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Abstract: The current pandemic threat of COVID-19, caused
by the novel coronavirus SARS-CoV-2, not only gives rise to
a high number of deaths around the world but also has
immense consequences for the worldwide health systems
and global economy. Given the fact that this pandemic is
still ongoing and there are currently no drugs or vaccines
against this novel coronavirus available, this in silico study
was conducted to identify a potential novel SARS-CoV-2-
inhibitor. Two different approaches were pursued: 1) The

Docking Consensus Approach (DCA) is a novel approach,
which combines molecular dynamics simulations with
molecular docking. 2) The Common Hits Approach (CHA) in
contrast focuses on the combination of the feature
information of pharmacophore modeling and the flexibility
of molecular dynamics simulations. The application of both
methods resulted in the identification of 10 compounds
with high coronavirus inhibition potential.

Keywords: COVID-19 · coronavirus · virtual screening · in silico · molecular docking · common hits approach · docking consensus approach

1 Introduction

Since the outbreak of COVID-19, caused by the SARS-CoV-2
virus, this disease has spread rapidly around the world leading
the WHO to declare COVID-19 as the first pandemic threat
since the H1N1 swine flu outbreak 2009.[1,3] From its epicenter
located in Wuhan, China (December 2019), the number of
affected countries has increased rapidly to more than 200
with over 1 million confirmed cases and over 63,000
confirmed deaths, as of April 6, 2020.[4,5] Although the
calculated case-fatality percentage varies from 1.4% to 9%
and is very heterogeneous across countries, the impact of the
current COVID-19 pandemic could potentially bring immense
consequences to the worldwide health systems and global
economy - especially given the fact that this pandemic is still
ongoing and there are currently no drugs or vaccines against
this novel coronavirus available on the market.[6,8,10,11]

Currently, different approaches are being pursued to find a
solution to this global threat. The core strategy hereby is not
only the development of a much-needed vaccine but also the
repositioning of U.S. Food and Drug Administration (FDA)
approved drugs.,[9], [13] Although the development of a novel
drug under normal circumstances is more time-consuming
than the relatively fast drug repositioning, the FDA officially
facilitated the development of novel COVID-19 therapies in
order to encourage also this strategy - especially because
novel identified antiviral compounds could demonstrate a
much higher antiviral effect against SARS-CoV-2.[14,16] There-
fore, this in silico study was performed to identify novel potent
coronavirus inhibitors.

Moreover, the relatively new drug development approach
of a “multi-target” or “promiscuous binding” compound as a
new lead was used in this study. Hereby, the assumption, that
such a drug is not selective towards one single target but

interacts with multiple receptors and therefore could demon-
strate a better activity profile – e.g. blocking different path-
ways of a given disease – brings new interesting possibilities
in medicinal chemistry.[17,18] Therefore, we used multiple
proteins of the SARS-CoV-2 virus as possible targets and
developed two different methods in order to discover a
potential new multi-target SARS-CoV-2-inhibitor.

In this study, we pursued two different approaches to
identify a possible SARS-CoV-2-Inhibitor: i) Docking Con-
sensus Approach (DCA) and ii) Common Hits Approach
(CHA).[19] Both approaches are starting from the same hit list
obtained by a pharmacophore-based screening of a large
compound library: Here, we used the crystal structure of
SARS-CoV-2 protease in complex with a peptide inhibitor
(PDB code: 6LU7) as a starting point to derive a structure-
based pharmacophore.[21] For further investigation, we
selected 10 proteins from the SARS-CoV-2 proteome. De-
tailed information about the selection of the proteins and
their description are under Methods, Protein Selection and
System Preparation (Figure 1).
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In the field of structure-based drug-design, molecular
docking is a powerful method used to investigate promis-
ing ligands regarding their binding pose as well as scoring
their binding affinity. Its reliability highly varies due to two
reasons: First, the often-neglected protein flexibility and
second, mostly the enthalpic energy terms are taken into
consideration when scoring binding poses. The adverse
effect of taking just one conformation into account can be
mitigated by either utilizing flexible docking procedures or
by performing molecular dynamics simulations (MDs).

