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Abstract5

Neural circuits construct internal ‘world-models’ to guide behavior. The predictive processing6

framework posits that neural activity signaling sensory predictions and concurrently computing7

prediction-errors is a signature of those internal models. Here, to understand how the brain8

generates predictions for complex sensorimotor signals, we investigate the emergence of high-9

dimensional, multi-modal predictive representations in recurrent networks. We find that robust10

predictive processing arises in a network with loose excitatory/inhibitory balance. Contrary11

to previous proposals of functionally specialized cell-types, the network exhibits desegrega-12

tion of stimulus and prediction-error representations. We confirmed these model predictions by13

experimentally probing predictive-coding circuits using a rich stimulus-set to violate learned14

expectations. When constrained by data, our model further reveals and makes concrete testable15

experimental predictions for the distinct functional roles of excitatory and inhibitory neurons,16

and of neurons in different layers along a laminar hierarchy, in computing multi-modal predic-17

tions. These results together imply that in natural conditions, neural representations of internal18

models are highly distributed, yet structured to allow flexible readout of behaviorally-relevant19

information. The generality of our model advances the understanding of computation of inter-20

nal models across species, by incorporating different types of predictive computations into a21

unified framework.22

Introduction23

Predictive coding, the process of computing the expected values of sensory, motor, and other24

task-related quantities, is thought to be a fundamental operation of the brain [1, 2]. Violation25

of internally-generated expectations, known as prediction-errors, is an important neural sig-26

nal that can be used to guide learning and synaptic plasticity [3, 4]. Signatures of predictive27

2

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606684doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606684
http://creativecommons.org/licenses/by-nc-nd/4.0/


coding, including neural correlates of prediction-errors, were identified in multiple brain cir-28

cuits, and across animal species [2,5–7]. Two well-studied examples are motor-auditory [8–13]29

and visual-auditory predictions [14–16] in the mouse cortex. Previous work has proposed30

that a canonical cortical microcircuit underlies the computation of predictions and prediction-31

errors [2, 8, 9, 17–19]. While some predictions of this proposed microcircuit were confirmed in32

restricted scenarios, the hypothesis that the circuit-motif within the mouse cortex is a general33

mechanism for predictive processing faces a number of challenges.34

First, typical experimental paradigms study predictive coding in animals trained to make35

a single association [12, 16, 20], while natural sensorimotor associations are typically high-36

dimensional (e.g., speech production [21]), as well as context-dependent [22, 23]. Little is37

known about how specific neural architectures in the brain learn to implement such high-38

dimensional computations. Second, multiple brain circuits outside of the mammalian cortex ex-39

hibit predictive coding, including subcortical circuits mediating placebo analgesia (prediction-40

based suppression of pain [24]); and motor-visual circuits in cephalopods that predict the ani-41

mal’s appearance to an external observer, and use it to generate high-dimensional camouflage42

patterns [25]. It is not known whether these neural circuits use similar or altogether different43

strategies for predictive processing as the mammalian cortex. Third, predictive neural represen-44

tations emerge on timescales ranging from∼1 minute [26,27],∼1 hour [28,29], to days [16,30].45

This suggests that predictive processing is supported by plasticity mechanisms operating on a46

range of timescales (including short-term plasticity [31]), and that circuit reorganization may47

not always be required for implementing predictive computations.48

The evidence that computing predictions is an integral part of sensory processing has gar-49

nered significant attention from the theoretical neuroscience community. Several studies have50

proposed recurrent network models that may perform these computations [32–39]. These stud-51

ies typically focus on predicting a small number of stimuli within a single sensory modality.52
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Moreover, in most cases, these models have been compared with coarse-grained neuroimag-53

ing data [7, 40]. Therefore, we lack cellular-level and circuit-level understanding of neural54

mechanisms underlying multi-modal predictive computations, which limits our ability to test55

hypotheses related to the circuit computation of predictive coding based on modern large-scale56

neural recordings.57

Another major current gap from both experimental and modeling perspectives is predictive58

processing in high-dimensions: (i) What are the neural representations of predictable and un-59

predictable sensory variables in natural conditions with rich stimulus ensembles and complex60

inter-dependencies between stimuli [7,41,42]? (ii) What are the circuit mechanisms underlying61

the computation of those representations, and how are they learned? Specifically, it remains62

unknown whether circuits that implement predictive coding of high-dimensional stimulus en-63

sembles are functionally segregated [2, 17, 18], and if so, whether this segregation emerges64

during learning or depends on molecularly distinct cell-types.65

We address these questions by developing a mathematical framework to examine the pre-66

dictive representations in recurrent networks processing naturalistic inputs during and after67

learning, and by relating this model to cellular- and population-level neural recordings. From68

a mechanistic perspective, we provide novel predictions into the expected degree of excita-69

tion/inhibition balance in the high-dimensional case, and shed light on the role that E/I balance70

plays in canceling interference between multiple learned stimuli. Moreover, since E/I balance71

is enforced by mechanisms operating on heterogeneous timescales [43], our model may al-72

low incorporating seemingly unrelated phenomena into a unified framework, e.g., predictive73

responses that change as a result of short- or long-term plasticity. From a functional perspec-74

tive, the model suggests that predictive processing of high-dimensional stimuli is robust when75

the representations of stimuli and of prediction-errors are desegregated at the cellular-level, and76

distributed across excitatory and inhibitory neurons. Finally, we applied our theory to examine77
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the distinct roles played by excitatory and inhibitory neurons in generating internal predictions,78

and to assess the layer-specific predictive representations.79

Our modeling and analysis overcomes key limitations of previous studies of predictive pro-80

cessing, and generates novel predictions that we confirmed here based on experimental data.81

Therefore, we believe that our work reveals principles of predictive processing across species82

and brain-regions and provides a quantitative framework for design and analysis of future ex-83

periments to decipher neural circuits underlying those computations.84

Results85

Recurrent networks that learn to generate high-dimensional predictions86

We studied the neural representations formed in recurrent neural networks that perform pre-87

dictive processing of multi-modal sensory and motor inputs. We focused on a typical asso-88

ciative training scenario where animals are presented with pairs of sensory stimuli simultane-89

ously [9, 11, 12] or after a short delay [16]. The stimuli comprising each pair are typically of90

different sensory modalities (e.g., auditory-visual [16]), or involve a sensory-motor association91

(e.g., locomotion-auditory [12]). In this scenario, predictive computations are thought to be92

learned over time through synaptic-weight updates [9, 11, 12, 16, 20, 44]. Our network model93

consists of N recurrently connected neurons whose firing-rates depend nonlinearly on the input94

current driving their responses (Fig. 1a). The presentation of stimuli to the network is deter-95

mined by the variables x and y. The strength of the input to each neuron corresponds to the96

components of the stimulus-specific feedforward synaptic weight vectors w and v. There are97

P stimulus-pairs, and when P is of the same order as the number of neurons N , the network is98

said to perform high-dimensional predictive processing.99

Before training, the feedforward weight vectors corresponding to each stimulus-pair are100

random and uncorrelated within the pair (i.e., w · v = 0). During training, those weights be-101
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come correlated (w · v = µ, with µ > 0), consistent with measurements of learning-induced102

functional reorganization of excitatory synaptic connections [45–47]. Weights of recurrent con-103

nections are chosen to minimize errors between internally generated predictions and the actual104

stimuli, while maximizing the overall encoding efficiency (Methods). Under these assump-105

tions, we obtained key statistics of neural activity in the network for different stimulus inputs,106

at different stages of learning (Methods). The resulting neural activity allows flexibly reading-107

out the stimulus identity, predicting the ‘missing’ stimulus (i.e., predicting y based on x), and108

evaluating the prediction-error (Fig. 1a). We applied the modeling framework developed here109

(SI §1-2) to investigate the structure of multi-modal predictive neural representations and the110

circuit mechanisms supporting it.111

We first examined neural responses during learning in the match (x = y), and mismatch (x 6=112

y) conditions. We set x and y to be binary variables corresponding to the presence (x, y = 1) or113

absence (x, y = 0) of visual-auditory, visual-motor, or auditory-motor pairings [12, 13, 16, 20].114

Our mathematical formalism extends to scenarios where more than two stimuli are predictive115

of each other, and where the inputs to the network vary continuously (e.g., running- or visual-116

flow-speed [20, 44]; Methods). Before associative training (µ = 0), most of the neurons in117

the network have comparable match (rxy) and mismatch (rx, ry) responses (Fig. 1b). After118

training (µ = 0.9), match responses are suppressed while mismatch responses are amplified119

(Fig. 1b). Correspondingly, the ratio of average mismatch and match firing-rates increases120

(Fig. 1c), consistent with associative learning experiments [12, 16, 20]. Thus, the presence121

of stimulus y suppresses the response evoked by stimulus x, and generates a prediction (or122

expectation) of x. Amplified mismatch responses are interpreted as prediction-errors [2, 7].123

During learning, the mismatch responses (rx, ry) become anti-correlated (Fig. 1d,e), i.e.,124

the presence of stimulus y more effectively suppresses responses to x alone. This anti-correlation125

does not appear between rx and ry of another stimulus-pair (Fig. S1a), suggesting that the126
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predictive signal triggered by stimulus y, is specific to its paired stimulus x, consistent with127

Refs. [12, 48]. The specific suppression of responses to predictable stimuli is accompanied by128

a weaker, global gain that depends on the overall magnitude of sensory input (SI §2). Further-129

more, match and mismatch neural responses decorrelate during learning (Fig. 1d,e), consistent130

with Ref. [16], suggesting that neural responses can be used to distinguish between presenta-131

tion of stimulus x in the match or mismatch condition. Notably, Owing to the neural response132

nonlinearity, the match response is not a sum of the two mismatch responses (rxy 6= rx + ry,133

Fig. 1c).134

Next we examined neural responses when the network is trained with two stimulus-pairs135

(P = 2, Fig. 1f), making a step towards the high-dimensional scenario. [2, 17, 18, 49, 50] pro-136

posed that neurons involved in predictive processing are functionally segregated, i.e., neurons137

that signal prediction-error for one stimulus association tend to signal prediction-error for other138

associations, and similarly for ‘representation’ neurons that encode the stimulus itself. This139

proposal would predict a high degree of correlation between neural responses to two stimulus-140

pairs (Fig. 1f, right). However, we found no such correlation in our model (Fig. 1f, left). This141

implies, for example, that a neuron that signals prediction-error for stimulus-pair 1, may have142

a selective response to stimulus x ‘itself’ for pair 2, and raises the question of what circuit143

mechanisms may support this cellular-level desegregation of response types.144

Learning and stimulus dimensionality determine the properties of effective145

predictive processing circuits146

We then investigated circuit mechanisms underlying multi-modal high-dimensional predictive147

processing. We decomposed the input to each neuron into feedforward and recurrent compo-148

nents, which respectively correspond to the actual stimulus signal and to internally generated149

predictions (Fig. 2a), similarly to analyses of previous experiments [2, 12, 17, 20]. To quantify150
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the relative contribution of each component, we follow the excitatory/inhibitory (E/I) balance151

literature [33, 51], and define the balance level B as the ratio between the total feedforward152

input and the net input to each neuron, in each condition (Fig. 2a).153

During associative learning, internally generated predictions become more accurate, facil-154

itating more robust cancellation of the feedforward stimulus input by recurrent feedback con-155

veying prediction signals. Thus, the overall balance level increases in the match condition but156

decreases in the mismatch condition (Fig. 2b, left). Notice that the balance level distributions157

(over neurons and stimuli) are initially similar in the match and mismatch conditions, but be-158

come significantly different in late stages of learning (Fig. 2b, right). Indeed, after learning, the159

mode of the balance level distribution is at B ≈ 0 in the mismatch condition, which explains160

the strong prediction-error responses.161

To understand the role of balance in predictive processing, we examined its effect on the162

nonlinear transformation the network performs, from input stimuli to neural activity (Fig. 2c).163

In our model, the geometry of neural responses facilitates robust readout of prediction-errors.164

Specifically, while prediction-errors cannot be read-out by a linear decoder from the stimulus in-165

put, such a readout is feasible once the input is transformed into the network’s high-dimensional166

response (Fig. 2d). Moreover, while the prediction-error itself is stimulus-specific, the decoder167

that performs this computation is stimulus-independent after learning—it is simply the average168

firing-rate (Fig. 2d). In other words, the learned structure of neural responses enables applying169

the same decoder to all stimulus-pairs without ‘re-learning’.170

Given the essential role of the nonlinear transformation for predictive processing, we next171

focused on the effect of the overall nonlinear gain parameter b (Methods, [34]). We found172

that increasing b leads to increases of the average match and mismatch firing-rate responses,173

together with a wider margin between them (Fig. 2e, top). Therefore, large b facilitates decoding174

prediction-errors, at the cost of increased overall neural activity. Motivated by this observation,175
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and since b is an intrinsic network quantity that can potentially be adjusted dynamically, we176

sought to find an optimal value (denoted b?). Specifically, we constrained the average network177

response in the mismatch condition to be larger than a certain threshold, while requiring a178

minimal but nonzero average response in the match condition (Fig. 2e), consistent with reports179

of weak neural responses to predictable stimuli [12, 20]. The resulting b? corresponds to an180

optimal balance level B? supporting efficient encoding and robust decoding (Fig. 2e, bottom).181

We carried out this optimization procedure for networks trained to perform predictive pro-182

cessing of stimulus ensembles with increasing dimensionality (i.e., increasing α = P/N ), with183

the same firing-rate constraints chosen such that the value of B? at α = 0 matches experimen-184

tal data. We additionally assumed that an ‘over-trained’ animal learns a single stimulus-pair185

(i.e., α = 1/N ≈ 0). Surprisingly, we found that the optimal balance level decreases with α186

(Fig. 2f), independently of the stimulus statistics (Fig. S1b,c). This is because as the number187

of stimulus-pairs learned by the network increases, so does the interference between internally188

generated predictions corresponding to different stimulus-pairs (Methods). We therefore expect189

networks performing predictive processing in natural conditions (large α) to exhibit ‘loose’ bal-190

ance, which minimizes the overall effect of interference arising from learning to generate a large191

number of internal predictions.192

We used neural activity recorded from animals trained on visual-motor (V-M) [20] and193

auditory-motor (A-M) associations [12] to constrain our network model. Specifically, we es-194

timated the balance levels in mouse sensory cortex by assuming that after training the neural195

network in vivo reaches the optimal balance level. In the V-M experiment [20], mice were196

trained to associate their running speed with the speed of visual-flow in virtual reality (Fig. 3a).197

The voltage of primary visual cortex neurons was intracellurlary recorded in the match and mis-198

match conditions. Fitting the average voltage change in the two conditions to our model gives199

the estimated balance level B?
V-M = 162 ± 61. A consistent result was obtained in the A-M200
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experiment [12], where mice were trained to press a lever and received closed-loop auditory201

feedback (Fig. 3b,c). Here the recording was extracellular, so fitting B? relied on a slightly202

modified procedure (Methods).203

It is notable that balance level estimates were consistent across animals (Fig. S2); and labo-204

ratories (Fig. 3), despite the fact that the experiments studied different brain regions and sensory205

modalities, using different methods. While these factors may affect the balance level to some206

degree, our model predicts that the balance level can decrease by up to one order of magnitude207

when the stimulus dimension increases (Fig. 2e, Fig. S1b,c). This prediction could be con-208

firmed if future experiments reveal a more loose balance in animals habituated to rich sensory209

environments.210

Stimulus and prediction-error representations are desegregated in the model211

We next investigated how different functional responses are organized within the network. Pre-212

vious work postulated that two distinct neural populations exist in predictive processing cir-213

cuits: (i) internal representation (R) neurons that ’faithfully’ represent external sensory stimuli214

and encode internal predictions, and (ii) prediction-error (PE) neurons, which signal the differ-215

ence between the actual stimulus inputs and internal predictions. Given that neurons selective216

to these signals also exist in our network model, we wondered whether they form functionally217

segregated populations. We adopted classification criteria used in experimental work (Meth-218

ods, [2, 48]): R neurons are those which respond strongly and similarly in match and mismatch219

conditions, while PE neurons are those which respond strongly in the mismatch condition but220

weakly in the match condition (Fig. 4a).221

Based on these criteria, we first computed the fractions of R and PE neurons when the222

network learns a single stimulus association (P = 1, Fig. 4b). As training progresses, the223

fraction of PE neurons increases significantly, consistent with experiments [16, 52], and with224
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the notion that the network learns to ‘recognize’ the stimulus pairing. This result is independent225

of the classification criterion (Fig. S3). The fraction of R neurons remains unchanged (Fig. 4b),226

though we note that the trend does depend on the criterion (Fig. S3).227

We next asked how neurons responded to more complex stimulus ensembles, specifically228

for two learned pairs of stimuli. The hypothesis that predictive processing is segregated [2, 18]229

asserts that if a neuron is a PE neuron for stimulus-pair 1, and if it is active during presentation230

of stimuli from pair 2, it will likely be categorized as a PE neuron with respect to those stimuli231

too. To test this hypothesis, we computed the joint distribution of neural responses in the four232

relevant conditions (mismatch/match, stimulus-pair 1/2) and categorized each neuron as R or233

PE, separately for each stimulus-pair (Methods). We started with the low-dimensional scenario,234

where the two stimulus-pairs in question are the only stimuli learned by the network (P = 2,235

α = P/N ≈ 0). Surprisingly, under the data-constrained parameters, although many neurons236

belong to the same functional type with respect to the two stimulus-pairs, approximately 25%237

of neurons are in fact ‘mixed’: they are classified as having different functional types (Fig. 4c,238

left).239

Furthermore, increasing the dimension of the stimulus the network learns, leads to a twofold240

increase in the fraction of mixed neurons (Fig. 4c,d). Intuitively, loose balance between high-241

dimensional feedforward and recurrent inputs leads to a broad balance level distribution across242

the network (Fig. S4a). That broad distribution, in turn, affords each neuron flexibility to en-243

code different features for different stimulus-pairs. The fraction of mixed neurons shown in244

Fig. 4d corresponds to two specific stimulus-pairs. When we considered instead the entire245

learned stimulus-set, most of the neurons are mixed with respect to at least two pairs (Fig. S4b).246

Thus, contrary to the previous hypothesis [2], neurons with mixed representations of stimuli247

and predictions are common in the network model, especially in high-dimensional scenarios.248
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Experimental evidence for desegregated predictive representations249

We then turned to testing this key prediction of our network model, by looking for signatures250

of mixed representations of predictions and stimuli in experimental data. In our recent work,251

we recorded primary auditory cortex responses in mice that were trained to associate a simple252

behavior, pressing a lever, with a simple outcome, a predictable tone [13]. Following extensive253

training, we made extracellular recordings from auditory cortex while animals were presented254

with probe auditory stimuli that differed from the expected stimulus along a variety of different255

dimensions, and while animals either pressed the lever or heard the tone passively (Fig. 4e).256

Here we analyzed this data as follows. For each neuron, we computed the difference (∆)257

between the mismatch (passive: sound only) and match (active: lever press + sound) neural258

responses (Fig. 4e, bottom), similar to our analysis of the neural activity in the model (Fig. 4c).259

Note that for each of the four probe sounds, ‘match’ corresponds to a lever press paired with260

the probe sound, while ‘mismatch’ corresponds to responses following the probe sound without261

lever press. We expected ∆ values of mixed neurons to lie in the upper left or lower right corners262

of the plot (similarly to Fig. 4c, blue rectangles). This would correspond to neurons with match263

and mismatch responses that are similar for the expected sound but differ for the probe sound,264

or vice versa.265

We quantified the degree of mixing, or desegregation of the predictive representation, by266

computing the Pearson correlation coefficient of the ∆ values corresponding to the expected267

sound and each probe sound separately (Fig. 4e). We defined this coefficient as the segrega-268

tion index, which is close to 1 if the ∆’s are strongly correlated between the two stimulus-pairs269

(expected, probe). A segregation index close to 0 means that the representations of stimuli270

and predictions are ‘maximally mixed’. We additionally computed representation similarity271

between the expected and probe sounds, as the correlation between neural responses to those272

stimuli. Crucially, representation similarity was based on neural responses in a separate experi-273
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mental window during which sounds were presented passively, not following a lever press [13].274

