation criteria

Simulation study 1 Evaluation criteria (covariate j = 1, 2, 3 and sample m = 1, …, 100)

Mean relative bias ∑3
j=1

∑100
m=1

|β̂jm−βj |
βj

×100

3×100

Average length of 95%CI ∑3
j=1

∑100
m=1 2Z1−α/2SE

(

β̂jm

)

3×100

Coverage Percentage of times the 95% confidence interval β̂jm ± Z1−α/2SE
(

β̂jm

)

 includes βj

Simulation study 2 Evaluation criterium
Type I error Percentage of times the H0:β = 0 is rejected, for m = 1, …, 1000
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population 3 when 100% had prior risk, due to the high 
bias, whereas the SPECIFIC.GT model obtained coverage 
< 80% even in population 4 when < 100% of individuals 
were at prior risk (Fig. 4).

Tables S1 and S2 (Supplementary Material) summa-
rize the results using arbitrary relative bias (< 10%) and 

coverage (92.5–97.5%) criteria. Considering all situa-
tions, the COMMON model rarely met these criteria, 
while the SPECIFIC.CP model showed the highest level 
of compliance.

Figure 5 shows the type I error distribution for each method, 
with acceptable rates of around 5% observed in all cases.
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Fig. 2  Bias according to population and maximum time at risk prior to the beginning of the cohort
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Fig. 3  Average length of the 95% confidence interval according to population and maximum time at risk prior to the beginning of the cohort
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Discussion
Our results indicate that not knowing the number of 
prior episodes an individual has experienced should not 
justify the use of models with a common baseline hazard, 
which in most situations show higher bias and less cover-
age than specific baseline hazard models. The first step, 
which is indispensable for choosing the correct method, 

should be to describe the baseline hazard form of the 
phenomenon under study in each episode. The SPE-
CIFIC.GT model should be selected if this is a function 
of constant risk, while the SPECIFIC.CP model would 
also be acceptable when information about the number 
of prior episodes is lacking in up to 30–50%; however, the 
SPECIFIC.CP model should be selected for phenomenon 
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Fig. 4  Coverage according to population and maximum time at risk prior to the beginning of the cohort
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Fig. 5  Type I error rate according to population and maximum time at risk prior to the beginning of the cohort
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ruled non-constant when there is a lack of prior informa-
tion in up to 50% of cases. Neither model is sufficiently 
robust if the number of previously experienced episodes 
is unknown for all individuals, even though the SPE-
CIFIC.GT model could be adequate in some cases.

Some readers may be surprised by the finding that 
bias for the COMMON models in populations 5 and 6 
decreased when increasing the proportion of workers at 
risk before t = 0. This may be because these populations 
present high levels of recurrence: thus, more subjects are 
at risk prior to t = 0 meaning that more subjects will have 
already had ≥2 episodes (and will be imputed with val-
ues ≥2). Given that our simulation set had the same base-
line hazard from the second episode onwards (a realistic 
convergence phenomenon), many subjects will have had 
the same baseline hazard and the COMMON model will 
have performed better.

Other unexpected results are seen with the partially 
non-monotonous bias and CI coverage functions associ-
ated with increasing the proportion of missing data (e.g., 
the SPECIFIC.CP and SPECIFIC.GT models in popula-
tion 1). These situations were in the minority, and the 
reader should keep in mind that the actual differences 
were very low despite appearing relevant (the Y-axis 
scales in some figures are very accurate). The results for 
n = 250 and n = 500 (Supplementary Material) did not 
follow the same pattern, which indicates that these differ-
ences are probably spurious.

Finally, it is important to note that the effectiveness of 
imputing prior missing episodes to account for left-cen-
sored data depends strongly on the assumption of ‘miss-
ing at random’ (i.e., that measured covariates actually 
predict the episode history of an individual). Therefore, 
a correctly specified imputation (and similarly, an appro-
priate final survival model specification) is essential to 
obtain unbiased and efficient estimates.

Conclusions
This simulation study reveals that simply ignoring prior 
episodes of the outcome of interest and using common 
baseline hazard models (the most common approach in 
epidemiological cohort studies) can lead to extremely 
biased and inefficient estimates. In turn, this will gener-
ate inaccurate conclusions, especially when the amount 
of missing information is high. However, the perfor-
mance of these estimates can be improved by using the 
proposed methodology, which is already available on 
standard software and ready to be used by any interested 
researcher as R package miRecSurv [27].
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