Nevertheless, these simulations are normally performed
on a nanosecond timescale, so it is hardly possible to
thoroughly sample the conformational space in order to
accurately calculate the binding affinity. Still, they can be

utilized to evaluate if the docked ligands are stable in the
binding pocket.[24]

The Docking Consensus Approach (Figure 2b) is a novel
approach, which combines docking with molecular dynam-
ics simulations. In our DCA implementation - this is done by
generating a representative set of most dissimilar confor-
mations occurring for each target protein during the MD
simulation run by utilizing the MDTraj package.[25] After-
wards, for each set-entry, molecular docking is performed
for each ligand and the added score from all clusters is then
averaged. Thereby, an average docking score is obtained
for each compound for the set of most distinct conforma-
tions during the molecular dynamics simulation.

The Common Hits Approach (Figure 2c) in contrast
focuses on the combination of pharmacophore modeling
and molecular dynamics simulations and was first described
by Wieder et al. in 2017.[19] Herein, they present a novel
approach to incorporate the conformational flexibility of
the simulated systems during the MD simulation with the
feature information of pharmacophore modeling. For each
frame generated during the MD simulation a pharmaco-

Figure 1. shows the overall performed approach. In the first part (1), a
structure-based pharmacophore model is generated from the struc-
ture of SARS-CoV-2 protease in complex with a peptide inhibitor (PDB
code: 6LU7).[21] The screening performed with this pharmacophore
model retrieved a hit list of 232 compounds and was converted to the
‘Hit-List 232 cmps’ library. 2a: In order to find the binding pocket in
each of the 10 target proteins, the binding pocket finder of the
LigandScout 4.4.3 suite was utilized and the most promising binding
pocket was chosen.[22] After the MD simulation of every protein-system
the two different methods (DCA and CHA – displayed as 2b and 2c)
were applied. With the results of both methods calculations were
performed in order to investigate, which compound performed the
best over all 10 protein systems (3).

Figure 2. shows the two different methods more detailed. 2b:
During the Docking Consensus Approach (DCA) a representative
cluster of the most dissimilar conformations of the protein during
the MD was generated. Afterwards, every compound of the ‘Hit-List
232 cmps’ library is docked in each representative cluster and a
consensus score of the retrieved docking scores is calculated. In the
end a ranking of the compounds according to their consensus
score was performed. 2c: In the Common Hits Approach (CHA) a
pharmacophore model was generated for each frame retrieved
from the MD simulation and - through pooling the pharmaco-
phores with the same pharmacophoric features - the representative
pharmacophore models (RPM) are calculated. With every RPM a
virtual screening is performed, and the resulting hit lists combined
and rescored to a single hit list. Three different calculations were
performed to explore the overall performance of the compounds.
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phore model is created and - through pooling the
pharmacophores with the same pharmacophore features -
representative pharmacophore models (RPM) are obtained.
With every RPM, a virtual screening run is carried out, and
the resulting hit lists are combined and rescored to a single
hit list. The CHA Score is calculated for every molecule
according to the number of matching RPMs.[26]