If neurons are segregated into two functional classes, the segregation index should be close275

to 1 irrespective of the representation similarity. By contrast, we found that the segregation276

index depends strongly on the representation similarity (Fig. 4f). Specifically, when the ex-277

pected and probe sounds are similar (Fig. 4e,f, green shades), the segregation index is close278

to 1, though a random subsampling analysis indicates a statistically significant effect of the279

representation similarity on the segregation index. When the probe differs from the expected280

sound more substantially (Fig. 4e,f, orange), the segregation index drops to∼ 0.5. This relation281

between representation similarity and degree of segregation is consistent with the prediction of282

our model, with an appropriate level of coding sparsity (Fig. 4f). The significant dependence283

of the segregation index on the representation similarity, and the fact that the segregation index284

is substantially smaller than 1, suggest that predictive processing is mixed in the mouse audi-285

tory cortex. A similar relationship was found when we used the ‘complementary’ mismatch286

response to compute the ∆’s, i.e., based on the neural response to a lever press with no sound,287

rather than a sound with no lever press (Fig. S5).288

We note that the analysis presented here is an indirect test of the model prediction that pre-289

dictive representations are mixed. Indeed, the desegregation in the model involves two learned290

stimulus-pairs (Fig. 4c), while in the experiment the animal was only trained on the expected291

sound. Nevertheless, the decreased segregation index we found for probe sounds markedly dif-292

ferent from the expected sound provides strong evidence against the notion that predictive pro-293

cessing circuit is functionally segregated into separate neural populations. Our model provides294

a framework to generate hypothesis that could be tested more directly in future experiments.295
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Predictive processing in excitatory–inhibitory networks296

Thus far we have focused on relating neural responses in the model to measurements of exci-297

tatory neurons’ activity [12, 13, 16]. Each neuron’s projections in our network could be both298

excitatory (E) and inhibitory (I), so it does not obey Dale’s law. Given the growing literature on299

the role of inhibitory neurons in computing predictions [35, 36], we sought to link our model300

to experiments more tightly by extending it to a network with separate E and I neurons. We301

did so by requiring that the activity of E neurons in the E/I network matched exactly that of302

neurons in the original model. This guarantees that the E neurons possess the predictive coding303

properties we studied so far, and opens the door to study the functional role of I neurons. The304

connectivity in the E/I network has four components, corresponding to synapses to and from E305

and I neurons (Fig. 5). We used non-negative matrix factorization to ‘solve’ for those compo-306

nents (Methods, [53, 54]). The balance level B defined previously based on feedforward and307

recurrent inputs (Fig. 2), is equal to the stimulus-specific component of the E/I balance in the308

E/I networks (SI §4).309

The aforementioned mathematical procedure did not yield a unique connectivity structure.310

Rather, we found a one-parameter family of connectivity structures that all meet those con-311

straints. This parameter, denoted λEI , interpolates between two extremes of structured E/I con-312

nectivity (Fig. 5b). In one extreme (λEI = 0), inhibition is ‘private’: Each ‘parent’ E neuron313

projects to a single ‘daughter’ I neuron with equal activity. This has been an implicit assumption314

of previous predictive coding models with lateral inhibition [38, 55]. In the opposite extreme315

(λEI = 1), each I neuron receives a large number of excitatory inputs and signals an ‘internal316

prediction’ of one stimulus learned by the network, similar to previous models with segregated317

neural populations [35, 36]. We investigated the continuum of inhibitory representations be-318

tween these extremes using the same approach applied to E neurons (Fig. 1b-e, Fig. 4b). We319

started with the alignment of inhibitory responses to stimulus x in the match (rxy) and mismatch320
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(rx) conditions, at different learning stages (Fig. 5c). Before learning (µ = 0), increasing λEI321

leads to a marked decrease in the alignment of inhibitory responses. After learning (µ ≈ 1),322

increasing λEI leads to a non-monotonic effect on alignment. Intriguingly, for λEI = 1, after323

learning, the alignment of I responses in the two conditions is larger than that of E responses324

(Fig. 5c, compare green and black for µ = 1).325

These properties allowed us to estimate the parameter λEI based on empirical measurements326

of regular-spiking (RS, putative excitatory) and fast-spiking (FS, putative inhibitory) neurons.327

To achieve that, we computed the correlation between auditory cortex match and mismatch328

responses, separately for RS and FS neurons recorded in Ref. [12], and then compared those329

correlations to the model before and after learning (Fig. 5d). Specifically, The pairing between330

movement and a probe sound (not presented during training) was regarded as before-learning331

and the pairing between movement and the expected sound as after-learning (Methods). This332

correlation decreased significantly during learning for RS neurons, consistent with the change333

in the model’s E population responses (Fig. 5c, blue circles). By contrast, correlation of FS334

population responses did not change significantly during learning, which rules out small values335

of λEI . Moreover, the correlation value after learning was similar for RS and FS neurons, which336

rules out large values of λEI . Taken together, our analysis suggests that an intermediate value337

of λEI ≈ 0.6 best captures the experimental observations, consistent with the suggestion of338

‘promiscuous’ inhibitory connections mediating suppression of expected stimuli [11].339

Given this experimentally-constrained value (λEI = 0.6), our theory generates testable pre-340

dictions for inhibitory predictive representations. First, we expect that anti-alignment of mis-341

match I responses (x-only, y-only) is significantly weaker when compared to anti-alignment342

of E responses in the same conditions (Fig. 5e, left; Fig. 1d,e). Second, we predict large cor-343

relations between inhibitory responses in the match and y-only mismatch conditions (Fig. 5e,344

middle), when compared with E responses. The asymmetry of rx · rxy and ry · rxy overlaps345
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in the model may in the future be related to distinct functional responses of inhibitory neuron346

subtypes [23, 56]. Third, the fraction of I neurons with R responses decreases moderately dur-347

ing learning, compared to E neurons. We note however that the fraction of E neurons with R348

responses shows moderate dependence on the threshold, particularly before learning (Fig. S6),349

which may make it challenging to detect differences in fractions of neurons with R responses350

between E and I neurons.351

Previous work on predictive coding suggested that associative learning enhances top-down352

inhibitory projections from outside the local circuit [2, 16], which cancels bottom-up excitation353

and suppresses neural responses in the match condition. We therefore wondered what changes354

in inhibitory connectivity during learning lead to stimulus-specific suppression of neural activity355

in our E/I network model. One option is that inhibitory connections that predict the stimulus356

are strengthened [2]. Alternatively, inhibition could undergo more subtle reorganization such357

that inhibitory signals are distributed differently before and after learning.358

We calculated the distribution of I-to-E synaptic weights before and after learning in the359

family of E/I network models. When inhibition is private (λEI = 0), this distribution broad-360

ens during learning (Fig. 5f). Examining the change in synaptic weights conditioned on the361

functional cell-type of pre- and post-synaptic neurons (R or PE), suggests that stimulus-specific362

suppression of E responses arises from potentiated I synapses from neurons ‘faithfully’ repre-363

senting the stimulus. In other words, when inhibition is private, the predictive signal arises in364

part due to strengthened projections from inhibitory R neurons to excitatory neurons (Fig. S7).365

By contrast, when inhibitory structure was matched to experimental data (λEI = 0.6), learning366

leads to overall sparsification of I connections (Fig. 5g). Interestingly, here R-to-R connec-367

tions can be either potentiated or depressed, unlike the λEI = 0 case (compare middle panel of368

Fig. 5f,g). Moreover, when λEI = 0.6, inhibitory connections originating from PE neurons that369

are initially very weak get strongly potentiated.370
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Together, our results suggest that (i) Predictive processing is learned without large increases371

of the average inhibitory connection strength. This was also seen for other values of λEI372

(Fig. S8). (ii) The ‘strategy’ for learning predictive processing can differ substantially, and373

depends on the underlying circuit structure (different values of λEI in the model). (iii) When374

inhibitory structure is matched to data, the ‘internal model’ is highly distributed and, surpris-375

ingly, arises in part from potentiated connections from inhibitory neurons signaling prediction-376

error. Another signature of this distributed strategy is the decrease of total inhibitory input to377

each excitatory neuron during learning (Fig. S8), which suggests that predictions are primarily378

computed by recurrent circuitry rather than directly from top-down inputs.379

Predictive representations in hierarchical neural networks380

Sensory brain regions are known to have a laminar structure, and distinct layer-specific response381

characteristics in associative learning tasks [17, 20, 57]. In the context of the task involving382

sensorimotor predictions, it has been suggested that motor-related input originates from motor383

regions and first enters the primary sensory region via deep layers (L5/6) [2, 58–60]. On the384

other hand, the bottom-up sensory-related inputs first enter the primary sensory region via L4,385

which further projects to L2/3 where the bottom-up and top-down inputs are integrated and pro-386

cessed [61, 62]. To investigate the effects of the laminar structure on predictive processing, we387

extended the recurrent network model which has a single-module and no hierarchical structure,388

to a network model with three recurrently interconnected modules (Fig. 6). During associative389

learning, the network receives paired multimodal inputs. Crucially, the first module (M1) of390

the network receives inputs from one modality, and the last module (M3) receives inputs from391

the other modality (Fig. 6a). Differently from previous work [17, 39, 63], each module in our392

network computes bidirectional predictions, corresponding to inputs from the level above and393

below it in the hierarchy. For example, M2 computes predictions of activity in M1 and M3. Our394
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hierarchical model can also be applied to cross-modal processing performed by distinct brain395

regions that exchange predictive signals bidirectionally (e.g., auditory and visual cortices, [16]),396

beyond laminar organization within a single brain-region.397

We first studied the effects of module-specific gain parameters. After learning, the aver-398

age mismatch responses increase monotonically with b1 and b2 (Fig. 6b). We constrained the399

average mismatch response to be larger than certain threshold value and minimized the match400

responses for each module. Doing so gave a continuous set of parameter combinations for which401

the network satisfies those constraints (Fig. 6b, magenta line). We fixed b2 such that the fraction402

of prediction error neurons in M2 after learning is similar to the fraction in the single-module403

model (Fig. 3b), which also fixes b1 and b3 (Fig. 6b, star). With these constrained parameters,404

we assessed how associative learning shapes neural representations across different modules.405

In the x-only mismatch condition (x = 1, y = 0), the overall mismatch responses increase406

during learning, with notable module-specific differences (Fig. 6c): neurons in M1 that directly407

receives the x-stimulus input have remarkably similar responses in the match and mismatch408

conditions throughout learning. In contrast, neurons in M3 respond predominately to stimu-409

lus y but gradually become tuned to stimulus x as learning progresses. Neurons in M2 exhibit410

the largest mismatch-match response ratio and develop the most significant prediction error411

responses after learning.412

Next we categorized neurons along the hierarchy into functional cell-types. Before learn-413

ing, neurons activated by the stimulus x independently of y (i.e., x representation neurons) are414

concentrated in M1–the module receiving the stimulus x input directly. During learning, x415

representation neurons arise also in M2 and M3, though the overall fraction of these neurons416

decreases from M1 to M3 (Fig. 6d). PE neurons are initially very rare, and emerge in all mod-417

ules during learning, with the largest fraction concentrated in M2 (Fig. 6e). These results are418

consistent with activity of layer-specific primary sensory cortex neurons [12, 20, 58].419
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We finally evaluated the network responses for two stimulus-pairs. Similar to the single-420

module network model, mixed representation neurons arise in all modules after learning (Fig. 6f,421

g). The fraction of mixed representation neurons is maximal in M2, and it increases with the422

number of learned stimulus-pairs (Fig. 6f,g). We found that the more pronounced desegrega-423

tion of neural representations is accompanied with a significant decrease in the median balance424

level in that module (Fig. 6h), suggesting that loose balance is the underlying circuit mecha-425

nism supporting the mixed predictive responses at the cellular level. Unlike our findings in M2,426

the fraction of mixed representation neurons and the median balance level in M1 and M3 do427

not show strong dependence on the stimulus dimensionality. These results highlight the im-428

pact of anatomical structure on shaping network function. Specifically, we found that different429

modules have different fractions of representation and prediction error neurons, reminiscent430

of recent experimental findings [18]. However, despite this heterogeneity, representations of431

stimuli and prediction error are desegregated in all modules after learning.432

Discussion433

We investigated the neural representations formed in a class of recurrent neural networks that434

learn to generate high-dimensional predictions in natural conditions. Our mathematical analysis435

reveals key neural mechanisms supporting high-dimensional predictive coding; generates novel436

testable hypotheses for functional properties of the corresponding neural circuits; and provides437

a framework within which experimental data of large-scale neural recordings can be quantita-438

tively analyzed. Additionally, our framework allows incorporating information on cell-types439

and anatomical structure into the model, which can elucidate their role in predictive computa-440

tions.441

We focused on a recurrent network model (Fig. 1) for two reasons. First, cortical cir-442

cuitry that performs predictive processing is known to be highly recurrent. Plasticity of re-443
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current connections forms functional neuronal assemblies [64], which were suggested to under-444

lie behaviorally-relevant sensory discrimination [65]. Second, predictions for sensory stimuli445

typically unfold over time, which can be naturally implemented by intrinsic dynamics of re-446

current networks [32,66]. While we focused on steady-state neural responses for mathematical447

tractability, our model could be extended in the future to study the temporal properties of high-448

dimensional predictive coding. Other interesting directions to extend our study are: networks449

with asymmetric connectivity, which could be done by imposing sparse connectivity [67]; and450

networks that learn predictions online [68, 69].451

Our model suggests that balance between feedforward and recurrent input, or indeed be-452

tween excitation and inhibition, can lead to robust internal predictions within local circuits.453

While this has been suggested previously [32–34, 70, 71], an important novel prediction re-454

vealed by our analysis is that in realistic conditions there is an optimal, finite balance level,455

which decreases with stimulus dimension (Fig. 2). Our theory further suggests that a network456

with infinitely high balance [33] could be especially vulnerable to noise in high-dimensional457

scenarios.458

Based on our results, we hypothesize that the large degree of heterogeneity of empirical E/I459

balance levels in different experiments [51] may be a signature of the differences in the stimulus460

ensembles animals were exposed to. Our results in Fig. 2 and Fig. 3 suggest that this hypothesis461

could be tested systematically by exposing animals to increasingly rich sensory environments.462

Here too the temporal dynamics of the network may be important, as synaptic delays may affect463

the optimal degree of balance in circuits performing low-dimensional predictions [34, 72].464

The role that balance plays in computing predictions has important implications for the465

source of predictive signals and the timescale of learning them. (i) Previous work has shown466

that cross-modal predictions are often stimulus-specific [12, 16, 48]: signals from one brain re-467

gion can suppress responses to a particular predictable stimulus in another region (e.g., motor468
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cortex activity suppressing visual cortical responses). It is notable that within our model those469

computations are performed without fine-tuning long-range projections [2]. Rather, local re-470

current connections in the ‘receiving region’ can extract the predictions from long-range inputs471

with ‘promiscuous’ connectivity [11], relying on E/I balance and activity-dependent synaptic472

plasticity. (ii) Prediction-error responses in the same cortical region can arise at very different473

timescales, from as little as minutes [26] to days of training [12, 16]. We believe that the di-474

versity of the identified E/I balance mechanisms (e.g., firing-rate adaptation, synaptic-scaling,475

Hebbian plasticity; see review in Ref. [43]), may explain this wide temporal range of predictive476

processing learning dynamics. Future work may reveal that our model has explanatory power477

also for the emergence of predictions over faster timescales than the experiments considered478

here and thus could be applied to predictive processing circuits in subcortical regions and in479

invertebrates.480

An important finding of our work is that predictive representations are desegregated: neu-481

rons that signal prediction-errors for one stimulus-pair may faithfully represent the presence of482

stimulus for a second pair. Based on experiments where animals were probed with multiple483

types of unexpected sounds, we found signatures of this desegregation at the cellular-level in484

mouse auditory cortex (Fig. 4). Another recent study in mice performing multiple stereotyped485

motor actions reported mixed representations of the motor variables and reward prediction-486

errors across the neocortex [73], as suggested by our model for high-dimensional scenarios.487

Our model differs from previous work (e.g., [17,39,49,63]) by not explicitly assuming that sep-488

arate neural populations encode prediction and prediction errors. Rather, the network develops489

mixed neural representations as a direct consequence of minimizing the multimodal prediction490

errors under energy constraints.491

Our findings are related to the expanding literature on mixed-selectivity [74–76], where neu-492

rons exhibit complex tuning to multiple stimulus features. While even a random network can493
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exhibit mixed-selectivity [75], the neurons’ tuning curves there are unstructured, which requires494

finely-tuned decoders to readout task-relevant variables. Here we report neurons that have495

mixed-selectivity to internally generated predictions of sensory and motor variables (Figs. 4, 5, 6).496

Crucially, the learned neural representations in our model are highly structured, and enable the497

reading out different stimulus features without ’re-learning’ the decoder (Fig. 2).498

Although neurons in our model network and in electrophysiological recordings from au-499

ditory cortex have mixed selectivity for stimuli and prediction-errors, the auditory cortex also500

contains neurons that more specifically encode prediction-errors [13]. Notably, the abundance501

of neurons with pure or mixed selectivity to stimulus and error could be also layer-specific [12].502

This is recapitulated by our hierarchical network model (Fig. 6). Recent work in the mouse503

visual cortex identified specific genetic markers that are over-expressed in neurons that en-504

code positive versus negative prediction-errors [18]. The differences in methodologies and time505

courses of analysis make direct comparisons across these studies difficult, and it remains possi-506

ble that sensory cortex contains a large population of neurons that have shared roles in encoding507

stimuli and prediction-errors, as well as neurons that more strictly encode one or the other. In-508

deed, our analysis reveals that those classes of neurons may exist in different modules within a509

single network.510

In summary, predictive processing is a ubiquitous and fundamental computation supporting511

diverse behaviors across animal species. Here we take a first step towards bridging the gap be-512

tween theory of predictive processing and circuit-level neural recordings in predictive process-513

ing paradigms. Our results reveal the functional roles of specific circuit motifs and mechanisms514

in performing multimodal high-dimensional predictive processing. In a broader context, our515

work will advance the understanding of how the brain constructs complex internal-models by516

shedding light on commonalities and differences between biological predictive coding circuits517

and artificial systems, particularly those trained using self-supervised algorithms [39, 77].518
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Methods519

Recurrent network model520

Our model network consists ofN neurons whose firing-rates are described by the time-dependent521

vector r(t) = ( r1(t), . . . , rN(t) ). The network is driven by high-dimensional stimulus input,522

denoted x(t) = ( x1(t), . . . , xP (t) ) and y(t) = ( y1(t), . . . , yP (t) ). The vectors x and y corre-523

spond to stimuli from two modalities that are paired during training.524

The dynamics of the recurrent network are given by

dhi(t)

dt
= −hi(t) + b

(
N∑
j=1

Jijφ(hj(t))︸ ︷︷ ︸
−IRi

+IFi (x(t),y(t))

)
. (1)

Here hi(t) is the voltage level of each neuron and is related to its firing-rate via a nonlinear525

activation function, ri(t) = φ(hi(t)). Note that the input each neuron receives in Eq. (1) is526

decomposed into the recurrent (IRi ) and feedforward (IFi ) components. We rescaled the con-527

nectivity matrix Jij and the feedforward input IFi (x(t),y(t)) by a constant b, which can be528

interpreted as a gain parameter.529

The explicit forms of Jij and IFi (x(t),y(t)) were determined based on a normative approach

as follows (derivation details appear in SI §1). We assume that the neurons’ dynamics jointly

minimize the following objective

E(t) =
P∑

k=1

[(
xk(t+ d)− x̂k(t)

)2
+
(
yk(t+ d)− ŷk(t)

)2]
︸ ︷︷ ︸

Prediction-errors

+
2

b

N∑
i=1

F (ri(t))︸ ︷︷ ︸
Encoding efficiency

, (2)

where x̂(t) and ŷ(t) are the internal predictions generated by the network at time t and F (r) is530

a monotonically increasing function whose explicit form depends on φ, the nonlinear activation531

function (SI §1.1). For ReLU nonlinearity [φ(z) = max(z − θ, 0)], F (r) = (r + θ)2/2.532

Minimizing Eq. (2) is equivalent to performing Bayesian inference to extract the latent ‘cause’533
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of the sensory signals (SI §1.2). Furthermore, our network model generalizes previous models534

of predictive coding [1, 36, 38, 39, 63], by incorporating the effect of response nonlinearity into535

a regularization term that controls encoding efficiency. We note that the parameter b in Eq. (2)536

controls a trade-off between minimizing prediction-errors and maximizing encoding efficiency.537

We further assume that the internal predictions are linear readouts of the network activity

x̂k(t) =
1

N
wk · r(t), ŷk(t) =

1

N
vk · r(t). (3)

Here wk,vk ∈ RN are the readout weight vectors. These internal predictions are, by definition,

predictions of future input, as indicated by the delay d in Eq. (2). However, we will focus on

the scenario where the input changes much more slowly than the neurons’ firing-rates. There-

fore, on the timescale of firing-rate changes [Eq. (1)], we will regard the stimulus inputs to be

approximately constant, i.e.,

xk(t+ d) ≈ xk(t) ≈ xk, yk(t+ d) ≈ yk(t) ≈ yk. (4)

We assume that the weight vectors wk and vk change during learning so as to minimize the538

objective function E(t) [Eq. (2)]. This optimization process can be viewed as weight-changes539

governed by a combination of gradient descent on the squared prediction error in Eq. (2), and540

homeostatic plasticity (SI §1.1). If weights are initialized randomly, learning increases the541

correlation between the weight vectors (SI §1.1). Specifically, we show that in the large network542

size limit (N →∞), the weight vectors have the following statistics,543

〈wk
i 〉 = 〈vki 〉 = 0,

〈(wk
i )2〉 = 〈(vki )2〉 = 1,

〈wk
i v

k
i 〉 = µk. (5)

Here wk
i and vki are the components of wk and vk, which have zero mean and unit variance544

due to homeostatic plasticity. The correlation between them is µk, which increases during545
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learning (i.e., as the objective function E decreases). These weight changes can also arise546

from local plasticity rules applied to dendritic compartments (SI §1.3). For simplicity, unless547

noted otherwise, all stimulus-pairs have the same ‘age’, i.e., µk = µ does not depend on the548

index k. We further assume that the weight vectors have multivariate Gaussian distribution.549

Under these assumptions, we obtained analytical solutions for the dependence of steady-state550

firing-rate distribution on the stimulus input and the correlation µ in two limits (SI §2): the551

high-dimensional case where both N and P are large, and their ratio α = P/N is finite; and the552

low-dimensional case where only N is large, and α = 0.553

The presence or absence of each stimulus was modeled by setting the corresponding com-554

ponents of x and y to 0 or 1. For example, the mismatch and match conditions for the k-th555

stimulus-pair correspond to,556

(xk, yk) = (1, 0) (x-only mismatch condition),

(xk, yk) = (0, 1) (y-only mismatch condition),

(xk, yk) = (1, 1) (match condition)

We extended our results to apply in scenarios with associations between more than two stimuli557

(SI §1.3).558

Geometry of representations of stimuli, predictions and prediction-errors559

Under the above assumptions, the steady-state neural response vector [Eq. (1)] can be expressed

as,

r ∝
[
ax(µ)x+ ay(µ)y +

√
α · noise

]
+
. (6)

This form is revealing, since the stimulus-specific, µ-dependent vectors ax(µ),ay(µ) corre-560

spond to the directions along which the network encodes the stimuli in the x-only and y-only561
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mismatch conditions. Eq. (6) also shows that, owing to the nonlinearity, the readout in the562

matched condition is not ax(µ) + ay(µ). The geometry of representing stimuli in the match563

and mismatch conditions is illustrated in Fig. 1d. Changes to these vectors during training564

(i.e., µ increases) correspond to the learned structure of neural representations of stimuli and565

prediction-errors. We further note that the magnitude of the noise in Eq. (6) depends on the566

stimulus dimensionality α, and thus it captures the interference between learned stimuli.567

Definition of balance level568

The balance level for neuron i is defined as,

Bi =

∣∣∣∣ IFi
IFi − IRi

∣∣∣∣ . (7)

Here, IFi and IRi are the feedforward and recurrent input currents to neuron i at steady-state569

[Eq. (1)]. The balance level varies between neurons and between stimuli, because the weights570

wk
i and vki are different for different neurons and stimuli (indexed by i and k, respectively). The571

balance level distribution and its median shown in Fig. 2 were computed analytically (SI §2.3).572

Extracting the optimal balance level from experimental data573

V-M experiment, Ref. [20]. We calculated the trial-averaged voltage of all the recorded L2/3

neurons as a function of time (Fig. 3a). Voltage level of each neuron was measured with respect

to its baseline. We sampled 50 voltage levels from all recorded neurons and all time points in

the match and mismatch time windows (Fig. 3a), which were −0.1 − 0s (match) and 0 − 0.1s

(mismatch). The time t = 0 corresponds to point at which the treadmill was decoupled from

visual flow in virtual reality. We then computed the standard deviation over those 50 samples

of the voltage level in the match and mismatch conditions. By taking the ratio of these standard

deviations, we obtained a dimensionless quantity that has a direct analog in the model: the
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standard deviation of hi over neurons in the network in Eq. (1). Specifically, for P = 1, θ = 0,

we computed this ratio explicitly (SI §2.1),

σ2
mismatch

σ2
match

=
1

2

µ2 + (1− µ2)(1 + b/2)2

µ2 + µ+ (1− µ2)[1 + b+ (1− µ)b2/4]
. (8)

We use µ = 0.97 as the correlation value after training and fit this formula to the ratio obtained574

from data by adjusting the value of b. Using the best-fit value b?, we computed the median of575

balance level B? in the network model (Fig. 3c).576

A-M experiment, Ref. [12]. We calculated the trial-averaged firing-rates for all regular577

spiking neurons (n = 815) in the passive (mismatch) and movement (match) condition in two578

time windows: from t = −0.1s to stimulus onset (t = 0), and from stimulus onset to t =579

0.06s (Fig. 3b). For every neuron, we calculated the change in its firing-rate between the two580

time windows in both conditions. We sampled 400 firing-rate change values from 815 neurons581

with replacement, and calculated the average firing-rate change in the passive and movement582

conditions. We computed the equivalent quantity in the model, i.e., average of φ(hi) over583

neurons in the network [Eq. (1)] in the match and mismatch conditions. For ReLU activation584

function, the ratio is also given by Eq. (8) and can be fit to the ratio obtained from the data by585

adjusting the parameter b. Again we calculated the median of balance level B? based on the586

best-fit value of b?. The fitting procedure for both experiments was repeated 100 times, giving587

the scatter plot of estimated B? values (Fig. 3c).588

Definition of functional cell types589

We denote the steady-state voltage of neuron i in the mismatch conditions as hxi (x-only) and590

hyi (y-only), and in the match condition as hxyi . To classify neurons into functional types, devia-591

tions of individual neurons’ voltage response relative to the mean were compared to the standard592

deviation (denoted σ) of the steady-state voltage distribution. We evaluated σ using the voltage593

distribution in the x-only mismatch condition after learning (µ = 0.97).594
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A neuron i is a representation (R) neuron for the x-stimulus if it is depolarized upon presen-

tation of the stimulus x, i.e., its voltage response in x-only mismatch condition is large, and its

voltage responses in the match and mismatch conditions are similar. Mathematically,

hxi >
σ

2
and |hxi − h

xy
i | <

σ

2
. (9)

A similar criterion was used to identify R neurons for the y-stimulus. A neuron i is a

prediction-error (PE) neuron if it signals the ‘mismatch’ between x and y, i.e., its voltage re-

sponse in the x-only mismatch condition is large, and its voltage response in the match condition

is small. Mathematically,

hxi >
σ

2
and hxi − h

xy
i >

σ

2
. (10)

Neurons meeting these criteria are referred to as positive PE neurons, because their activity595

increases when x is presented but not expected (based on y). The activity of negative PE neurons596

increases when x is not presented but is expected. In our model, E neurons have a centered (zero597

mean) distribution of voltages for α = 0, therefore the threshold is applied to the voltage itself.598

For excitatory neurons in the high-dimensional regime (α > 0) and inhibitory neurons, since599

their voltage distribution has a non-zero mean, we used the centered voltage levels (hxi , h
xy
i ) in600

the above criteria.601

Note that neurons in the network may not belong to any of the those three classes (Fig. S3a).602

We computed the firing-rate statistics of neurons in the network analytically (SI §2, §3), which603

allowed use to obtain the fraction of R and PE neurons for different values of µ and α, shown604

in Fig. 4b,d. We further explored the effects of threshold level on the fraction of different605

functional types in Fig. S3b.606

28

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606684doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Estimating functional segregation from responses to multiple stimuli from607

experimental data608

We calculated the trial-averaged firing-rate change of each neuron in the match (active) and609

mismatch (passive) conditions, separately for each sound stimulus from our experimental data610

[13]. To calculate the segregation index for each type of probe sound, we restrict the analysis611

to neurons responsive in the passive condition to that probe sound and the learned (expected)612

sound. Responsive neurons were defined as those having firing-rate that was one half of the613

standard deviation above the mean firing-rate for the expected sound in the passive condition.614

Changing the threshold does not affect the results in Fig. 4e,f. For these neurons, we computed615

pairs of ∆ values, defined as the difference between mismatch and match responses, for the616

probe and expected stimulus. The Pearson correlation coefficient between those ∆ values was617

defined as the segregation index.618

To estimate the similarity of the expected and probe stimuli, we computed individual neu-619

rons’ trial-averaged firing-rate change following presentation of those stimuli in the passive620

condition from our experimental data [13] (the same time windows used in the A-M experi-621

ment, Fig. 3). For each animal, we considered population firing-rate vectors consisting of all622

its recorded neurons. Representation similarity was defined as the Pearson correlation of those623

vectors for pairs of auditory stimuli (expected and probe, Fig. 4f). We note that this similarity624

in the model is calculated from the activity of all neurons that are active in either the expected625

or probe stimuli in passive condition.626
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E/I network model627

In the network with separate E and I neurons, the time-dependent voltages of E and I neurons

are given by the following set of differential equations,

dhEi
dt

= −hEi +

NE∑
j=1

JEE
ij φ(hEj ) +

NI∑
j=1

JEI
ij φI(h

I
j ) + IEi ,

τI
dhIi
dt

= −hIi +

NE∑
j=1

J IE
ij φ(hEj ) +

NI∑
j=1

J II
ij φI(h

I
j ) + IIi . (11)

We assume that the activation function for inhibitory neurons is ReLU with zero threshold,

φI(x) = max{x, 0}. Matching the E neurons’ activity at steady state to the activity of neu-

rons in our original network [Eq. (1)] gives constraints on the connectivity components and the

feedforward input (SI §4),

JEE − JEI(I + J II)−1J IE = J,

IE − JEIII = IF . (12)

Here J and IF are the connectivity matrix and feedforward input used in Eq. (1). We further628

assume that the matrix I + J II is invertible. In general, there are many possible solutions629

{JEE, JEI , J IE, J II , IE, II} satisfying Eq. (12). We therefore identify a family of solutions.630

This continuum interpolates between the solution with private inhibition, where J IE is equal631

to the identity matrix; and solutions with an inhibitory internal prediction, where rows of J IE
632

are given by the stimulus weight vectors (SI §4). Moreover, we show that up to a constant, the633

balance level defined earlier [Eq. (7)] is the same as the stimulus-specific, local component of634

the E/I balance level in the E/I network (SI §4).635

We extended the definition of functional cell-types [Eqs. (9,10)] to I neurons. We note that636

here the average input to inhibitory neurons is not 0, so we subtracted the mean from the voltage637

level [h’s in Eqs. (9,10)] before applying the criteria on the deviations from the mean.638
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Analyzing responses of regular spiking and fast spiking neurons639

We estimated the connectivity structure parameter λEI based on recordings of regular spik-640

ing and fast spiking neurons [12]. Using the same time windows as Fig. 3b and Fig. 4e,f, we641

calculated individual neurons’ trial-averaged firing-rate change in the passive and movement642

conditions for the expected sound and the probe sound. Those firing-rate changes recorded in643

each animal form eight population vectors (regular/fast spiking, expected/probe sound, move-644

ment/passive). We calculated the Pearson correlation between population vectors under move-645

ment and passive conditions, giving four values for each animal, shown in Fig. 5d. The cor-646

relation values for presentation of the expected sound were regarded as ‘after learning’, while647

correlation values for presentation of the probe sound that was not associated with the lever648

press were regarded as ‘before learning’.649

Hierarchical recurrent network model650

In the hierarchical network model, each neuron belongs to one of three modules, indicated by

superscripts in the equations governing neural activity,

dh1i
dt

= −h1i (t) + b1

(∑
j

J1
ijφ(h1j(t)) +

∑
k

W 1
ikxk +

∑
k′

V 1
ik′φ(h2k′(t))

)
(M1)

dh2i
dt

= −h2i (t) + b2

(∑
j

J2
ijφ(h2j(t)) +

∑
k

W 2
ikφ(h1k(t)) +

∑
k′

V 2
ik′φ(h3k′(t))

)
(M2)

dh3i
dt

= −h3i (t) + b3

(∑
j

J3
ijφ(h3j(t)) +

∑
k

W 3
ikφ(h2k(t)) +

∑
k′

V 3
ik′yk′

)
(M3)

(13)

The definitions of feedforward and recurrent connectivity are generalizations of the single mod-651

ule network. Moreover, this model can be extended to a hierarchical network with a arbitrary652

number of layers. Details are provided in SI §1.3.653

31

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606684doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606684
http://creativecommons.org/licenses/by-nc-nd/4.0/


Statistical tests654

In Figs. 3c, 4f and 5d, we used two-sided, unpaired t-tests. ? = p < 0.05 and ??? = p < 0.0005.655
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Fig. 1. Emergence of predictive stimulus representations in a recurrent network model675

during learning. (a) Schematic of a recurrent network model driven by P pairs of stimuli676

(x and y). Associative training increases the correlations between the feedforward weights677

carrying the input signals (w and v). The recurrent weights jointly optimize prediction-errors678

and overall encoding efficiency. The neural representation formed under such optimal recurrent679

connectivity allows reading-out the identity of the presented stimulus; predicting a ‘missing’680

stimulus; and evaluating the prediction-error. (b) Firing-rate responses of individual neurons681

in the match and mismatch conditions. Initially match and mismatch responses are correlated.682

After learning, responses are less correlated, and match responses are suppressed while the683

mismatch responses are amplified. (c) The ratio between average firing-rates in the mismatch684

and match conditions increases during learning. (d) Reduced three-dimensional neural activity685

space. Each vector represents the mean-subtracted firing-rate vector of neurons in the network686

at different conditions and stages of learning. (e) Learning leads to anti-correlation between687

neural responses to the stimuli x and y when presented separately (blue), and decorrelates the688

neural responses in the match and mismatch conditions (red), quantified by the angle between689

the population vectors. (f) Firing-rate responses of individual neurons to two stimulus-pairs690

in the match and mismatch conditions. In our model (left) there are no correlations between691

the responses to the two stimuli. Those responses are expected to be strongly correlated in a692

model in which predictive coding is functionally segregated (right). Error bars indicate standard693

deviations over 10 instances of the network. See Methods for additional details.694
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Fig. 2. Balance between feedforward and recurrent inputs is an important mechanism696

supporting predictive processing. (a) The input to each neuron is decomposed into feedfor-697

ward and recurrent components, which respectively correspond to the actual stimulus signal and698

internally generated predictions. Each neuron’s balance level B is the ratio between the total699

feedforward input and the net input (Methods). (b) The median of B in the match and mis-700

match conditions during learning (left, shaded area indicates inter-quartile range). ‘Snapshots’701

of the distributions of B early and late in learning show that the distributions become separable702

in match and mismatch conditions (right). The arrows on the x-axis indicate the distribution703

mode early in learning. (c) Schematic showing the nonlinear transformation from the stimulus704

space (left) to neural activity space (center), which facilities a linear readout of relevant stim-705

ulus features (here, decoding if x is presented in the match/mismatch condition).(d) Error of a706

support vector machine classifier trained to identify the match/mismatch condition based on the707

input stimuli (black) and on neural responses (green). After learning, a linear classifier based on708

the average firing-rate (blue) performs almost as well as the optimal classifier, suggesting that709

functionally relevant features from all stimulus-pairs can be extracted without re-learning. (e)710

Illustration of the procedure to determine the optimal b?. The balance level B increases mono-711

tonically with the gain parameter b (top). Increasing b leads to a larger margin between match712
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and mismatch responses (improved separability) at the cost of higher firing-rates (bottom). The713

optimal balance level B? is determined by constraining the average firing-rate in the mismatch714

condition and minimizing it in the match condition. (f) Increasing the stimulus dimension leads715

to decrease in B?, i.e., a more loose balance (shaded area indicates inter-quartile range). At716

α = 0, we fit B? to experimental data (Methods, [20]).717
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Fig. 3. Estimating the balance level from predictive coding experiments. (a) Schematic of719

a learned visual-motor association between running and virtual reality visual flow [20]. Voltage720

levels of different neurons in primary visual cortex reveal tuning to mismatch between running721

speed and visual flow (prediction-errors). (b) Schematic of a learned audio-motor association722

between a lever press and a sound [12]. Neurons’ firing-rates reveal tuning to auditory stimuli723

presented without (passive, prediction-errors) and with a lever press (movement). (c) Estimat-724

ing the median optimal balance level for V-M (blue) and A-M (red) experiments gives similar725

values. We assume that α = 0 based on the fact that the animals underwent extensive training726

on a single pair of stimuli in both experiments. Error bars are based on repeated subsampling727

(Methods).728
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Fig. 4. Desegregated stimulus and error representations in networks performing high-730

dimensional predictive processing. (a) Schematic of typical tuning profiles of different func-731

tional cell-types to the stimuli x and y. (b) Fraction of representation (R) and prediction-error732

(PE) neurons in the model at different learning stages. Error bars indicate standard deviation733

over 10 instances of the network. (c) Joint distribution of individual neurons’ ∆ values, the734

difference between mismatch and match responses to two specific stimulus-pairs. Only neurons735

responsive to both stimulus-pairs are included in the distribution (Methods). Mixed represen-736

tation neurons have significantly different ∆ values for the two stimulus-pairs, i.e., they are in737

the blue rectangular regions. As the stimulus dimension (α) increases, more neurons have a738

mixed representation of stimuli and prediction-errors. (d) The fraction of mixed representation739

neurons increases as stimulus dimension increases. Error bars indicate standard deviations over740

200 instances of the network. The threshold for defining response types was based on neural741
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activity statistics at α = 0 and was used for all values of α (SI §5). (e) Evaluating the seg-742

regation of stimulus and prediction-error representations based on neural recordings during a743

learned auditory-motor association. Shown are the ∆ values of stimulus-responsive neurons for744

the expected sound and each probe type (colors). Red ellipses indicate the spread of data. The745

length and direction of major and minor axes correspond to the amplitude and direction of the746

two leading principal components. (f) Segregation index as a function of representation similar-747

ity for different pairs of expected and probe sounds. Colored points correspond to subsamples748

of the data, and crosses correspond to the average for each probe type (Methods). Experimental749

data is compared with equivalent quantities from the model, obtained by varying the sparsity of750

responses in the model (f , see SI §3).751
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Fig. 5. A data-constrained excitatory/inhibitory model suggests that internally-generated753

predictions are distributed across the network. (a) Schematic of the E/I network with sepa-754

rate connectivity components. Excitatory neurons receive external inputs, and their activity is755
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constrained to equal that of neurons in our original model. (b) A family of E/I networks that756

satisfy the desired constraints, identified based on non-negative matrix factorization. Solutions757

are parameterized by λEI , which interpolates between ‘private’ inhibition and inhibition that758

signals ‘internal predictions’. Varying λEI gives different patterns of inhibitory responses and759

connectivity structures. (c) The cosine similarity (cosψI) between the match and mismatch in-760

hibitory responses to stimulus x (rxy, rx), for different values of µ and λEI (left). Comparing761

cosψI before and after learning (right) allowed us to link inhibitory connectivity structure to762

inhibitory representations. (d) Analogous correlation between population responses, computed763

separately for regular-spiking (RS) and fast-spiking (FS) neurons from Ref. [12]. Each point764

represents data from one animal. The mean and standard deviation of the correlations across765

animals are also shown. RS neurons significantly decorrelate during learning, while FS neu-766

rons’ correlation does not change. Correlations of RS and FS neurons after learning are similar.767