2 Methods

2.1 Protein Selection and System Preparation

For this study 11 different proteins were selected – one
(PDB code: 6LU7) was used as the starting point and the
other 10 were used for further investigation.[27] To cope
with the fact that the SARS-CoV-2 virus is a new form of
coronavirus and therefore relatively few protein data are
available, we not only used the RSCB PDB database (www.
rcsb.org) as a source for our proteins but also performed
extensive web search (following databases were searched:
PubMed (NCBI), Scopus (Elsevier), SciFinder (CAS), ChemRxiv
(CAS)) in order to obtain more data.[29,30,32] On March 14,
2020, we could identify 46 published proteins concerning
the novel coronavirus. Including criteria for the proteins
were as follows: reliability of the model (e.g. for homology
models a TM-score above 0.7), size, and availability for
research. In addition, multiple published proteins were
separated, if necessary. 10 proteins fulfilled all the men-
tioned criteria and were therefore included to this study:
QHD43421_0 (ORF7a); QHD43415_5 (Proteinase 3CL-PRO);
QHD43415_7 (nsp7); QHD43415_9 (nsp9); QHD43415_10
(nsp10); QHD43415_11 (RNA-directed RNA polymerase –
RdRp); QHD43415_12 (Helicase – Hel); QHD43415_13
(Guanine-N7 methyltransferase – ExoN); QHD43415_14
(Uridylate-specific endoribonuclease – NendoU);
QHD43415_15 (2’-O-methyltransferase-2’ – O-MT).[27]

2.2 Protein Binding Pocket

In order to locate the binding pocket in each of the 10
target proteins, the binding pocket finder functionality of
the LigandScout 4.4.3 suite was utilized.[22] The standard
parameters were used for the buriedness calculation and,
after visual inspections, the most promising candidate for
the binding pocket was chosen.

2.3 Molecular Dynamics Simulations

The protein-ligand- systems were prepared using Maestro
(Schrödinger).[33] Hereby, a protonation and capping of the
termini of every protein-system was performed. For the
creation of the solvation box and the addition of ions (at a
concentration of 0.15 M) the CHARMM-GUI web interface

was used.[34] More information about each protein-system is
given in the corresponding table in the Supporting
Material. Amber 16 has been used to run the simulations
and the parameterization of the system has been done
using tleap and the general AMBER force field (GAFF).[36]

The MD simulation protocol was as follows: After an initial
equilibration and thermalization phase of 125 ps with a 1 fs
time step, each system was simulated for 100 ns using
Langevin dynamics at a temperature of 303.15 K; the
pressure was kept around 1 atm by a Monte Carlo barostat.
The SHAKE algorithm was used to keep all bonds involving
hydrogen atoms rigid.[37] The time step of the production
runs was 2 fs. Plots of the RMSD for the proteins and for
their ligand are shown in the Supporting Information.

2.4 Virtual Screening and Library Preparation

The crystal structure of the SARS-CoV-2 protease in complex
with a peptide inhibitor (PDB code: 6LU7) was retrieved
from the protein data bank (RCSB-PDB, www.rcsb.org).,[21][28]

6LU7 was chosen as the starting point, because as of 14
March 2020 it was the only reliable protein-ligand structure
from SARS-CoV-2 available for research. LigandScout 4.4.3
was used to generate a structure-based pharmacophore
model after correction of the ligand structure.[22] The default
feature constraints defined by LigandScout were used.
Utilizing the screening functionality of LigandScout 4.4.3,
virtual screening was performed with the generated
pharmacophore model and the Aldrich Market Select (AMS)
database from ChemNavigator/Sigma-Aldrich with over 8
million unique chemical structures.[38] Including all exclusion
volumes spheres of the pharmacophore model and the
maximum number of omitted features set to 6, a hit list of
232 molecules was obtained. These 232 unique molecules
were then converted into a multi-conformational com-
pound library for virtual screening using the LigandScout
4.4.3 command line tool idbgen. Conformers were gener-
ated using the icon best option in idbgen to create a
maximum number of 200 high quality conformers for each
molecule. Subsequently, the created library will be referred
to as the ‘Hit-List 232 cmps’ library.

2.5 Docking Consensus Approach

We first performed molecular docking for all 10 target
proteins with the ligand extracted from protein 6LU7
(Figure 1.1 and Figure 1.2a).[21] Only the conformation with
the lowest energy was chosen for the docking. For this,
AutodockVina 1.1.2 was used which is integrated in the
LigandScout 4.4.3 suite.,[22][39] Standard parameter settings
were chosen for all ligand-protein systems without consid-
ering protein flexibility.

For each of the docked systems, a MD simulation was
performed as described above. Afterwards, the frames in
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the trajectories of each of the 10 systems were clustered in
order to retrieve the representative clusters (shown in
Figure 2.2b).[25] For each of these clusters, a molecular
docking was performed with all the 232 compounds out of
the Hit-List 232 cmps library. The scores for each cluster
were then summed up for each compound individually.
Afterwards, they were ranked according to the overall score.
This was done for each target protein individually (Fig-
ure 2.2b). Then, each compound’s rank was summed up
over all target proteins in order to get a final ranked
compound list (Figure 1.3, Table 1).

2.6 Common Hits Approach

Utilizing the KNIME 4.1.2 workbench and the LigandScout
Extensions for KNIME Version 1.7.3, a workflow was created
to perform the Common Hits Approach combining pharma-
cophore modeling and molecular dynamics simulations.[40]

This workflow was executed for all 10 proteins individually,
generating 10 hit lists – one for each protein.

First, the MD Pharmacophore Creator node was used to
generate structure-based pharmacophore models for each of
the 10 000 frames saved during the MDs. The retrieved
pharmacophore models were then processed by the CHA filter
node. With the pharmacophore filter set to the minimum
frequency of output pharmacophores of 5, the number of
representative pharmacophores was reduced not only to a
reasonable quantity, but also random artifacts generated
during the MD simulations could be excluded. Virtual screen-
ing with the remaining pharmacophore models against the
prepared Hit-List 232 cmps library was performed using the
Activity Profiling node. The screening was restrained by the
maximum number of omitted features set to 0 and by the
consideration of pharmacophore exclusion volume spheres.

The created hit- list was re-scored using the CHA Re-Score
node, giving the desired CHA Scores.

As already mentioned in the introduction, the goal of
this study was to identify a novel multi-target SARS-CoV-2-
inhibitor. Therefore, all molecules, which were retrieved for
the 10 different possible targets were chosen for further
investigation. Hereby, we calculated the mean outcome of
the CHA Score from those molecules to identify which of
them performed the best. Knowing that a comparison of
this CHA Score on different protein-systems can be error
prone, we additionally ranked all molecules from one
protein-system according to their CHA Score (from one
upwards, ranking the molecule with the highest CHA Score
of the given system as the first one). With this ranking, we
finally calculated the mean ranking score of every molecule
over all the systems. To investigate which molecules
performed the best across the included protein-systems, we
performed the following calculations to determine a Mean
Standardized Ranking: Every CHA Score was divided by the
maximum CHA Score of the protein- system. Additionally,
all compounds which were not retrieved as a hit in that
protein- system got assigned the lowest possible CHA Score
(0.000). The Mean CHA Ranking was calculated using the
sum of the individual Standardized Ranks of one protein-
system divided by the count.

3 Results and Discussion

We are aware that the SARS-CoV-2 protease 6LU7 is not the
best starting point for our study, however as of 14 March
2020 it was the only reliable protein-ligand structure
available for research.

Table 1. Top 10 Ranked Molecules by the Docking Consensus Approach.[a]

Protein-
System

Consensus
Score[b]

Mean
Ranking
[c]

QHD
43421
_0[d]

QHD
43415
_5[d]

QHD
43415
_7[d]

QHD
43415
_9[d]

QHD
43415
_10[d]

QHD
43415
_11[d]

QHD
43415
_12[d]

QHD
43415
_13[d]

QHD
43415
_14[d]

QHD
43415
_15[d]