(e) The angle θI (left) between inhibitory population responses to the paired stimuli in the mis-768

match conditions (rx, −ry), and the angle ψ′I (center) between match and mismatch inhibitory769

population responses to stimulus y (rxy, ry). Angles are shown as a function of µ and λ, lead-770

ing to experimentally testable predictions pertaining to inhibitory representations. Fraction of771

inhibitory R neurons (right) as a function of µ and λEI . For the experimentally constrained772

parameter λEI = 0.6, this fraction decreases for inhibitory neurons (black), while it does not773

change significantly for excitatory neurons (λEI = 0, blue, Fig. 4b). (f) Synaptic weight distri-774

bution of all I-to-E connections before and after learning, when λEI = 0 (left), and for pairs of775

E and I neurons belonging to specific functional classes (R to R, middle; PE to R or PE, right).776

Learning broadens the overall synaptic weight distribution and potentiates the inhibitory con-777

nections between inhibitory R neurons. (g) Same as (f), when inhibitory structure is matched778

to data (λEI = 0.6). Here learning sparsifies and depresses inhibitory connections. Connec-779

tions between R neurons remain very small throughout learning. Surprisingly, connections from780

inhibitory PE neurons are strongly potentiated.781
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Fig. 6. Representations of stimuli and prediction errors vary across a hierarchical net-783

work. (a) Hierarchical network for predictive processing with three modules. M1 and M3784

receive stimulus x and y input, respectively. (b) The average x-only mismatch response in-785

creases with the module-specific gain parameters b1,2,3. Line: mismatch response amplitude786

used to constrain b1,2,3. Star: parameter values further constrained based on the fraction of787

prediction error neurons in M2, used in panels (c-h). (c) The ratio between the average firing-788

rates in the x-only mismatch and match conditions increases during learning. The increase is789

most prominent in M2. (d) The fraction of x representation (R) neurons at different learning790

stages. Differences between the modules diminish with µ. (e) The fraction of prediction error791

(PE) neurons at different learning stages. (f) Joint distribution of individual neurons’ ∆ values,792

defined the difference between mismatch and match responses to two specific stimulus-pairs793

in M2. Mixed representation neurons are in the blue rectangular regions. The fraction mixed794

representation neurons increases with the stimulus dimension α. (g, h) Effects of increasing795

the stimulus dimension α. (g) The fraction of mixed representation neurons increases with α in796

M2, and remains constant in M1 and M3. (h) The median balance level decreases with α in M2797

and remains approximately constant in M1 and M3. Error bars indicate inter-quartile range.798
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Fig. S1. The geometry of predictive representations in the model. (a) Pearson correlation800

coefficient between neural responses in different stimulus conditions. As in Fig. 1, the angle θ801

is measured between the network’s responses to the two stimuli in mismatch conditions (i.e.,802

rx and −ry); while ψ is the angle between responses to the same stimulus in the match and803

mismatch conditions (i.e., rxy and rx). Neural responses to stimuli from different stimulus-pairs804

remain uncorrelated, suggesting that the predictive signal learned by the network is stimulus-805

specific. Here α = 0. (b) Schematic of noisy stimulus inputs. Independent isotropic Gaussian806

noise (with S.D. denoted by σ) is added to the inputs in the match and mismatch conditions,807

relative to the noiseless stimulus presentation considered in Figs. 1,2. (c) The optimal balance808

level decreases as stimulus presentation becomes more noisy for all values of α.809
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Fig. S2. Estimated balance levels from individual animals. For each animal recorded in [12]811

(n = 8), the balance level was estimated as described in the Methods, sampling the firing-rates812

separately from each animal. There is marked variability across animals, suggesting that effects813

of learning multiple stimuli in the future are best studied within animal during learning.814
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Fig. S3. Abundance of functional cell types as a function of learning stage and classifica-816

tion threshold. (a) Criteria for classifying different functional cell types. The classification is817

based on setting two thresholds (±γσ) on the voltage response in the x-only mismatch condition818

(hxi ), and its difference from the voltage response to match condition (hxi − h
xy
i , see Methods).819

The regions corresponding to prediction-error (PE) and representation (R) neurons for stimulus820

x are shown in the plot. Here we do not distinguish positive or negative PE neurons. Similar821

criteria are applied when replacing x with y. Also shown is the region corresponding to the822

conjunctive (Conj.) neurons, which have a small response in x-only mismatch condition but a823

large response in the match condition. (b) Fraction of R and PE neurons for different thresh-824

old values, as a function of the learning stage µ. The fraction of PE neurons increases during825

learning independently of the threshold. Here α = 0.826
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Fig. S4. Fraction of mixed-representation neurons as a function of balance level and828

stimulus dimensionality α. (a) Here we vary the gain parameter b to generate a range of829

balance levels (median). As the stimulus dimensionality α increases, the fraction of mixed rep-830

resentation neurons for a fixed balance level also increases. (b) Each neuron in the network831

is a representation neuron for a certain number of stimulus-pairs (‘Number of R pairs’) and a832

prediction-error neuron for other stimulus-pairs (‘Number of PE pairs’). Plotted is the joint dis-833

tribution of these two numbers for neurons in a network when it is trained to associate P = 400834

stimulus-pairs. The corresponding marginal distributions are also shown. The joint distribution835

has a positive correlation. This indicates that when all P stimulus-pairs are considered, more836

neurons have a mixed representation than would be expected if the representation of stimulus837

and prediction-error was independent across pairs.838
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Fig. S5. Segregation index as a function of representation similarity for different pairs of840

expected and probe sounds. Plotted are the segregation indices as a function of the represen-841

tation similarity for different probe types (similar to Fig. 4f). Here the segregation indices are842

computed based on the differences ∆ between the motion-only mismatch (passive: movement-843

only) and match (active: lever press + sound) neural responses. Colored points correspond to844

subsamples of the data. The results exhibit a similar trend as in Fig. 4f. The model curve shown845

in this plot is computed using a different sparsity level (by varying the firing threshold θ) com-846

pared to the values used in Fig. 4f. Under our main modeling assumptions: connectivity that847

is symmetric and puts the stimuli x and y on ‘equal footing’ during learning, synaptic weights848

with Gaussian statistics, and ReLU nonlinearity, we were not able to find a single value of θ to849

fit the data with two definitions of mismatch responses. Future work with more realistic network850

connectivity may give a choice of parameters that is consistent across both ways of comparing851

neural responses in expected and unexpected stimulus conditions.852
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Fig. S6. Abundance of functional cell types among inhibitory neurons. (a) Fraction of854

inhibitory representation (R) and prediction-error (PE) neurons at different learning stages (dif-855

ferent values of µ) when using different voltage thresholds (±γσ). For the connectivity param-856

eter that best matches our data (λEI = 0.6), the effect of learning is consistent across different857

thresholds. (b) Fraction of inhibitory prediction-error neurons at different learning stages for858

different values of λ. Unlike other network properties that do depend on the architecture of859

inhibitory connectivity (shown in Fig. 5), this quantity depends weakly on the parameter λEI .860

In this plot we set α = 0.861
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Fig. S7. Changes to inhibitory to excitatory connections during learning do not depend863

strongly on the functional cell type of the target. Synaptic weight distribution of I-to-E864

connections before and after learning, when λEI = 0 (top) and λEI = 0.6 (bottom), for pairs of865

E and I neurons belonging to different functional classes: (R to PE, left; PE to R, middle; PE to866

PE, right). These fine-scale distribution show similar trends as in Fig. 5f,g.867
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Fig. S8. Learning predictive representations does not rely on overall potentiation of in-869

hibitory connections, across different network architectures. (a) Synaptic weight distribu-870

tion of all I-to-E connections before and after learning for values of λEI not shown in Fig. 5.871

There is no overall increase in the strength of inhibitory synapses after learning, suggesting872

that across different network architectures, predictive computations that lead to suppressed re-873

sponses to expected stimuli are distributed. (b) Distribution of the total recurrent inhibitory874

input received by different populations of excitatory neurons, in the match condition. The over-875

all inhibition received by excitatory neurons in the network decreases after learning.876
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[24] C. Büchel, S. Geuter, C. Sprenger, and F. Eippert, “Placebo analgesia: a predictive coding938

perspective,” Neuron, vol. 81, no. 6, pp. 1223–1239, 2014.939

[25] T. Woo, X. Liang, D. A. Evans, O. Fernandez, F. Kretschmer, S. Reiter, and G. Laurent,940

“The dynamics of pattern matching in camouflaging cuttlefish,” Nature, pp. 1–7, 2023.941

51

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606684doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606684
http://creativecommons.org/licenses/by-nc-nd/4.0/


[26] N. Ulanovsky, L. Las, D. Farkas, and I. Nelken, “Multiple time scales of adaptation in942

auditory cortex neurons,” Journal of Neuroscience, vol. 24, no. 46, pp. 10440–10453,943

2004.944

[27] I. Hershenhoren, N. Taaseh, F. M. Antunes, and I. Nelken, “Intracellular correlates of945

stimulus-specific adaptation,” Journal of Neuroscience, vol. 34, no. 9, pp. 3303–3319,946

2014.947

[28] A. G. Enikolopov, L. Abbott, and N. B. Sawtell, “Internally generated predictions enhance948

neural and behavioral detection of sensory stimuli in an electric fish,” Neuron, vol. 99,949

no. 1, pp. 135–146, 2018.950

[29] S. Z. Muller, A. N. Zadina, L. Abbott, and N. B. Sawtell, “Continual learning in a multi-951

layer network of an electric fish,” Cell, vol. 179, no. 6, pp. 1382–1392, 2019.952

[30] H. Makino and T. Komiyama, “Learning enhances the relative impact of top-down pro-953

cessing in the visual cortex,” Nature Neuroscience, vol. 18, no. 8, pp. 1116–1122, 2015.954

[31] T. S. Yarden, A. Mizrahi, and I. Nelken, “Context-dependent inhibitory control of955

stimulus-specific adaptation,” Journal of Neuroscience, vol. 42, no. 23, pp. 4629–4651,956

2022.957
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1. A NORMATIVE FRAMEWORK FOR HIGH-DIMENSIONAL PREDICTIVE33

PROCESSING34

1.1. The recurrent network model35

We consider a network of N recurrently connected neurons, where the firing-rates of the36

neurons are denoted by the vector r(t) = ( r1(t), . . . , rN(t) ). The firing-rate of each neuron37

is related to its voltage level hi via a nonlinear activation function, ri(t) = φ(hi(t)). We38

denote the learned paired inputs to the network as x(t) = ( x1(t), . . . , xP (t) ) and y(t) =39

( y1(t), . . . , yP
′
(t) ). Notice that the dimensions of the paired inputs are not necessarily the40

same in this section.41

In the predictive coding framework, the network continuously generates an internal pre-

diction of the inputs. We assume that internal predictions (denoted x̂k(t), ŷk(t)) are linear

read-outs from the network activity, i.e.,

x̂k(t) =
1

N
wk · r(t), k = 1, . . . , P,

ŷk
′
(t) =

1

N
vk
′ · r(t), k′ = 1, . . . , P ′. (S1)

Here wk,vk
′

are the N -dimensional readout weight vectors.42

Our aim is to derive a network model where the prediction-errors are minimized subject43

to some regularization term on encoding efficiency. Mathematically, we define the following44

objective function,45

E(t) =
P∑
k=1

(
xk(t)− x̂k(t)

)2
+

P ′∑
k=1

(
yk(t)− ŷk(t)

)2
+

2

bN

N∑
i=1

F (ri(t)). (S2)

The first two terms of E(t) correspond to the prediction-errors. The regularization term, and46

the function F (z) in particular, depend on the nonlinear activation function φ. We consider47

those nonlinear activation functions where the firing-rate is φ+(h− θ) above a threshold θ,48

and 0 below the threshold. Mathematically,49

φ(h) =

φ+(h− θ) if h ≥ θ,

0 if h < θ.
(S3)

Here φ+ is a monotonically increasing smooth function which vanishes at 0, such that φ50

is continuous. This class of functions includes a number of activation functions used in51
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previous work, e.g., rectified linear activation (ReLU, φ+(h) = h) and rectified nonlinear52

units, φ+(h) = hp (p > 0), that coincide with ReLU for p = 1.53

For this choice of φ, we show below that the recurrent network dynamics54

τ
dhi(t)

dt
= −hi(t) +

N∑
j=1

Jijφ(hj(t)) +
P∑
k=1

bwki x
k +

P ′∑
k′=1

b vk
′

i y
k′ , (S4)

with the connectivity matrix and choice of regularization,

Jij = − b

N

(
P∑
k=1

wki w
k
j +

P ′∑
k′=1

vk
′

i v
k′

j

)
,

F (r) =

∫ r

0

φ−1
+ (z)dz + θr =

p

p+ 1
r1+ 1

p + θr, (S5)

minimizes the objective [Eq. (S2)]. Note that adding a nonzero firing threshold (θ > 0)55

in the regularization function enforces sparse neural responses, penalizing large firing-rates.56

For the ReLU nonlinearity (p = 1), we have F (r) = r2/2 + θr = (r + θ)2/2− θ2/2.57

We assume that the timescale of changes to the inputs is much slower than the timescale58

of changes to neuronal activity, such that we can ignore potential time-dependencies of x59

and y. Under this assumption, the objective [Eq. (S2)] can be written as a function of the60

neural activity and readout weights,61

E(r; {wk,vk}) =
P∑
k=1

[(
xk − 1

N
wk · r

)2

+

(
yk − 1

N
vk · r

)2
]

+
2

bN

N∑
i=1

F (ri). (S6)

The neural activity r(t) governed by the dynamical equations [Eq. (S4)] with the connectivity

matrix [Eq. (S5)] minimizes the objective function [Eq. (S2)]. This can be shown by directly

evaluating the time derivative of E(t):

dE(t)

dt
=

N∑
i=1

∂E

∂ri

∂ri
∂hi

dhi
dt

= −
N∑
i=1

[
2

P∑
k=1

(xk − x̂k)w
k
i

N
+ 2

P ′∑
k′=1

(yk
′ − ŷk′)v

k′
i

N
− 2

bN
φ−1

+ (ri)−
2θ

bN

]
φ′(hi)

dhi
dt

= − 2

bN

N∑
i=1

φ′(hi)
dhi
dt

×

[
P∑
k=1

bwki x
k +

P ′∑
k=1

bvk
′

i y
k′ − b

N

N∑
j=1

(
P∑
k=1

wki w
k
j +

P ′∑
k′=1

vk
′

i v
k′

j

)
φ(hj)− φ−1

+ (ri)− θ

]

~ = − 2

bN

N∑
i=1

φ′(hi)
dhi
dt
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×

[
P∑
k=1

bwki x
k +

P ′∑
k=1

bvk
′

i y
k′ − b

N

N∑
j=1

(
P∑
k=1

wki w
k
j +

P ′∑
k′=1

vk
′

i v
k′

j

)
φ(hj)− hi

]

= − 2

bNτ

N∑
i=1

(
dhi
dt

)2

φ′(hi) (S7)

In the line indicated by ~ we used the identity φ−1
+ (r)φ′(h) = (h − θ)φ′(h). Each term in62

the sum that appears in the last line of Eq. (S7) is positive, so the time derivative of E(t) is63

negative. The existence of Lyapunov function for Eq. (S4) indicates that the network will64

reach a (stable) fixed point which satisfies for each neuron i,65

h?i =
N∑
j=1

Jijφ(h?j) +
P∑
k=1

bwki x
k +

P ′∑
k′=1

b vk
′

i y
k′ . (S8)

Moreover, since E(r) is a strictly convex function of the firing-rate vector r, the optimal66

fixed-point solution r? is unique. From Eq. (S8), h? is also unique. Furthermore, that67

fixed point is a global minimum of E, which can be shown by evaluating the first-order68

derivatives of Eq. (S2) at the fixed point. Taken together, our results show that the network69

is guaranteed to reach a stable fixed-point for any input combination (indicated by xk and70

yk), which is the minimum of Eq. (S2).71

In the following sections, we will assume that there are P distinct pairs of stimuli indexed

by k, (xk, yk). The corresponding feedforward weight vectors wk,vk are assumed to be

random, with mean 0. Associative training induces correlations between each component

of the feedforward weights, via, for example, Hebbian-type plasticity. More precisely, for

i, j = 1, . . . , N and k, k′ = 1, . . . , P ,

〈wki 〉 = 〈vki 〉 = 0, 〈wki wk
′

j 〉 = 〈vki vk
′

j 〉 = δkk′δij, 〈wki vk
′

j 〉 = δkk′δijµ
k. (S9)

Here 〈· · · 〉 denotes the expectation over the probability distribution of synaptic weights. To72

study how neural representations change during learning we vary µk systematically. Note73

that we have rescaled µk by N−1 relative to the notation used in the main text.74

Our choice of synaptic weight statistics [Eq. (S9)] arises from an optimization procedure75

that minimizes the objective function [Eq. (S2)]. Indeed, performing gradient descent on E76

within a short time window ∆t induces the following weight changes,77

∆wki = −η ∂E(r;{wk,vk})
∂wki

∆t = η
N

(
xk − 1

N
wk · r

)
φ(hi)∆t≡

η

N
δxkri∆t,

∆vki = −η ∂E(r;{wk,vk})
∂vki

∆t = η
N

(
yk − 1

N
vk · r

)
φ(hi)∆t≡

η

N
δykri∆t. (S10)
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We assume that the learning rate is small η � 1, such that the neural dynamics [Eq. (S4)]78

remain at the steady state r?. We will show below (SI §2.1) that during associative learning79

(xk = yk = 1), the variables representing prediction errors are non-negative (δxk, δyk ≥ 0),80

which implies that the weights could grow unbounded during learning.81

To prevent this potential blow-up, we introduce a normalization mechanism that regu-

larizes the weights. After each ‘learning-step’ [Eq. S10], the weights change according to a

‘homeostatic-step’,

wki (t)→
wki (t)−mk

w

σkw
, mk

w =
1

N

N∑
i=1

wki (t), (σkw)2 =
1

N

N∑
i=1

(wki (t)−mk
w)2. (S11)

Here mk
w and σkw are the means and the standard deviations of the weight vectorw computed82

over the N neurons. Similar updates are applied to the weights v. We show that under83

these update rules, µk(t), the correlation between wk and vk at time t during the learning84

process, increases monotonically.85

We first note that the homeostatic step [Eq. (S11)] ensures that weight vectors have zero

mean and unit variance. Upon presentation of the stimulus-pair k, the steady-state input to

neuron i is independent of inputs to other neurons. Additionally, in the N →∞ limit, δxk
′

and δyk
′

are nonzero only if k′ = k. These properties are shown explicitly using a replica

calculation below (SI §2.1). It is therefore sufficient to verify that applying the learning-step

[Eq. (S10)] does not lead to a decrease in the correlation. This can be done by a direct

calculation of the correlation in Eq. (S11). Notice that in the N →∞ limit,

mk
w →

〈
∆wki

〉
,

(σkw)−1 →
〈
(wki (t) + ∆wki −mk

w)2
〉−1/2

→ (1 + 2
〈
wki ∆w

k
i

〉
+O(∆t2))−1/2

= 1−
〈
wki ∆w

k
i

〉
+O(∆t2)

= 1− ηx̂kδxk∆t+O(∆t2). (S12)

Therefore the weight wki after the learning and homeostatic steps is,

wki (t+ ∆t) =
wki (t) + ∆wki −mk

w

σkw

= (wki (t) + ∆wki −
〈
∆wki

〉
)(1− ηx̂kδxk∆t) +O(∆t2)

= wki (t) + ∆wki −
〈
∆wki

〉
− ηwki (t)x̂kδxk∆t+O(∆t2). (S13)
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Using this approximation and a similar expression for vki (t+ ∆t), the correlation is now,

µk(t+ ∆t) =
〈
wki (t+ ∆t)vki (t+ ∆t)

〉
= µk(t) +

〈
wki ∆v

k
i (t) + vki ∆wki (t)

〉
− ηµk(t)(x̂kδxk + ŷkδyk)∆t+O(∆t2)

= µk(t) + η[ŷk(δxk − δykµk(t)) + x̂k(δyk − δxkµk(t))]∆t+O(∆t2). (S14)