1 947305629 11 1,1 1 1 2 1 1 1 1 1 1 1
2 333060097 29 2,9 2 2 3 2 2 4 4 3 3 4
3 470214361 53 5,3 18 3 6 8 3 2 7 2 2 2
4 1064353072 72 7,2 6 6 8 7 6 7 12 8 5 7
5 234051742 73 7,3 3 9 1 6 12 6 9 9 13 5
6 397840857 78 7,8 4 13 10 4 8 5 8 10 7 9
7 1211818976 80 8 20 4 4 13 7 8 6 6 6 6
8 333483566 96 9,6 9 10 5 5 9 11 13 16 8 10
9 1059200906 107 10,7 8 22 9 3 5 14 5 5 16 20
10 27548644 112 11,2 5 12 7 12 13 17 16 18 9 3
[a]The best performing molecules according to the Consensus Score. The three best ranks for one protein-system are colour-coded red. Out of
all 232 compounds compound 947305629 has the best Consensus Score – ranked for on 9 out of 10 proteins as the best compound. [b]The
Consensus Score is the overall sum for each molecule over all protein rankings. [c]The Mean Ranking was calculated as the sum of the
individual Ranks of one protein-system divided by the count. [d]The individual ranks of every protein-system. The ranking of the molecules
from one protein-system was carried out according their overall score.
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3.1 Docking Consensus Approach

The best ranked 10 compounds for the DCA are listed in
Table 1 and Figure 3. Their consensus scores range from 11
to 112. The best ranked molecule is 947305629 with an
overall score of 11. This molecule ranked first in all proteins
except for protein QHD43415_7. The second highest ranked
molecule is 333060097 with a consensus score of 29. It
ranks 2nd in QHD43415_0, QHD43415_5, QHD43415_9 as
well in QHD43415_10. The 3rd ranked molecule is
470214361 with an overall score of 53. Its worst specific
protein ranking appears in QHD43415_0 at position 18. Its
best results are in QHD43415_11, QHD43415_13,
QHD43415_14 and as QHD43415_15 at the 2nd rank.

3.2 Common Hits Approach

29 molecules of the Hit-List 232 cmps library got retrieved
as hits for the 10 different protein-systems. In the Mean
CHA Score ranking (Table 2) compound 1297875291 with a
Mean CHA Score of 44.596 got ranked first and furthermore
retrieved the overall highest CHA Score in the QHD43415_
11- and QHD43415_12-system. Interestingly, compound
234051742 on the second-best place, showed a similar
good Mean CHA Score (43.656) as well as four out of 10
possible first CHA Score Ranks (on following protein-
systems: QHD43415_9, QHD43415_10, QHD43415_13, and
QHD43415_14). The compound structure of the top 10

Figure 3. Molecular structures of the Top 10 ranked compounds by the Docking Consensus Approach according the Consensus Score.

Table 2. Top 10 Ranked Molecules by the Common Hits Approach according to the Mean CHA Score.[a]

Protein-
System

Hit[b] Mean
CHA
Score[c]

QHD
43421
_0[d]

QHD
43415
_5[d]

QHD
43415
_7[d]

QHD
43415
_9[d]

QHD
43415
_10[d]

QHD
43415
_11[d]

QHD
43415
_12[d]

QHD
43415
_13[d]

QHD
43415
_14[d]

QHD
43415
_15[d]

1 1297875291 10 44.596 69.434 49.283 32.635 70.794 33.089 101.996 27.575 16.500 0.945 43.706
2 234051742 10 43.656 43.995 56.631 35.922 82.674 47.786 91.665 16.661 26.634 8.351 26.244
3 947305629 10 40.142 57.429 54.967 39.566 73.759 42.977 50.495 22.414 16.336 8.222 35.257
4 27889059 10 39.713 46.178 68.647 37.853 74.729 44.787 41.313 16.955 21.571 6.350 38.748
5 1046720863 10 36.494 56.496 40.348 35.272 71.577 34.062 54.999 25.406 25.897 0.898 19.988
6 2147483647 10 35.491 78.509 39.646 40.752 68.687 43.619 9.950 9.945 12.816 0.921 50.063
7 61442343 10 35.489 41.565 60.535 34.243 75.649 36.901 32.313 12.662 22.509 5.469 33.042
8 2472594070 10 34.650 76.415 34.003 38.038 66.110 37.840 12.779 11.695 10.987 2.711 55.920
9 298908912 10 33.929 78.746 40.754 38.540 45.002 17.374 38.328 24.244 11.832 1.794 42.677
10 28721359 10 32.176 65.240 56.365 38.207 69.285 37.582 0.892 11.719 12.613 1.820 28.032
[a]The best performing molecules according to the CHA Scores. Although 1297875291 is ranked as the best, 234051742 on the second place
was 4 out of 10 times the molecule with the highest CHA Score. The highest CHA Scores of one protein-system are coloured green.
Interestingly, the molecules with the highest CHA Scores for protein-system QHD43415_7 and QHD43415_15 are not under the best 10
molecules with the highest Mean CHA Score shown here. In those cases, the highest CHA Score of the protein-system shown in this table is
highlighted in bold. [b]The number of protein-systems for which the corresponding molecule was retrieved is given here. The best ranked 10
molecules of this table got retrieved for all 10 protein-systems. [c]The Mean CHA Score was calculated as the sum of the individual CHA Scores
divided by the count. [d]The individual CHA Scores for every protein-system.
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ranked molecules by the Mean CHA Score are shown in
Figure 4a, 4b, and 4d.