In the match condition (xk = yk = 1) we have from symmetry that x̂k = ŷk and δxk = δyk.86

We will show in SI §2.1 using a replica calculation that x̂k, δxk ≥ 0, which together imply87

that the bracket is positive when µk(t) ≤ 1. Thus the correlation between the weight vectors88

increases during associative learning. This justifies our choice of weight statistics [Eq. (S9)]89

as a description for the network during associative learning.90

1.2. A Bayesian inference perspective of the network model91

The predictive coding framework is often used to account for inference of latent causes of92

sensorimotor inputs to the brain, based on prediction and prediction-error signals [1, 17, 49,93

55]. In this section we show that our model can similarly be viewed as a network performing94

Bayesian inference. Specifically, the network’s neural dynamics [Eq. (S4)] implement the95

inference (or state estimation) of latent variables driving inputs. Moreover, the slow synaptic96

weight changes during learning [Eq. (S9)] can be viewed as a mechanism for improving the97

accuracy of the inference performed by the network.98

We consider a scenario where sensory inputs in the environment are generated by a prob-99

abilistic generative model, p(x,y|r), where x,y are the (possibly time-dependent) sensory100

inputs and r represents the latent variables that determine the statistics of the sensory101

inputs. We denote the prior distribution over the latent variables as p0(r). Then given102

the sensory inputs x,y, the latent variables r can be inferred by maximizing the posterior103

distribution via Bayes’ rule,104

p(r|x,y) =
p(x,y|r)p0(r)

p(x,y)
, (S15)

where p(x,y) =
∫
p(x,y|r)p0(r)dr is the marginal distribution of the sensory inputs, inde-105

pendent of the latent variables.106

Suppose that the generative distribution is a multivariate Gaussian and that its mean is107
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a linear readout of the latent variables,108

ln p(x,y|r) = − 1

σ2
1

P∑
k=1

[(
xk − 1

N
wk · r

)2

+

(
yk − 1

N
vk · r

)2
]

+ const. (S16)

Further suppose that the prior distribution has the form,109

ln p0(r) = − 1

σ2
0N

N∑
i=1

F (ri) + const. (S17)

Then, recalling Eq. (S7), we see that the neural dynamics [Eq. (S4)] maximize the log

posterior distribution,

ln p(r|x,y) = ln p(x,y|r) + ln p0(r) + const = − 1

σ2
1

E(r) + const. (S18)

Here E(r) is the objective function in the previous section with b = σ2
0/σ

2
1. Thus, our110

model’s gain parameter b is related to the prediction accuracy σ1. The latent variables r111

here correspond to the firing rates of the neurons in the network.112

In the more general case where sensory inputs are not generated exactly according to113

Eq. (S16), prediction accuracy can be improved by adjusting the readout weights wk,vk to114

maximize the log posterior distribution [Eq. (S18)] based on the learning rule [Eq. (S11)].115

This weight optimization procedure is equivalent to using a variational approach for maxi-116

mizing the Bayesian model evidence, as introduced in previous predictive coding literature117

[17, 49, 78]. We also note that the nonlinear response function φ appears in the regulariza-118

tion F (r) [Eq. (S5)] is linked to the ‘encoding’ of prior information on the latent variables,119

p0(r).120

1.3. Extensions of the network model121

1.3.1. Associations between more than two modalities122

Our network model can be generalized to apply to scenarios in which the animal is123

trained to associate multiple (M ≥ 3) sensorimotor inputs. Here the network generates124

internal predictions for each input, that can be linearly read-out,125

x̂kl (t) =
1

N
wk
l · r(t), k = 1, . . . , P, l = 1, . . . ,M, (S19)
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where wk
l are the readout weights for each input in each stimulus modality. The objective126

function [Eq. (S1)] is now,127

EM(t) =
M∑
l=1

P∑
k=1

(
xkl (t)− x̂kl (t)

)2
+

2

b

N∑
i=1

F (ri(t)). (S20)

The network dynamics and recurrent connectivity matrix are,

τ
dhi(t)

dt
= −hi(t) +

N∑
j=1

JMij φ(hj(t)) +
M∑
l=1

P∑
k=1

bwkl,ix
k
l ,

JMij =
b

N

M∑
l=1

P∑
k=1

wkl,iw
k
l,j. (S21)

Using similar derivations as above, one can show that (i) EM(t) is a Lyapunov function128

for the network dynamics, and (ii) the network will reach a unique stable fixed point for129

any combination of the inputs xkl . Assuming that the feedforward weights corresponding to130

associated stimuli become increasingly correlated during learning (similarly to the M = 2131

case), will make this model useful for studying predictive representations when training132

animals on more complex stimulus combinations.133

1.3.2. Neurons with dendritic compartments134

The network model with point neurons [Eq. (S4)] and the associated learning rules135

[Eq. (S11)] can be extended to a model with dendritic compartments. Crucially, this exten-136

sion allows the learning rule to be realized by local plasticity rules.137

Following the approach introduced in Refs. [37, 38], we first notice that Eqs. (S4-S5) can

be rewritten by decomposing the connectivity to synaptic weights onto specific dendrites,

giving,

Jkij = − b

N
wki w

k
j , Jk+P

ij = − b

N
vki v

k
j ,

τ
dhi(t)

dt
= −hi(t) +

P∑
k=1

[
N∑
j=1

Jkijφ(hj(t)) + wki x
k

]
+

P ′∑
k=1

[
N∑
j=1

Jk+P
ij φ(hj(t)) + vki y

k

]
. (S22)

Here we think of hi(t) as the somatic membrane potential of neuron i. Next we introduce

P +P ′ dendritic compartments corresponding to neuron i. The voltages uki for k = 1, . . . , P
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and for k = P + 1, . . . , P ′ + P are respectively governed by the equations,

τu
duki (t)

dt
= −uki (t) +

N∑
j=1

Jkijφ(hj(t)) + bwki x
k,

τu
duk+P

i (t)

dt
= −uk+P

i (t) +
N∑
j=1

Jk+P
ij φ(hj(t)) + bvki y

k. (S23)

The somatic voltage level is then driven by the dendrites,138

τ
dhi(t)

dt
= −hi(t) +

P∑
k=1

uki (t) +
P ′∑
k=1

uk+P
i (t). (S24)

Under the assumption that dendrite voltage changes faster than somatic voltage, τu � τ ,139

this recovers our original model with point neurons [Eq. (S4)].140

The learning rule of the dendrite-specific feedforward weights is given by,141

∆wki =
η

N

xkuki ri
Iki

, ∆vki =
η

N

ykuk+P
i ri

Ik+P
i

, (S25)

where we have denoted Iki = bwki x
k and Ik+P

i = bvki y
k. Note that the quantities on the right142

hand side are ‘local’ to the feedforward synapses wki and vki . At steady-state, uki = bwki δx
k

143

and uk+P
i = bvki δy

k. Together with the definition of Iki , this learning rule is the same as144

Eq. (S10). To avoid unbounded growth of the weights in this setting, we assume a similar145

homeostatic mechanism which recovers the previous learning rule for the feedforward weights146

[Eq. (S11)].147

The recurrent weights are subject to the learning rules,

dJkij
dt

= − η

N
uki (rj − 〈rj〉)−

[
ηk1
Iki

(ri − 〈ri〉) + ηk2

]
Jkij,

dJk+P
ij

dt
= − η

N
uk+P
i (rj − 〈rj〉)−

[
ηk+P

1

Ik+P
i

(ri − 〈ri〉) + ηk+P
2

]
Jk+P
ij , (S26)

where ηk1 = 〈uki 〉, ηk2 = 〈uki 〉x̂k and ηk+P
2 = 〈uk+P

i 〉ŷk are activity-dependent learning rates.148

The dendrite-specific synaptic weights [Eq. (S22)] are solutions to these learning dynamics.149

We note that the increase in correlation between w and v during learning is reflected in150

this plasticity rule by the dependence of both Jk and Jk+P on the firing rates r. Since those151

rates depend on inputs from both modalities, both sets of dendrite-specific synaptic weights152

change based on the interplay between the multimodal input.153
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1.3.3. Hierarchical network architecture154

In the recurrent network model studied thus far, a single module integrates inputs from155

multiple sensorimotor modalities. Here we generalize this model to a network consisting of156

multiple (L) modules arranged in a layered structure. Each module has N neurons with157

firing rates denoted as rl, l = 1, . . . , L. We assume that the paired stimulus inputs enter the158

network via the first and the last module respectively (Fig. 6a). For convenience, we denote159

the inputs as x ≡ r0 and y ≡ rL+1.160

Each module generates predictions of the activity of ‘adjacent’ (earlier and later) modules,161

i.e., neurons in module l generate predictions for neural responses in modules l−1 and l+1.162

Those predictions are assumed to be linear readouts of the firing rates,163

r̂l−1 = W l>rl, r̂l+1 = V l>rl. (S27)

Here W l, V l are the readout matrices. The objective function for this hierarchical network

is a sum of the objective function applied to each module-separately with the corresponding

prediction errors and firing-rate regularization,

E({rl}; {W l, V l}) =
L∑
l=1

[
1

σ2
l

(rl−1 − r̂l−1)2 +
1

σ2
l

(rl+1 − r̂l+1)2 +
F (rl)

bl

]
,

=
L∑
l=1

[
1

σ2
l

(rl−1 −W l>rl)2 +
1

σ2
l

(rl+1 − V l>rl)2 +
F (rl)

bl

]
,

=
L∑
l=1

E(rl;W l, V l). (S28)

Here σl measures the module-specific precision of predictions and bl is the module-specific

regularization. The assumption that the neurons in module l minimize the module-specific

loss E(rl;W l, V l) implies that the neural dynamics within each module and the recurrent

synaptic weights have identical form to those in the single-module case,

σ2
l

dhli
dt

= −σ2
l h

l
i(t) +

N∑
j=1

J lijφ(hlj(t)) + bl

N∑
k=1

W l
ikφ(hl−1

k (t)) + bl

N∑
k′=1

V l
ikφ(hl+1

k (t)),

J lij = − bl
N

N∑
k=1

(
W l
ikW

l
jk + V l

ikV
l
jk

)
. (S29)

Similarly to the network with a single module, we assume that associative learning in-

duces correlations between the corresponding weight vectors for each stimulus-pair. In the
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hierarchical network, the feedforward weight matrices in the first and last modules W 1>, V 1

have dimensions N × P rather than the N × N dimensions of matrices in intermediate

modules. We assume that the intermediate feedforward weight matrices have rank P (the

stimulus dimension). Furthermore, because the process of training the network to associate

stimuli xk with yk is symmetric under the substitutions x ↔ y, W ↔ V , we assume that

W, V are symmetric matrices. With these assumptions, we the weight matrices are,

W 1 =
P∑
k=1

êk(w
1
k)
>, W l =

1

N

P∑
k=1

wl
k(w

l
k)
>, l = 2, . . . , L,

V L =
P∑
k=1

êk(v
L
k )>, V l =

1

N

P∑
k=1

vlk(v
l
k)
>, l = 1, . . . , L− 1. (S30)

During associative learning, these weight vectors become correlated and their statistics are,

〈wlki〉 =
〈
vlki
〉

= 0, 〈wlkiwlk′j〉 = 〈vlkivlk′j〉 = δkk′δij, 〈wlkivlk′j〉 = δkk′δijµ
k,

〈wlkiwl
′

k′j〉 = 〈vlkivl
′

k′j〉 = 〈wlkivl
′

k′j〉 = δkk′δijµ
k, l′ 6= l. (S31)

Here the first line specifies the weight statistics within module l, and the second line specifies

the statistics across modules. The recurrent connectivity within each module simplifies to a

form which is identical to that of the single module network,

J l = − bl
N

P∑
k,k′=1

[
wl
k′
wl>
k′ w

l
k

N
(wl

k)
> + vlk′

vl>k′ v
l
k

N
(vlk)

>
]

N→∞
= − bl

N

P∑
k=1

[
wl
k(w

l
k)
> + vlk(v

l
k)
>] . (S32)

2. PREDICTIVE REPRESENTATIONS IN RECURRENT NETWORKS164

When the stimulus inputs do not depend on time, the objective function E [Eq. (S2)]

can be viewed as a function of the firing-rates and synaptic weights,

E(r; {wk,vk}) =
P∑
k=1

[(
xk − 1

N
wk · r

)2

+

(
yk − 1

N
vk · r

)2
]

+
2

bN

N∑
i=1

F (ri)

=
2

bN

[
P∑
k=1

b

(
−xkwk · r − ykvk · r +

(wk · r)2 + (vk · r)2

2N

)
+

N∑
i=1

F (ri)

]

+
P∑
i=1

[
(xk)2 + (yk)2

]
.
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≡ 2

bN
E0(r; {wk,vk}) +

P∑
i=1

[
(xk)2 + (yk)2

]
. (S33)

The steady state firing-rates can be expressed as minimization over E0, since the second165

term in Eq. (S33) does not depend on r,166

r? = argmin
r∈Rn+

E0(r; {wk,vk}). (S34)

Next we will use the replica method [79, 80] to calculate the firing-rate distribution of neurons167

in the network,168

p(r) =
1

N

N∑
i=1

δ(r − ri). (S35)

In general, firing-rates in the network depend on the specific realization of random weights169

wk,vk
′
. We find however that in the N → ∞ limit, the firing-rate distribution is self-170

averaging and depends only on the distribution of synaptic weights. By choosing which171

of the xk and yk’s are nonzero, we can study the network response in different stimulus172

conditions. For convenience, we assume that at any given time, only a finite number of173

stimulus-pairs are presented, or equivalently, there are only K = O(1) pairs (xk, yk) for174

k = 1, . . . , K, where at least one stimulus is nonzero. We set the decay timescale to τ = 1.175

2.1. Replica calculation of the firing-rate statistics176

We consider the partition function177

Z =

∫
RN+
e−βE0(r;{wk,vk}) dr. (S36)

We suppress the domain of integration over firing-rates for readability in the following cal-178

culations. In the limit β → ∞, the dominant contribution to Z comes from the fixed179

point solution which minimizes E0(r; {wk,vk}) in Eq. (S34). The logarithm of the partition180

function concentrates around its expectation, so we use the replica trick,181

lim
N→∞

lnZ

N
= lim

N→∞

〈
lnZ

N

〉
= lim

n→0
lim
N→∞

ln 〈Zn〉
nN

. (S37)

We make the standard assumption that the order of the limits can be exchanged in the last

equality. We first calculate 〈Zn〉. For readability, we use g for the gain parameter (instead

of b) in Subsection 2.1, and a, b = 1, . . . , n for the replica indices. Without loss of generality,
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we assume that the presented stimuli (i.e., indices k such that xk or yk is nonzero) are the

first K pairs, k = 1, . . . , K.

〈Zn〉 =

∫ ∏
a

dra

〈
exp

{
−β
∑
i,a

F (rαi )− gβ

2N

∑
a

P∑
k=1

[
(wk · ra)2 + (vk · ra)2

]}

× exp

[
gβ
∑
a

K∑
s=1

(xsws · ra + ysvs · ra)

]〉
,

=

∫ ∏
a,i

drai

〈
exp

{
−β
∑
i,a

F (rai )−
gβ

2N

∑
a

P∑
k=K+1

[
(wk · ra)2 + (vk · ra)2

]}〉

×

〈
exp

{
gβ
∑
a

K∑
k=1

[(
xkwk · ra + ykvk · ra

)
− 1

2N

(
(wk · ra)2 + (vk · ra)2

)]}〉

=

∫ ∏
a,i

drai exp

[
−β
∑
a,i

F (rai )

]〈
exp

{
− gβ

2N

∑
a

P∑
k=K+1

[
(wk · ra)2 + (vk · ra)2

]}〉

×

〈
exp

{
gβ
∑
a

K∑
k=1

[
− 1

2N
(wk · ra)2 − 1

2N
(vk · ra)2 + xkwk · ra + ykvk · ra

]}〉
.

(S38)

Notice that we have split the summation over all P stimulus-pairs and averaging over the

corresponding synaptic weights into the presented pairs (k = 1, . . . , K) and the rest (k =

K + 1, . . . , P ). We first perform calculations for the P −K ‘absent’ stimulus-pairs. Using

the integral representation of Gaussian function, we get,

e−
gβ
2N

(wk·ra)2 =

∫
dtk,a√

2π

√
gβe

−gβ
[
(tk,a)2

2
+itk,awk·r√

N

]
,

e−
gβ
2N

(vk·ra)2 =

∫
dsk,α√

2π

√
gβe

−gβ
[
(sk,a)2

2
+isk,a vk·r√

N

]
. (S39)

Using these, the term corresponding to the P −K absent stimulus-pairs becomes,〈
exp

{
− gβ

2N

∑
a

P∑
k=K+1

[
(wk · ra)2 + (vk · ra)2

]}〉

=

〈∏
a

P∏
k=K+1

gβ

2π

∫
dtk,adsk,ae

−gβ
[
(tk,a)2+(sk,a)2

2
+ i√

N
(tk,awk·ra+sk,avk·ra)

]〉

=
P∏

k=K+1

(
gβ

2π

)n ∫ ∏
a

dtk,adsk,ae−
gβ
2

∑
a[(tk,a)2+(sk,a)2]

〈
e
− igβ√

N

∑
a(tk,awk·ra+sk,avk·ra)

〉
=

P∏
k=K+1

[(
gβ

2π

)n ∫ ∏
α

dtadsae−
gβ
2

∑
a[(ta)2+(sa)2]

〈
e
− igβ√

N
[(
∑
a t
ara)·w+(

∑
a s

ar)·v]
〉]

. (S40)
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In the last line we have suppressed the superscript k. Recall that for each k, angle brackets

denote the average over a pair of synaptic weight vectors, each of which has components

sampled from the same distribution with mean 0 and correlation µk [Eq. (S9)]. We work

out the last factor of the integrand,

〈
e
− igβ√

N
[(
∑
a t
ara)·w+(

∑
a s

ara)·v]
〉

=

〈
N∏
j=1

e
− igβ√

N
[(
∑
a t
araj )wj+(

∑
a s

araj )vj]

〉

=
N∏
j=1

f

(
− gβ√

N

∑
a

taraj , −
gβ√
N

∑
a

saraj

)
, (S41)

where f(x, y) is the joint characteristic function of the random vectors wk,vk with correla-

tion µk. The Taylor expansion of f(·, ·) in the limit N →∞ is,

f

(
− gβ√

N

∑
a

taraj , −
gβ√
N

∑
a

saraj

)

= 1− g2β2

2N

(∑
a

taraj

)2

+ 2µk

(∑
a

taraj

)(∑
a

saraj

)
+

(∑
a

saraj

)2
+O(N−2).

(S42)

Using this we get,

〈
e
− igβ√

N
[(
∑
a t
ara)·w+(

∑
a s

ara)·v]
〉

−→
N→∞

N∏
j=1

1− gβ

2N

(∑
a

taraj

)2

+ 2µk

(∑
a

taraj

)(∑
a

saraj

)
+

(∑
a

saraj

)2


−→
ex≈1+x

exp

[
−gβ

2

∑
a,b

(∑N
j=1 r

a
j r
b
j

N

)(
tatb + 2µktasb + sasb

)]

= exp

[
−gβ

2

∑
a,b

qab
(
tatb + 2µktasb + sasb

)]
. (S43)

In the last line we have introduced the usual definition of the order parameter,182

qab =
1

N

N∑
j=1

raj r
b
j . (S44)
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Collecting terms, we find that Eq. (S40) becomes,〈
exp

{
− gβ

2N

∑
a

P∑
k=K+1

[
(wk · ra)2 + (vk · ra)2

]}〉

=
P∏

k=K+1

{(
gβ

2π

)n ∫ ∏
a

dtadsa

× exp

[
−gβ

2

(∑
a

[
(ta)2 + (sa)2

]
+ gβ

∑
a,b

qab
(
tatb + 2µktasb + sasb

))]}

=
P∏

k=K+1


(

1

2π

)n ∫
dtds exp

−1

2

t
s

>In + gβq µkgβq

µkgβq In + gβq

t
s





=

√√√√√ P∏
k=K+1

det

In + gβq µkgβq

µkgβq In + gβq

−1

, (S45)

Here q is an n×n matrix [Eq. (S44)] and In is the n×n identity matrix. In the next to last183

step of Eq. (S45) we rescaled the integration variables t, s by
√
gβ.184

The term in Eq. (S38) corresponding to the K presented pairs can be calculated in a

similar fashion, which yields,〈
exp

{
gβ
∑
a

K∑
k=1

[
− 1

2N
(wk · ra)2 − 1

2N
(vk · ra)2 + xkwk · ra + ykvk · ra

]}〉

=

∫
(gβ)nK

∏
a

K∏
k=1

dtk,adsk,a

2π
e+ gβN

2

∑
k,a[(tk,a)2+(sk,a)2]

〈
egβ

∑
k,a,i[(xktk,α)wki r

a
i +(yk−sk,a)vki r

a
i ]
〉
.

(S46)

We introduce the delta function to enforce the definition of the order parameter q,185

δ

(
qab − 1

N

N∑
j=1

raj r
b
j

)
= N

∫
dq̂ab

2π
eq
ab(Nq̂ab−

∑
j r
a
j r
b
j). (S47)

Putting all terms together Eq. (S38) gives,

〈Zn〉 =(gβ)nPN
n2

2

∫ ∏
k,a

dtk,adsk,a

2π

∏
a,b

dq̂abdqab

2π
eN

∑
a,b q̂

abq̂ab− gβN
2

∑
k,a[(tk,a)2+(sk,a)2]

×

{∫ ∏
a

dra
〈
e−β

∑
a F (ra)+gβ

∑
k,a[(xk−itk,a)wkra+(yk−isk,a)vkra]−

∑
a,b q̂

abrarb
〉}N

×
P∏

k=K+1

√√√√√det

In + gβq µkgβq

µkgβq In + gβq

−1
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=

∫ ∏
k,α

dtk,adsk,a

2π

∏
a,b

dq̂abdqab

2π
eNF(qab,q̂ab,tk,a,sk,a). (S48)

In the last line we have defined F(qab, q̂ab, tk,a, sk,a) as,

F(qab, q̂ab, tk,a, sk,a) =

nK

N
ln(gβ) +

n2

2

lnN

N
+
∑
a,b

qabq̂ab − gβ

2

∑
a,k

[(ta,k)2 + (sa,k)2]

+ ln

{∫ ∏
a

dra
〈
e−β

∑
a F (ra)+gβ

∑
k,a[(xk−itk,a)wkra+(yk−isk,a)vkra]−

∑
a,b q̂

abrarb
〉}

− 1

2N

P∑
k=K+1

ln det

In + gβq µkgβq

µkgβq In + gβq

 . (S49)

In the limit N →∞, we use the saddle point approximation to compute the integral in the186

last line of Eq. (S48). Furthermore, because the Lyapunov function E0 is convex [Eq. (S33)],187

the saddle point solution is replica symmetric, i.e.,188

qab = q0δab + q1(1− δab), q̂ab = q̂0δab + q̂1(1− δab), ta,k = tk, sa,k = sk. (S50)

We then simplify the terms in F ,

∑
a,b

qabq̂ab = nq0q̂0 + n(n− 1)q1q̂1,

∑
a,k

[(ta,k)2 + (sa,k)2] = n
∑
k

[(tk)2 + (sk)2]. (S51)

ln det

In + gβq µkgβq

µkgβq In + gβq

 = ln det[In + gβ(1− µk)q] + ln det[In + gβ(1 + µk)q]

= n ln
[
(1 + gβ(1− µk)(q0 − q1))(1 + gβ(1 + µk)(q0 − q1))

]
+ ln

[(
1 +

gβ(1− µk)nq1

1 + gβ(1− µk)(q0 − q1)

)(
1 +

gβ(1 + µk)nq1

1 + gβ(1 + µk)(q0 − q1)

)]
.

Simplifying the term in the third line of Eq. (S49) requires a number of additional steps.

Using the integral representation of Gaussian function we write,

e−
∑
a,b q̂

abrarb = e−(q̂0−q̂1)
∑
a(ra)2−q̂1(

∑
a r

a)2

= e−(q̂0−q̂1)
∑
a(ra)2

∫
dz√
2π
e−

z2

2
+i
∑
a

√
2q̂1raz. (S52)
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Substituting this into the integral in Eq. (S49) gives,∫ ∏
a

dra
〈
e−β

∑
a F (ra)+gβ

∑
k,a[(xk−itk,a)wkra+(yk−isk,a)vkra]−

∑
a,b q̂

abrarb
〉

=

∫
dz√
2π
e−

z2

2

∏
a

[∫
dνβ(ra)e−(q̂0−q̂1)(ra)2+i

√
2q̂raz

〈
egβ(xk−itk,a)wkra+(yk−isk,a)vkra

〉]
=

∫
Dz

[∫
dνβ(r)e−(q̂0−q̂1)r2+i

√
2q̂rz

〈
egβ(xk−itk)wkr+(yk−isk)vkr

〉]n
. (S53)

Here we have introduced the notation,189

Dz =
dz√
2π
e−

z2

2 , dνβ(r) = dr e−βF (r). (S54)

Therefore, under the replica symmetric ansatz, Eq. (S49) becomes

F(q0, q1, q̂0, q̂1, t
k, sk) =

n2

2

lnN

N
+ nq0q̂0 + n(n− 1)q1q̂1 −

ngβ

2

∑
k

[(tk)2 + (sk)2]

+ ln

∫
Dz

[∫
dνβ(r)e−(q̂0−q̂1)r2+i

√
2q̂1rz

〈∏
k

ebβ(xk−itk)wkr+(yk−isk)vkr

〉]n

− 1

2N

P∑
k=K+1

{
n ln

[
(1 + gβ(1− µk)(q0 − q1))(1 + gβ(1 + µk)(q0 − q1))

]
+ ln

[(
1 +

gβ(1− µk)nq1

1 + gβ(1− µk)(q0 − q1)

)(
1 +

gβ(1 + µk)nq1

1 + gβ(1 + µk)(q0 − q1)

)]}
. (S55)

Now we take the limits P,N →∞ and n→ 0, and identify α = P/N , which gives,

lim
N→∞
n→0

ln 〈Zn〉
nN

= lim
N→∞
n→0

F(q0, q1, q̂0, q̂1, t
k, sk)

n

= q0q̂0 − q1q̂1 − gβ
∑
k

(tk)2 + (sk)2

2

+

∫
Dz ln

∫
dνβ(r)e−(q̂0−q̂1)r2+i

√
2q̂1rz

〈∏
k

egβ(xk−itk)wkr+(yk−isk)vkr

〉

− α

2

〈
ln
[
(1 + gβ(1− µk)(q0 − q1))(1 + gβ(1 + µk)(q0 − q1))

]
+

gβ(1− µk)q1

1 + gβ(1− µk)(q0 − q1)
+

gβ(1 + µk)q1

1 + gβ(1 + µk)(q0 − q1)

〉
µ

. (S56)

In the third line of Eq. (S56) we used the fact that for a well behaved function A(z),190

lim
n→0

1

n
ln

∫
DzAn(z) =

∫
Dz lnA(z). (S57)

74

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted August 7, 2024. ; https://doi.org/10.1101/2024.08.05.606684doi: bioRxiv preprint 

https://doi.org/10.1101/2024.08.05.606684
http://creativecommons.org/licenses/by-nc-nd/4.0/


The last term in Eq. (S56) (proportional to α/2) was obtained by taking the limit over191

P,N → ∞ and introducing α, and assuming that the number of presented stimulus-pairs192

K is finite (necessary for the neural activity to remain finite, justified below). The average193

〈· · · 〉µ is over the distribution of correlation values µk, k = 1, . . . , P (i.e., over all learned194

stimulus-pairs).195

To simplify the calculations, we define new variables196

q′ = gβ(q0 − q1), q̂′ = 2
q̂0 − q̂1

αgβ
, q̂ = − 2q̂1

αg2β2
, q =

q1

gβ
. (S58)

and further make the change of variables, tk → itk and sk → isk. With these simplifications,

we rewrite Eq. (S56) as,

lim
N→∞
n→0

F(q′, q, q̂′, q̂, tk, sk)

n
=

αgβ

2
(q̂′q − q̂q′) + α

q̂′q′

2
+ gβ

∑
k

(tk)2 + (sk)2

2

+

∫
Dz ln

[∫
dνβ(r)e−gβ

αq̂′r2
2

+gβ
√
αq̂rz

〈
egβr

∑
k[(xk−tk)wk+(yk−sk)vk]

〉]
− α

2

〈
ln(1 + (1− µ)q′)(1 + (1 + µ)q′) +

(1− µ)gβq

1 + (1− µ)q′
+

(1 + µ)gβq

1 + (1 + µ)q′

〉
µ

. (S59)

To extract information about the network’s response properties as N → ∞, we evaluated

these expressions at the saddle point of F(q0, q1, q̂0, q̂1, t
k, sk). The saddle point satisfies,

0 =
∂F
∂tk

= gβ

(
tk −

∫
dQβ w

kr

)
,

0 =
∂F
∂sk

= gβ

(
sk −

∫
dQβv

kr

)
,

0 =
∂F
∂q

=
αgβ

2

[
q̂′ −

〈
1− µ

1 + (1− µ)q′
+

1 + µ

1 + (1 + µ)q′

〉
µ

]
,

0 =
∂F
∂q′

=
αgβ

2

[
q̂′

gβ
− q̂ +

〈
(1− µ)2

[1 + (1− µ)q′]2
q +

(1 + µ)2

[1 + (1 + µ)q′]2
q

〉
µ

]
,

0 =
∂F
∂q̂′

=
αgβ

2

(
q′

gβ
+ q −

∫
dQβr

2

)
,

0 =
∂F
∂q̂

=
αgβ

2

(
−q′ + 1√

αq̂

∫
dQβ rz

)
. (S60)

Here we have defined the probability measure dQβ as,197 〈∫
dQβ(. . . )

〉
=

∫
Dz

∫
dνβ(r)e−gβ

αq̂′r2
2

+gβ
√
αq̂rz

〈
egβr

∑
k[(xk−tk)wk+(yk−sk)vk](. . . )

〉
∫

dνβ(r)e−gβ
αq̂′r2

2
+gβ
√
αq̂rz

〈
egβr

∑
k[(xk−tk)wk+(yk−sk)vk]

〉 . (S61)
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Indeed, the probability measure dQβ contains a Boltzmann distribution with the correspond-198

ing Hamiltonian,199

H(r) = F (r) +
gαq̂′r2

2
− g
√
αq̂zr − gr

K∑
k=1

[
(xk − tk)wk + (yk − sk)vk

]
. (S62)

In the limit β → ∞ (‘zero temperature’), the Boltzmann distribution is dominated by the200

minimum of H(r) (i.e., the ‘ground-state’). Since H(r) is strictly convex, there is a unique201

minimum r? ≥ 0.202

If r? > 0, the ground state satisfies H′(r?) = 0, or equivalently,203

0 = φ−1
+ (r?) + θ + gαq̂′r? − g

√
αq̂z − g

K∑
k=1

[
(xk − tk)wk + (yk − sk)vk

]
. (S63)

Otherwise, r? = 0. Indeed, the two cases can be written in a compact way,204

r? = φ

(
−gαq̂′r? + g

√
αq̂z + g

K∑
k=1

[
(xk − tk)wk + (yk − sk)vk)

])
. (S64)

The solution of above equation defines a function r?(wk, vk, z). We recognize the argument205

of φ as the total input to each neuron and r? as its nonlinear firing-rate response. It is206

important to note that the solution r? depends on the Gaussian integration variable (z), the207

random synaptic weights (w, v), and the variables indicating the stimuli being presented208

(x, y), so overall the saddle point equations are expected to give a distribution of firing-209

rates, not a single value.210

Substituting the ground-state solution r? into the saddle point equation, we get at β →∞,

tk =
〈
wkr?(wk, vk, z)

〉
wk,vk,z

,

sk =
〈
vkr?(wk, vk, z)

〉
wk,vk,z

,

q̂′ =

〈
1− µ

1 + (1− µ)q′

〉
µ

+

〈
1 + µ

1 + (1 + µ)q′

〉
µ

,

q̂ =

〈[
1− µ

1 + (1− µ)q′

]2
〉
µ

q +

〈[
1 + µ

1 + (1 + µ)q′

]2
〉
µ

q,

q =
〈
r?(wk, vk, z)2

〉
wk,vk,z

,

q′ =
1√
αq̂1

〈
r?(wk, vk, z)z

〉
wk,vk,z

. (S65)

Notice that the order parameters tk and sk coincide with the internal predictions x̂k and ŷk211

[Eq. (S1)], and the order parameter q is the second moment of the firing-rate distribution.212
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2.2. Single-neuron and population statistics213

We summarize the main results obtained from the above calculations: Given the distribu-214

tion of synaptic weights {wk, vk} and a standard normal random variable z, the firing-rate215

distribution p(r) is the same as the distribution of the ground-state firing-rate r?(wk, vk, z)216

[Eq. (S34)]. The order parameters q, q′, q̂, q̂′, tk = x̂k, sk = ŷk which appear in r?(wk, vk, z)217

need to be solved from the saddle point equations [Eq. (S60)]. Moreover, the voltage dis-218

tribution of the neurons in the network is simply the distribution of the argument of the219

firing-rate transfer function φ in Eq. (S64), i.e.,220

h?(wk, vk, z) ≡ −bαq̂′r?(wk, vk, z) + b
√
αq̂z + b

K∑
k=1

[
(xk − tk)wk + (yk − sk)vk)

]
. (S66)

Below we restrict our analysis to the special case where {wk, vk} follow a multivariate221

Gaussian distribution; all the stimulus-pairs are learned equally well µk = µ; and the acti-222

vation function is ReLU, φ = [x− θ]+.223

2.2.1. The high-dimensional case, P/N → α > 0224

Under the above assumptions, Eq. (S34) can be solved exactly, giving neurons’ firing-rate

and voltage distributions,

r?(wk, vk, z) =
b

1 + αbq̂′

[√
αq̂z +

K∑
k=1

[
(xk − tk)wk + (yk − sk)vk)

]
− θ

b

]
+

,

≡ b

1 + αq̂′b

[
I − θ

b

]
+

.

h?(wk, vk, z) = I − αq̂′b

1 + αq̂′b

[
I − θ

b

]
+

. (S67)

For convenience, we denote the Gaussian variable I =
√
αq̂z+

∑K
k=1[(xk−tk)wk+(yk−sk)vk)].

Each neuron receives input with mean 0, and variance (denoted σ2) that depends on the

stimuli presented – how many, and whether they are matched or mismatched. From the

above equation we see that neurons’ firing-rates follow a truncated Gaussian distribution.
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The saddle point equations [Eq. (S65)] can be simplified into,

q̂′ =
1− µ

1 + (1− µ)q′
+

1 + µ

1 + (1 + µ)q′
,

q̂ =

[(
1− µ

1 + (1− µ)q′

)2

+

(
1 + µ

1 + (1 + µ)q′

)2
]
q,

q′ =
bH
(
θ
bσ

)
1 + αbq̂′

,

q =
(q′)2

H
(
θ
bσ

)
σ2 +

(
θ

b

)2

− σθ√
2πb

e−
θ2

2b2σ2

H
(
θ
bσ

)
 ,

δxk = xk − x̂k =
(1 + q′)xk − µq′yk

1 + 2q′ + (1− µ2)(q′)2
,

δyk = yk − ŷk =
−µq′xk + (1 + q′)yk

1 + 2q′ + (1− µ2)(q′)2
, (S68)

where H(x) =
∫∞
x
Dz is related to the complementary error function. Since q′ ≥ 0 and

xk = yk = 1 in the match condition, δxk = δyk ≥ 0. The variance σ2 in the above equations

is given by,

σ2 = αq̂ +
K∑
k=1

[
(δxk)2 + (δyk)2 + 2µδxkδyk

]
=

2[(1− µ2)(1 + q′)2 + µ2]S + 2µ[1− (1− µ2)(q′)2]T

[1 + 2q′ + (1− µ2)(q′)2]2

+
2α(q′)2

H
(
θ
bσ

)
σ2 +

(
θ

b

)2

− σθ√
2πb

e−
θ2

2b2σ2

H
(
θ
bσ

)
 1 + µ2 + 2(1− µ2)q′ + (1− µ2) + (1− µ2)(q′)2

[1 + 2q′ + (1− µ2)(q′)2]2
.

(S69)

Here, we define variables that quantify the number of stimuli presented and whether their225

presentation is matched or mismatched: S = 1
2

∑K
k=1[(xk)2 + (yk)2] and T =

∑K
k=1 x

kyk.226

Combining Eq. (S69) with the first and third lines of Eq. (S68) gives a solution for σ, q′, q̂′.227

By substituting these into the other saddle point equations, we get all the order parameters.228

In this case, the mean and variance of the firing-rate distribution are,

〈r?〉 =
1

1 + αbq̂′

[
bσ√
2π
− θH

(
θ

bσ

)]
,

Var(r?) =
1

(1 + αbq̂′)2

[
b2σ2

(
H

(
θ

bσ

)
− 1

2π
e−

θ2

b2σ2

)
− θbσ√

2π

(
1− 2H

(
θ

bσ

))
+θ2H

(
θ

bσ

)(
1−H

(
θ

bσ

))]
. (S70)
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2.2.2. The case α→ 0229

When α→ 0, the saddle point equations reduce to,

q′ = bH

(
θ

bσ

)
,

σ2 =
2[(1− µ2)(1 + q′)2 + µ2]S + 2µ[1− (1− µ2)(q′)2]T

[1 + 2q′ + (1− µ2)(q′)2]2
. (S71)

Once the values of q′ and σ are obtained from Eq. (S71), other order parameters in Eq. (S68)230

can be computed directly. Note that when θ = 0, then q′ = b/2. For a general threshold231

value θ ≥ 0, q′ is proportional to the gain parameter b and can thus be regarded as an order232

parameter quantifying the ‘effective gain parameter’ in the network. We see from Eq. (S71)233

that q′ depends on σ, which is scaled in turn by the quantities measuring the total stimulus234

strength, S and T . Thus, the changes of q′ in the match versus mismatch condition can be235

viewed as a global gain component in the predictive signal.236

The single neuron firing-rate [Eq. (S34)] is now,237

r? = φ(bI) = [bI − θ]+ , I =
K∑
k=1

[
wkδxk + vkδyk

]
∼ N (0, σ2). (S72)

Notice that the mean and variance of the firing-rate [Eq. (S72)] can be obtained from238

Eq. (S70) by setting α = 0, and that the variable I in this case coincides the voltage level239

of neurons in the network [Eq. (S67)]. These results are used to generated the firing-rate240

statistics in Fig. 1.241

In the case where only one stimulus-pair is presented (K = 1), the Pearson correlation

between firing-rate vectors in the mismatch and match conditions can be calculated as

follows. We denote by Ix, Iy, Ixy the voltage levels in the x-only, y-only mismatch and

match conditions, respectively. The I’s are multivariate Gaussian variables with mean 0.

We computed the correlations between inputs to neurons in the different mismatch conditions

ρIx,y = (〈IxIy〉 − 〈Ix〉 〈Iy〉) /(σxσy) and between the mismatch and match conditions ρIx,xy =

(〈IxIxy〉 − 〈Ix〉 〈Ixy〉) /(σxσxy). Here σ2
x, σ

2
y, σ

2
xy, are the variances of Ix, Iy, Ixy, respectively.

We found,

ρIx,y = − 2µ[1 + (1− µ2)(q′)2]

(1− µ2)(1 + q′)2 + µ2
,

ρIx,xy =
2(1 + µ)[1 + (1− µ)q′]2√

[(1− µ2)(1 + q′)2 + µ2][µ(1 + µ) + (1− µ2)(1 + 2q′ + (1− µ)(q′)2)]
. (S73)
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From the symmetry in the model we have ρIx,xy = ρIy,xy.242

In most cases, the experimentally accessible quantity is the firing-rate rather than the243

input current, so we also computed the Pearson correlation between firing-rates. We denote244

this correlation as ρrm,n, where m, n can refer to the conditions x, y, xy, and write its formal245

definition,246

ρrm,n =
〈[bIm − θ]+[bIn − θ]+〉 − 〈[bIm − θ]+〉 〈[bIn − θ]+〉√

Var([bIm − θ]+)Var([bIn − θ]+)
. (S74)

When θ = 0, the cross covariance between firing-rates can be worked out as,

〈[bIm − θ]+[bIn − θ]+〉 =
b2σmσn

2π

π
2
ρIm,n + ρIm,n arctan

ρIm,n√
1− (ρIm,n)2

+
√

1− (ρIm,n)2

 .

(S75)

Together with the firing-rate mean and variance [Eq. (S70)], we obtained an explicit ex-247

pression at for the firing-rate Pearson correlation, ρrm,n. In the case of θ = 0 , Eq. (S74)248

becomes,249

ρrm,n =
1

π − 1

π
2
ρIm,n + ρIm,n arctan

ρIm,n√
1− (ρIm,n)2

+
√

1− (ρIm,n)2 − 1

 . (S76)

2.3. Balance level distribution250

The balance level for neuron i in the network is defined as,251

Bi =

∣∣∣∣ IFi
IFi − IRi

∣∣∣∣ =

∣∣∣∣∣
∑P

k=1(wki x
k + vki y

k)∑P
k=1(wki δx

k + vki δy
k)

∣∣∣∣∣ . (S77)

The Bi’s are i.i.d. random variables for each i. Here the denominator is the net input

δIi = IFi − IRi to neuron i, i.e., the difference between feedforward and recurrent input

currents,

IF =
K∑
k=1

(wkxk + vkyk), IR =
K∑
k=1

(wkx̂k + vkŷk). (S78)

From Eq. (S66), δI can be expressed as

δI =
P∑
k=1

(wkδxk + vkδyk) = I − αq̂′b

1 + αq̂′b

[
I − θ

b

]
+

, (S79)
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where I =
√
αq̂z +

∑K
k=1(wkδxk + vkδyk) is defined in Eq. (S67). To simplify the notation252

we drop the subscript i from δI. Thus, to sample from the distribution of balance levels,253

one can first sample (wk, vk, z) from their corresponding distributions and then compute IF254

and δI. The ratio between IF and δI gives a sample of the balance level.255

When the synaptic weights have Gaussian distribution and α = 0, the pair (IF , δI) is256

jointly Gaussian,257

(IF , δI) ∼ N

0,

 σ2
F ρBσFσδ

ρBσFσδ σ2
δ

 . (S80)

The coefficients of the covariance matrix of (IF , δI) are,

σ2
F = 2 (S + µT ) ,

σ2
δ =

2[(1− µ2)(1 + q′)2 + µ2]S + 2µ[1− (1− µ2)(q′)2]T

[1 + 2q′ + (1− µ2)(q′)2]2
,

ρBσFσδ =
2[1 + (1− µ2)q′]S + 2µT

1 + 2q′ + (1− µ2)(q′)2
. (S81)

The balance level in this case can be expressed using a Cauchy random variable ξ as,258

B =
σF
σδ
|ξ|, (S82)

where the probability density function for ξ ∈ R is,259

p(ξ) =
1

π

√
1− ρ2

B

(ξ − ρB)2 + 1− ρ2
B

. (S83)

This result means that the average of the balance level distribution diverges. We use the260

quantiles to measure the magnitude of the balance level in the network (Fig. 2).261

3. CHARACTERIZING DIFFERENT FUNCTIONAL NEURON TYPES262

3.1. Firing-rate correlations from two-body replica calculations263

In this section we compute the probabilities of single neurons belonging to the different264

functional cell types for two stimulus-pairs. Since the stimulus-pairs and the neurons are265

statistically equivalent, we focus on the responses of neuron i to the first two stimulus-pairs,266

(hx1i , h
y1
i , h

x1y1
i , hx2i , h

y2
i , h

x2y2
i ). To mathematically characterize those voltage responses,267
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we consider the joint distribution of the neurons’ firing-rates in two different stimulus con-268

ditions,269

p(r1, r2) =
1

N

N∑
i=1

δ(r1 − rAi )δ(r2 − rBi ). (S84)

The superscripts A, B denote the stimulus conditions, i.e., A and B are chosen from270

{x1, y1, x1y1, x2, y2, x2y2}. We will show that at the limit N → ∞, the joint distribution271

for all different combinations of stimulus conditions can be obtained from the calculation of272

pairwise firing-rate correlations [Eq. (S84)].273

To evaluate Eq. (S84), we consider two identical networks driven by different stimulus

inputs. The energy function of the 1st system with firing-rates rA is,

EA
0 (rA; {wk,vk}) =

P∑
k=1

b

(
−xkAwk · rA − ykAvk · rA +

1

2N

[
(wk · rA)2 + (vk · rA)2

])

+
N∑
i=1

F (rAi ), (S85)

and similarly for the energy function of the 2nd system, EB
0 (rB; {wk,vk}). Note that in274

stimulus conditions A and B, only the first two stimulus-pair inputs are nonzero.275

The partition function of the whole system is defined as276

Ztotal =

∫
R2N
+

e−βE
A
0 (rA;{wk,vk})−βEB0 (rB ;{wk,vk})drAdrB = ZA · ZB. (S86)

Again we use the replica trick,277

lim
N→∞

lnZtotal

2N
= lim

N→∞

〈
lnZtotal

2N

〉
w,v

= lim
n→0

lim
N→∞

ln 〈Zn
total〉

2nN
= lim

n→0
lim
N→∞

ln 〈Zn
AZ

n
B〉

2nN
. (S87)

Note that the neural activities rA and rB of the two separate but identical networks are

in fact statistically coupled due to the replica-average over (wk,vk). The calculation for

〈Zn
AZ

n
B〉 is similar to the one shown in §2. We denote the order parameters under replica

symmetric ansatz as,

qabA =
1

N

∑
j

rA,aj rA,bj = qA0 δab + qA1 (1− δab),

qabB =
1

N

∑
j

rB,aj rB,bj = qB0 δab + qB1 (1− δab),

qabc =
1

N

∑
j

rA,aj rB,bj = qc,0δab + qc,1(1− δab). (S88)
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The last order parameter represents the overlap between replicas in system A and system278

B. Thus, the calculation of firing-rate correlations is very similar to the one-step replica279

symmetry-breaking calculation where the overlap between replicas within the same system280

is different from the overlap between the systems [79].281

In the N,P → ∞, P/N → α, n → 0 limit, with similar changes of variables as before282

[Eq. (S58)], we write the result of the calculation as,283

ln 〈Zn
AZ

n
B〉

nN
= Ftotal(q, q̂, q

′, q̂′, t, s). (S89)

Each order parameter in the function Ftotal has 3 components. For example, q has the

components (qA, qB, qc). The calculation gives the function Ftotal,

Ftotal(q, q̂, q
′, q̂′, t, s) =

gβ

2

∑
k

(
(tkA)2 + (skA)2 + (tkB)2 + (skB)2

)
+
α

2
(q̂′Aq

′
A + q̂′Bq

′
B + q̂′cq

′
c)

+
αgβ

2
(q̂Aq

′
A − q̂Aq′A + q̂′BqB − q̂Bq′B + q̂′cqc − q̂cq′c)

+

∫
Dz ln

[∫
dνβ(rA)dνβ(rB)

〈
e−βG(rA,rB ,z,w

k,vk)
〉]
− lim

n→0

1

2n
〈ln detA(µ, q)〉µ .

(S90)

We introduced the functions,

G(rA, rB, z, w
k, vk) =

gα

2
q̂′Ar

2
A − grA

√
α
(√

q̂cz1 +
√
q̂A − q̂cz2

)
− grA

∑
k

[
(xkA − tkA)wk + (ykA − skA)vk

]
+
gα

2
q̂′Br

2
B − grB

√
α
(√

q̂cz1 +
√
q̂B − q̂cz3

)
− grB

∑
k

[
(xkB − tkB)wk + (ykB − skB)vk

]
− gαq̂′crArB,

A(µ, q) =

A11 A12

A12 A22


A11 =

(1 + q′A)In + gβqA11> µ(q′AIn + gβqA11>)

µ(q′AIn + gβqA11>) (1 + q′A)In + gβqA11>


A12 =

 q′cIn + gβqc11> µ(q′cIn + gβqc11>)

µ(q′cIn + gβqc11>) q′cIn + gβqc11>

 (S91)
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From symmetry, A22 is obtained by replacing A↔ B in A11. Here, In is the n× n identity284

matrix and 1 is an n-dimensional vector of 1’s. All the order parameters in Eq. (S90) should285

be evaluated at the saddle point, in the limit β →∞. We obtain these order parameters as286

follows.287

First, we find the Hamiltonian corresponding to this system,

H(rA, rB) = G(rA, rB, z, w
k, vk) + F (rA) + F (rB)

=
gα

2
q̂′Ar

2
A − grA

√
α
(√

q̂cz1 +
√
q̂A − q̂cz2

)
− grA

∑
k

[
(xkA − tkA)wk + (ykA − skA)vk

]
+
gα

2
q̂′Br

2
B − grB

√
α
(√

q̂cz1 +
√
q̂B − q̂cz3

)
− grB

∑
k

[
(xkB − tkB)wk + (ykB − skB)vk

]
− gαq̂′crArB + F (rA) + F (rB). (S92)

The extra terms F (rA) and F (rB) come from the probability measure dνβ. When β →∞,

the unique minimum (r?A, r
?
B) is given by,

r?A = φ

(
−gαq̂′Ar?A + g

√
α
(√

q̂cz1 +
√
q̂A − q̂cz2

)
+ g

K∑
k=1

[
(xkA − tkA)wk + (ykA − skA)vk)

]
+ gαq̂′cr

?
B

)
,

r?B = φ

(
−gαq̂′Br?B + g

√
α
(√

q̂cz1 +
√
q̂B − q̂cz3

)
+ g

K∑
k=1

[
(xkB − tkB)wk + (ykB − skB)vk)

]
+ gαq̂′cr

?
A

)
.

(S93)

At the saddle point, the derivative of Ftotal [Eq. (S90)] with respect to q̂c is set to 0, giving288

0 =
αgβ

2

{
−q′c +

1√
α

∫
dQβ

[(
z1√
q̂c
− z2√

q̂A − q̂c

)
rA +

(
z1√
q̂c
− z3√

q̂B − q̂c

)
rB

]}
. (S94)

In the limit β →∞ we find that,289 〈(
z1√
q̂c
− z2√

q̂A − q̂c

)
r?A

〉
z

=

〈
1√
q̂c

∂r?A
∂z1

− 1√
q̂A − q̂c

∂r?A
∂z2

〉
z

Eq. (S93)
= 0. (S95)

Similarly, the average over the term proportional to r?B in Eq. (S94) is also 0. Substituting290

this into Eq. (S94), we get at the saddle point,291

q′c = 0. (S96)

Next, we simplify the determinant of A(µ, q). It is useful to write the submatrices as,

A11 = I2n + q′A

1 µ

µ 1

⊗ In + gβqA

1 µ

µ 1

⊗ 11>,

A12 = q′c

1 µ

µ 1

⊗ In + gβqc

1 µ

µ 1

⊗ 11>. (S97)
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The symbol ⊗ denotes the Kronecker product between two matrices. For this product, we

have the identity, (A⊗B)(C⊗D) = (AC)⊗ (BD). Therefore the submatrices A11 and A12

commute and the determinant of A(µ, q) becomes,

detA(µ, q) = det

A11 A12

A12 A22

 = det(A11A22 −A2
12). (S98)

The two terms are equal to,

A11A22 = I2n + (q′A + q′B)

1 µ

µ 1

⊗ In + q′Aq
′
B

1 + µ2 2µ

2µ 1 + µ2

⊗ In
+ gβ(ngβqAqB + qAq

′
B + q′AqB)

1 + µ2 2µ

2µ 1 + µ2

⊗ 11>,

A2
12 = (2gβq′cqc + ng2β2q2

c +O(q′2c ))

1 + µ2 2µ

2µ 1 + µ2

⊗ 11>, (S99)

where we used q′c = 0. Note that we have kept the term linear in q′c in A2
12, anticipating that

we will need to evaluate derivatives with respect to q′c below. We find that the determinant

has the following form,

1

n
ln det(A11A22 −A2

12) =
1

n
ln det(Q0 ⊗ In +Q1(n)⊗ 11>)

= ln detQ0 +
1

n
ln

det(Q0 + nQ1(n))

detQ0

n→0
= ln detQ0 + tr[Q−1

0 Q1(0)]. (S100)

Here, Q0 and Q1(n) are 2× 2 matrices that depend on the order parameters,

Q0 =

1 + q′A µq′A

µq′A 1 + q′A

1 + q′B µq′B

µq′B 1 + q′B

 ,

Q1(n) =
[
gβ(q′AqB + qAq

′
B) + ng2β2(qAqB − q2

c )− 2gβq′cqc +O(q′2c )
]1 + µ2 2µ

2µ 1 + µ2

 .

(S101)

We use the above simplification to evaluate the derivative of Ftotal [Eq. (S90)] with respect292

to qc and set it to 0 at the saddle point,293

0 =
αgβ

2

[
q̂′c −

1

2gβ

〈
tr

[
Q−1

0

∂Q1(0)

∂qc

]〉
µ

]
. (S102)
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Using Eq. (S101), we find that ∂Q1(0)
∂qc
|q′c=0 = 0. Therefore,294

q̂′c = 0. (S103)

Substituting this result into Eq. (S93), we see this is consistent with the one-body replica

results in Eq. (S34). Moreover, all the saddle point equations in the one-body scenario

[Eq. (S60)] will hold in the two-body scenario. The two new equations when taking deriva-

tives of Ftotal with respect to q̂′c and q′c are,

0 =
∂Ftotal

∂q̂′c
=
αgβ

2

(
q′c
gβ

+ qc −
∫

dQβrArB

)
,

0 =
∂Ftotal

∂q′c
=
αgβ

2

[
− q̂

′
c

gβ
− q̂c −

1

2gβ

〈
tr

[
Q−1

0

∂Q1(0)

∂q′c

]〉
µ

]
. (S104)

The second equation can be further simplified as follows. From Eq. (S101), we find295

∂Q1(0)

∂q′c

∣∣∣∣
q′c=0

= −2qcgβ

1 + µ2 2µ

2µ 1 + µ2

 . (S105)

Combining with Eq. (S101), we get

1

2gβ
tr

[
Q−1

0

∂Q1(0)

∂q′c

]∣∣∣∣
q′c=0

= − (1− µ)2qc
[1 + (1− µ)q′A][1 + (1− µ)q′B]

− (1 + µ)2qc
[1 + (1 + µ)q′A][1 + (1 + µ)q′B]

≡ −C(µ, q′A, q
′
B)qc. (S106)

Therefore, using Eqs. (S104-S106), in the limit β →∞, we get,

q̂c = 〈C(µ, q′A, q
′
B)〉µ qc = 〈C(µ, q′A, q

′
B)〉µ 〈r

?
Ar

?
B〉wk,vk,z . (S107)

Below we consider the case where the activation function φ is ReLU and µ’s are the same

for all learned stimulus-pairs. In this case r?A and r?B can be solved in closed form,

r?A(wk, vk, z) =
g

1 + αq̂′Ag

[
IA −

θ

g

]
+

,

r?B(wk, vk, z) =
g

1 + αq̂′Bg

[
IB −

θ

g

]
+

,

q̂c
C(µ, q′A, q

′
B)

= qc =
g2

(1 + αgq̂′A)(1 + αgq̂′B)

〈[
IA −

θ

g

]
+

[
IB −

θ

g

]
+

〉
IA,IB

. (S108)

The random variables representing the currents can be read from Eq. (S93),

IA =
√
α
(√

q̂cz1 +
√
q̂A − q̂cz2

)
+

K∑
k=1

[
(xkA − tkA)wk + (ykA − skA)vk)

]
,

IB =
√
α
(√

q̂cz1 +
√
q̂B − q̂cz3

)
+

K∑
k=1

[
(xkB − tkB)wk + (ykB − skB)vk)

]
. (S109)
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In summary, to obtain the joint distribution of neural activity under two stimulus condi-296

tions A and B, we first sample wk, vk, z from their corresponding distributions, and calcu-297

late IA and IB from Eq. (S109). The order parameters qA, q
′
A, qB, q

′
B, q̂A, q̂

′
A, q̂B, q̂

′
B are then298

solved from the one-body replica equations [Eq. (S60)] and order parameters introduced in299

the two-body calculation (q̂c, q̂
′
c, qc, q

′
c) are obtained from Eq. (S108). Finally, r?A and r?B are300

calculated from Eq. (S93), which gives a random sample from the joint distribution.301

The joint distribution of voltage levels can be computed similarly using the following302

formula for h?A,303

h?A(wk, vk, z) = IA −
αq̂′Ag

1 + αq̂′Ag

[
IA −

θ

g

]
+

. (S110)

A similar formula holds for h?B with the corresponding input current and order parameters.304

These results can be generalized to scenarios with more than two stimulus conditions. This305

joint distribution was be used to calculate the fraction of different functional neuronal types306

as shown in Fig. 3b,d.307

3.2. Explicit formulas in the Gaussian case308

When the weights wk and vk are Gaussian, the input currents IA and IB are also Gaussian309

variables. Moreover, their variances σ2
A = 〈I2

A〉 and σ2
B = 〈I2

B〉 are given by the one-body310

calculation [Eq. (S69)]. We denote the input current covariance as σAB = 〈IAIB〉. This311

covariance is given by,312

σAB = αq̂c +
K∑
k=1

[
δxkAδx

k
B + µk(δxkAδy

k
B + δxkBδy

k
A) + δykAδy

k
B

]
≡ αq̂c + σ0

AB. (S111)

Here σ0
AB can be obtained from the one-body replica equations [Eq. (S60)].313

Substituting σAB this into Eq. (S108) (i.e., averaging over the correlated Gaussians

IA, IB), and defining ρAB = σAB/(σAσB), we get a self-consistent equation for ρAB,

ρAB −
σ0
AB

σAσB
=
αb2C(µ, q′A, q

′
B)
√

1− ρ2
AB

(1 + αbq̂′A)(1 + αbq̂′B)

×
∫ +∞

θ
b

Dz

[
1

2π
e
− (bρABz−θ)

2

2b2(1−ρ2
AB

) +
bρABz − θ

b
√

2π(1− ρ2
AB)

H

(
− bρABz − θ
b
√

1− ρ2
AB

)](
z − θ

b

)
.

(S112)
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When θ = 0, the above equation for ρAB simplifies into314

ρAB −
σ0
AB

σAσB
=

αb2C(µ, q′A, q
′
B)

2π(1 + αbq̂′A)(1 + αbq̂′B)

(
π

2
ρAB + ρAB arctan

ρAB√
1− ρ2

AB

+
√

1− ρ2
AB

)
.

(S113)

Note that the quantity ρAB calculated here is the high-dimensional counterpart of Eq. (S73),315

i.e., ρAB reduces to ρIm,n in the limit α → 0. We computed the firing rate correlations in316

the high-dimensional regime based on Eqs. (S74-S76) which give the correlation between the317

input current ρAB.318

The fraction of different functional neuronal types can also be obtained from the statistics

σ2
A, σ

2
B and ρAB. Specifically, we set the stimulus conditions A =‘x-only mismatch condition’

and B = ‘match condition’. The fraction of PE and R neurons are defined as (Methods),

fPE = P
{
hA >

σ

2
, hA − hB >

σ

2

}
,

fR = P
{
hA >

σ

2
, |hA − hB| <

σ

2

}
, (S114)

where hA, hB are given by Eq. (S110). In the low-dimensional limit α→ 0, hA = IA, hB = IB

and have multivariate Gaussian distribution. There the fractions of PE and R neurons have

the explicit formulas,

fPE =

∫ +∞

σ
2σA

DzH

 σ
2σA
− (σA

σB
− ρAB)z√

1− (σA
σB
− ρAB)2

 ,

fR =

∫ +∞

σ
2σA

Dz

1−H

 σ
2σA
− (σA

σB
− ρAB)z√

1− (σA
σB
− ρAB)2

 . (S115)

3.3. Imperfect match of paired stimuli319

We consider a network that learns a single stimulus association, and is presented with a320

‘probe’ stimulus that is an imperfect match to the expected (learned) stimulus. This differ-321

ence is modeled by letting the recurrent weight vector w be different from the feedforward322

weight vector w′, giving the dynamics,323

dhi(t)

dt
= −hi(t)−

b

N

N∑
j=1

(wiwj + vivj)φ(hj(t)) + b (w′ix+ viy). (S116)

We used this model to understand recent experimental findings, where a motor-auditory

association was learned, and animals were probed with sounds that differed from the learned
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tone [13]. We assume that the components of w′ have mean 0 and unit variance [similarly

to w and v, Eq. (S9)], and the following cross terms,

〈wiw′j〉 = δijκ, 〈viw′j〉 = δijκµ. (S117)

Here 0 ≤ κ ≤ 1 indicates the similarity between the learned stimulus input x and the one324

used as a probe. When κ = 1, the learned and probe stimuli are equal.325

This network is very similar to the special case α → 0 of the network studied in §2.2.2.326

To understand its steady-state response, we use Eq. (S34) and define similarly,327

rκ = φ(Iκ) = [bIκ − θ]+, Iκ = w′x− wx̂+ v(y − ŷ). (S118)

Here φ is assumed to be the ReLU function, x̂ and ŷ are the internal predictions [Eq. (S1)]

and are given by the saddle point equations [Eq. (S68)],

x̂ =
κ[q′ + (1− µ2)(q′)2]x+ µq′y

1 + 2q′ + (1− µ2)(q′)2
,

ŷ =
κµq′x+ [q′ + (1− µ2)(q′)2]y

1 + 2q′ + (1− µ2)(q′)2
. (S119)

Note that we have modified them accordingly to account for fact that stimulus-pairing is

‘imperfect’. When all the weights have Gaussian distributions, the order parameters q′, σ

satisfy [similarly to Eq. (S71)],

q′ = bH

(
θ

bσκ

)
,

(σκ)2 = 2(1− κ2) +
2κ2[(1− µ2)(1 + q′)2 + µ2]S + 2κµ[1− (1− µ2)(q′)2]T

[1 + 2q′ + (1− µ2)(q′)2]2
. (S120)

We computed the representation similarity between stimuli semi-analytically by first solv-328

ing q′, σκ, sampling Iκ from N (0, (σκ)2), and finally calculating the Pearson correlation329

coefficient [Eq. (S74)] between rκ=1 and rκ for different values of κ.330

To get the segregation index, we considered the difference between mismatch and match

responses ∆ for an arbitrary κ and κ = 1,

∆κ = [bIκx − θ]+ − [bIκxy − θ]+,

∆κ=1 = [bIκ=1
x − θ]+ − [bIκ=1

xy − θ]+. (S121)

Note that Iκx , Iκxy, I
κ=1
x and Iκ=1

xy are random variables that depend on the random weights331

w′, w and v, order parameters x̂ and ŷ, and the inputs x and y. The inputs were chosen332
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according to the stimulus condition (match/mismatch). The segregation index (as a function333

of κ) is defined as the Pearson correlation between the two random variables ∆κ and ∆κ=1,334

which is shown in Fig. 4f.335

4. THE E/I NETWORK MODEL336

4.1. Derivation of the E/I connectivity in the model337

We consider a network with two separate populations of excitatory and inhibitory neu-

rons. The time-dependent voltages of E and I neurons are given by the following system of

differential equations,

τE
dhEi
dt

= −hEi +

NE∑
j=1

JEEij φ(hEj )−
NI∑
j=1

JEIij φI(h
I
j ) + IEi ,

τI
dhIi
dt

= −hIi +

NE∑
j=1

J IEij φ(hEj )−
NI∑
j=1

J IIij φI(h
I
j ) + IIi . (S122)

We assume that the activation function of inhibitory neurons is ReLU with threshold value

equal to zero, φI(x) = max{x, 0}. Notice the negative sign of the third term in both

equations. This implies that the connectivity matrices JEE, JEI , J IE and J II are non-

negative. We now derive these matrices, and the inputs IE and II , by matching the steady

state activity of E neurons in the E/I network to the neural activity in the original network

[Eq. (S4)]. At steady state, Eq. (S122) reads,

hEi =

NE∑
j=1

JEEij φ(hEj )−
NI∑
j=1

JEIij φI(h
I
j ) + IEi ,

hIi =

NE∑
j=1

J IEij φ(hEj )−
NI∑
j=1

J IIij φI(h
I
j ) + IIi . (S123)

We restrict ourselves to choices of connectivity in which inhibitory neurons operate in the338

linear regime, i.e., hIi ≥ 0⇒ φI(h
I
i ) = hIi . Substituting hIi into hEi in Eq. (S123) we get,339

hEi =

NE∑
j=1

[
JEEij − (J IE(INI + J II)−1JEI)ij

]
φ(hEj ) + IEi −

NI∑
j=1

JEIij I
I
j . (S124)

One can be check that the steady state solution is stable when τI � τE. Here (INI + J II)

is assumed to be invertible. From now on we suppress the subscript NI indicating the
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dimension of the identity matrix INI . Equating this with the steady state in the original

network [Eq. (S8)] gives the constraints on the connectivity and input,

JEEij − [JEI(I + J II)−1J IE]ij = − b

N

P∑
k=1

(
wki w

k
j + vki v

k
j

)
,

IEi − [JEI(I + J II)−1II ]i = b
P∑
k=1

(wki x
k + vki y

k). (S125)

Following a scheme for separating E/I connectivity used in previous work [54], we define

positive random variables ξki , η
k
i ≥ 0 such that the variables wki , v

k
i are retrieved when the

mean is subtracted from the new variables. Mathematically,

wki = ξki − ξ̄, vki = ηki − η̄. (S126)

The means ξ̄, η̄ are chosen to be independent of the neuron and pattern indices i, k. Using

the same trick as Ref. [54], the first equation in Eq. (S125) can be separated into two parts,

JEEij =
γb

N

P∑
k=1

(
ξki ξ

k
j + ηki η

k
j

)
+
bP

N

[(
P∑
k=1

ξki

)(
P∑
k=1

ξkj

)
+

(
P∑
k=1

ηki

)(
P∑
k=1

ηkj

)]

[JEI(I + J II)−1J IE]ij =
(γ + 1)b

N

P∑
k=1

(
ξki ξ

k
j + ηki η

k
j

)
(S127)

Here γ is an arbitrary positive number, which we set to 1 in all later results.340

We make two additional assumptions: (i) ‘Feedforward’ stimulus input exclusively target

excitatory neurons (IIi = 0); and (ii) I-to-E connectivity has the form JEI = J̃EI(I + J II),

where J̃EI is a nonnegative matrix. Given these, Eqs. (S125, S127) become,

[J̃EIJ IE]ij =
2b

N

P∑
k=1

(
ξki ξ

k
j + ηki η

k
j

)
,

IEi = b
P∑
k=1

(wki x
k + vki y

k). (S128)

To obtain the E/I balance level for excitatory neurons in this network, we write the total
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excitatory input IE,tot
i as the sum of different contributions,

IE,tot
i

b
=

P∑
k=1

(wki x̂
k + vki ŷ

k) +
P∑
k=1

(wki x
k + vki y

k) (stimulus-specific, local)

+ 2

(
ξ̄

P∑
k=1

x̂k + η̄
P∑
k=1

ŷk

)
(stimulus-specific, global)

+
2

N

(
ξ̄

P∑
k=1

wki + η̄

P∑
k=1

vki

)
N∑
i=1

φ(rEi ) (stimulus-nonspecific, local)

+ 2α
(
ξ̄2 + η̄2

) N∑
i=1

φ(rEi ) + ξ̄

P∑
k=1

xk + η̄

P∑
k=1

yk. (stimulus-nonspecific, global)

(S129)

Taking the ratio between the stimulus-specific, local component and the net input to each341

excitatory neuron, we get,342

B
E/I
i =

∣∣∣∣IRi + IFi
δIi

∣∣∣∣ = |−1 + 2Bi| , (S130)

where IFi , I
R
i , δIi and Bi are those defined in the original network model [without separation343

of E and I; Eq. (S77)]. Therefore, for moderate values of Bi > 1/2, up to a scaling factor344

and shift, the stimulus-specific, local component of the E/I balance level is the same as the345

balance level we analyzed in Figs. 2, 3. Note that in the range of α values analyzed in Fig. 2,346

the fraction of neurons with Bi < 1/2 is negligible in both match and mismatch conditions.347

4.2. Interpolation via nonnegative matrix factorization348

Solving for J̃EI and J IE in Eq. (S128) is equivalent to a nonnegative matrix factorization

problem [53]. Using the shifted, nonnegative weight vectors, we define the matrices Ξ, H, S,

Ξ =
1

N


ξ1>

...

ξP>

 =
1

N


ξ1

1 . . . ξ1
N

...
. . .

...

ξP1 . . . ξPN

 ∈ RP×N ,

H =
1

N


η1>

...

ηP>

 =
1

N


η1

1 . . . η1
N

...
. . .

...

ηP1 . . . ηPN

 ∈ RP×N , S =


Ξ

H

0

 ∈ RN×N . (S131)
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Throughout this section, we will assume 2P ≤ N , and ‘0’ pads with 0’s such that S is a349

square matrix. Thus, the connectivity equation [Eq. (S128)] can be rewritten as,350

J̃EIJ IE = 2b(Ξ>Ξ +H>H) = b(γ + 1)S>S. (S132)

For each choice of a nonnegative matrix J IE, the above equation has a nonnegative351

solution JEI if and only if the convex cone formed by the row vectors of J IE contains the352

convex cone formed by the row vectors of S [formally denoted as cone(J IE) ⊇ cone(S)].353

This condition can be derived from the definition of matrix multiplication [53]. Based on354

this condition, we identify a family of solutions {JEI(λ), J IE(λ)} parameterized by λ ∈ [0, 1]355

as follows. At one end, we choose J IE equal to the identity (J IE(λ = 0) = IN). At the356

other end, J IE(λ = 1) = S ′, where S ′ is defined such that its first 2P rows are the same357

as the nonzero rows of S and the rest of its rows are randomly sampled from the vectors358

ξk/N, ηk/N . This ensures that cone(S ′) ⊇ cone(S). This family of solutions assumes that359

the number of inhibitory neurons equal to the number of excitatory neurons.360

The firing-rates of inhibitory neurons are given by,361

rIi (λ) ≡ φI(h
I
i ) = hIi =

N∑
j=1

J IEij (λ)rEj . (S133)

At the two ends, this reduces to,

rIi (λ = 0) = rEi (0),

rIi (λ = 1) =

x̂k + ξ̄
N

∑N
i=1 φ(hEi ), if the ith row of S ′ is ξk>

ŷk + η̄
N

∑N
i=1 φ(hEi ), if the ith row of S ′ is ηk>

(S134)

Based on these equations, we call λ = 0 the ‘private’ solution and λ = 1 the ‘internal362

prediction’ scenario. For λ = 1, the second term in rIi (1) can be canceled by a global363

disinhibtory input. For intermediate λ’s, it may seem natural to choose a linear interpolation364

between the two solutions, J IE(λ) = λJ IE(1) + (1 − λ)J IE(0). We find however that this365

choice does not ensure that the solution for JEI is nonnegative.366

Instead, we choose E-to-I connectivity as follows. Two intermediate points within the

segment [0, 1] are denoted as λ = 0+ and λ = 1−, thereby dividing the segment into three.
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At those points we choose J IE to be,

J IE(0+) =


ΞP,2P 0

HP,2P 0

0 NIN−2P

 , J IE(1−) =


ΞP,2P ΞP,N−2P

HP,2P HP,N−2P

0 Ndiag(a)

 . (S135)

Here, ΞP,2P , HP,2P consist of the first P rows and first 2P columns of Ξ and H, respectively;367

ΞP,N−2P , HP,N−2P consist of the first P rows and last N − 2P columns of Ξ and H, respec-368

tively; diag(a) is a diagonal matrix, with diagonal elements given by the N−2P components369

of the vector a which is specified below. Again the 0’s are used for padding.370

The interpolation of J IE(λ) from λ = 0 to λ = 1 thus consists of three regions:371

(I) λ from 0 to 0+: The upper left block of J IE changes from an identity matrix to a372

matrix of stimulus input vectors.373

(II) λ from 0+ to 1−: The upper and lower right blocks linearly interpolate the matrices374

shown in Eq. (S135). Results in the main text are taken from here.375

(III) λ from 1− to 1: The lower part of the matrix changes to contain stimulus vectors.376

We start with solutions in Region (II) which we found to be the most relevant to the

empirical measurements in [12], since we estimated λ ≈ 0.6. Network properties for a range

of λ values between 0 and 1 (Figs. 5, S6, S7, S8) are also based on the results in Region

(II). The connectivity matrices JEI(λ) and J IE(λ) in Region (II) are given by,

J IE(λ) =


ΞP,2P λΞP,N−2P

HP,2P λHP,N−2P

0 N [(1− λ)IN−2P + λdiag(a)]

 ,

J̃EI(λ) = 2b
(

Ξ H J (λ)
)
. (S136)

Here J (λ) is a N × (N − 2P ) matrix whose elements are given by377

[J (λ)]ij =
(1− λ)(ξiξj + ηiηj)

(λaj + 1− λ)N
, i = 1, . . . , N, j = N − 2P + 1, . . . , N. (S137)

One can check that cone(J IE(λ)) ⊇ cone(S), and thus Eq. (S132) is satisfied and the ele-378

ments of JEI are nonnegative for every λ.379

The interpolation in Region (I) requires smoothly ‘morphing’ the upper left block of380

the connectivity matrix involving Ξ and H to the identity matrix. This can be done by381
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replacing the last row and last column with 0 and then setting the last diagonal element382

to be 1. Repeating this replacement P times yields the identity matrix. We note that in383

the low-dimensional case [P = O(1)], this procedure only changes the E connections to P384

out of N inhibitory neurons. Thus its effect on the overall statistics of inhibitory neurons’385

activity is negligible. In the high-dimensional case [P = O(N)], the distributions of neural386

activity and synaptic weights themselves change smoothly along this interpolation path.387

Similarly, in Region (III), we replace every row in the lower part of the matrix with one of388

the randomly sampled vectors that appear in the matrix S ′.389

4.3. Plasticity of inhibitory weights during learning390

The interpolation solutions presented in the last section are valid for any set of positive391

real numbers ai, i = 2P + 1, . . . , N . In Fig. 5 we choose the ai’s as follows,392

ai(µ) =


1.4 + 12exp[1.5si(µ)] if si(µ) ≤ 0

0.002 if 0 < si(µ) < 0.97

2.002 if si(µ) ≥ 0.97

(S138)

where393

si(µ) = [rEx,i(µ)− 〈rEx (µ)〉][rExy,i(µ)− 〈rExy(µ)〉]. (S139)

Here rEx,i(µ) and rExy,i(µ) are the firing-rates of the i-th excitatory neuron in the x-only394

mismatch and match conditions for a given value of µ. 〈rEx (µ)〉 and 〈rExy(µ)〉 are the average395

firing-rates over all the E neurons in the two conditions. This mathematical form for ai is396

chosen to match the experimental data on fast spiking neurons (Fig. 5c,d).397

To track individual synapses during learning, we generate the kth stimulus input vectors398

ξk and ηk as follows: (1) We first generate two independent isotropic Gaussian vectors399

ak0, b
k
0, with mean equal to 3 and standard deviation equal to 1; (2) Then we form the a400

linear combination to generate two correlated Gaussian random variables,401

ak = ak0, bk = µak0 +
√

1− µ2bk0. (S140)

(3) Finally, we clip both variables to positive and define them as ξk and ηk. In this case, the402

resulting vectors wk and vk [Eq. (S126)] will be approximately correlated Gaussian variables403

with mean 0. These procedures are used to produce the plots in Fig. 5c,e,f,g.404
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5. PARAMETER VALUES USED IN THE FIGURES405

Unless specified, in all the main and supplementary figures,wk and vk have joint Gaussian406

distribution and satisfy Eq. (S9). The number of neurons in the network is N = 2000.407

Figure 1: We set α = 0, θ = 0 and b = 150 throughout this figure.408

Panel b: We use Eq. (S72) to generate N = 2000 samples of 2D random variables409

(Ix, Ixy) and compute the corresponding firing-rates.410

Panel d: The theory lines for the Pearson correlation between different stimulus condi-411

tions are calculated from Eqs. (S71, S73, S76). The simulation points are calculated by412

sampling the neurons’ firing-rates as described in the Panel b caption. As each vector413

represents the mean-subtracted firing-rate vectors, the cosine of the angle is equivalent414

to the Pearson correlation coefficient between the original firing-rate vectors.415

Panel f: The firing-rate distribution on the left (’Our model’) is generated in the same416

way as in Panel b. As the neural responses to two stimulus-pairs are mutually inde-417

pendent at α = 0, the joint distribution is a product of the corresponding marginal418

distributions. The firing-rate distribution on the right (’Segregated model’) is gen-419

erated by using the same marginal distributions (as in the plot of ’Our model’), but420

adding a nonzero correlation (which equals to 0.9) in the input variables (Ix, Ixy) that421

are used to calculate the firing-rates.422

Figure 2: We set θ = 0 throughout this figure.423

Panel b: α = 0, b = 150. The ’Early’ and ’Late’ plots for balance level distribution424

are calculated at µ = 0 and µ = 0.9 respectively.425

Panel d: α = 0, b = 150. For SVM classification, stimulus inputs in the mismatch426

condition are generated from Gaussian mixtures centered at (0, 1) and (1, 0), both of427

which are isotropic and have variance 0.05. Similar Gaussian mixtures are used for428

stimulus input in the match condition, except that the centers are at (0, 0) and (1, 1).429

The SVM model is fitted using the Matlab function ’fitcsvm’. The classification error430

is calculated via the matlab functions ’crossval’ and ’kfoldLoss’.431

Panel e: This figure panel is an illustration and the parameters are α = 0, µ = 0.7.432

Panel f: The threshold on the firing-rate for determining the optimal b is chosen such433

that at α = 0, the optimal balance level is the same as the one fitted to experimental434
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data [20] in Figure 3 (B? ≈ 162).435

Figure 3: We fit both sets of experimental data [12, 20] using Eq. (8) (Methods).436

Figure 4:437

Panel b: α = 0, b = 150.438

Panel c: The values of b in both plots are chosen to be at the optimal values.439

Panel d: Plotted on the y axis is the fraction of mixed-representation neurons among440

all PE neurons for the stimulus pair 1.441

Panel f: We set b = 189, which is the value extracted from the data [12]. The442

sparsity levels are defined as the fraction of active neurons in the network and changed443

by varying the firing-rate threshold θ in the network model. The threshold values444

corresponding to the three plotted curves are θ = 4.5, 6.5, 21.5.445

Figure 5: We set θ = 0, J II = 0 throughout this figure. Before and after learning corre-446

spond to µ = 0 and µ = 0.97. During learning, the functional cell types of a specific E447

or I neuron in the network might change. The cell-type-specific synaptic weight statis-448

tics shown in Fig. 5f,g only include synapses whose pre- and postsynaptic neurons449

maintain their identity throughout learning. Other parameter values can be found in450

§4.3.451

Figure 6: θ = 0 throughout this figure. The number of neurons for each module is 400. All452

the error bars are computed based on 30 random samples of synaptic weight vectors.453

The steady state of the network is obtained by simulating the ODEs [Eq. (S29)] for454

total time t = 4.455

Panel b : α = 0, µ = 0.97. The colormap indicates the firing rate averaged over all456

neurons in all modules in the x-only mismatch condition.457

Panel c: b1 = b3 = 50 and b2 = 190 are the values at the star position in panel b.458

µ = 0.97.459

Panel d-h: b1 = b3 = 50 and b2 = 190 are the values at the star position in panel b.460

Figure S1:461

Panel a: α = 0, b = 150.462

Panel c: The threshold on firing-rate for determining optimal b is chosen such that at463
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α = 0, the optimal balance level is the same as the one fitted to experimental data464

[20] in Fig. 3 (B? ≈ 162). This threshold remains fixed for different values of α.465

Figure S3: Throughout this figure, α = 0, b = 150.466

Figure S4: Throughout this figure, µ = 0.97, b = 150.467

Figure S5: The threshold value corresponding to the model curve is θ = −20. We set468

b = 189, which is the value extracted from the data [12].469

Figure S6: Throughout this figure, we set α = 0, b = 150.470

Figure S7 and S8: We set θ = 0, J II = 0 throughout these figures. Before and after471

learning correspond to µ = 0 and µ = 0.97. Other parameter values are the same as472

in Fig. 5.473
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