Surprisingly, the molecules with the highest CHA Scores
for the QHD43415_7- and QHD43415_15-system (com-
pound 371435065 and 187814506, see Figure 5) did not
show up under the top 10 compounds, considering the
Mean CHA Score.

The results of the second calculation for the Mean
Ranking are shown in Table 3, Figure 4a, 4c, and 4d. Hereby,

most of the compounds already shown in Table 2 also
appear in the top 10 ranking of Table 3. The only two new
compounds are 1062747692 on rank 8 and 262518317 on
rank 9. Although they weren’t in the top 10 Mean CHA
Ranking discussed before, they still got under the best 20
out of 232 compounds, with a Mean CHA Score of 30.890
and 29.071, respectively. Also, 1046720863 and 28721359 -
in the Mean CHA Score Ranking on place 5 and 10 –
achieved a Mean Ranking of 20.7 and 21.1 after the new
Mean Ranking calculation (place 11 and 12 out of 232) and
should therefore also be considered for further investiga-
tions. The best overall compound in Table 3 is 947305629,
followed by 1297875291. Especially the outcome of com-
pound 234051742 (Mean CHA Ranking place 2) gave an
interesting insight into the overall performance of this
molecule. Even though it obtained the highest and in one
the second highest CHA Score for five out of 10 protein-
systems, it performed relatively weak for the QHD43421_0-
and QHD43415_15-system (rank 74 and 53).

All 10 top ranked compounds of the third calculation
(Mean Standardized Ranking) were either already contained

Figure 4. 4a: The best performing compounds considering all three calculations in the Common Hits Approach. The shown compounds are
– according to the Mean CHA Score, the Mean Ranking and the Mean Standardized Ranking – always under the best 10 out of 232
compounds. 4b: The only compound appearing in the top 10 hit lists of the Mean CHA Score and Mean Standardized Ranking, but not in
the Mean Ranking. 4c: The only compound appearing in the top 10 hit lists of the Mean Ranking and Mean Standardized Ranking, but not in
the Mean CHA Score. 4d: The only compound appearing in the top 10 hit list of the Mean CHA Score. 4e: The only compound appearing in
the top 10 hit list of the Mean Ranking.

Figure 5. The best performing molecules considering the CHA
Score in the protein-system QHD43415_7 and QHD43415_15. Both
never appear in any top 10 hit list.
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in the other two rankings (Mean CHA Score and Mean
Ranking) or listed in at least one of them (Table 4, Figure 4a,
4b, and 4c). Also, the compounds with the best outcome
(234051742, 947305629, 27889059, and 1297875291) have
shown likewise performances utilizing the other two
ranking methods.

Interestingly, molecules 947305629 and 234051742
were present in the list of the top ranked 10 molecules
delivered by both approaches (DCA and CHA).

4 Conclusion

In this study we investigated 10 possible druggable targets
of the novel coronavirus SARS-CoV-2 to identify potential
new inhibitors. For this, we followed two different ap-
proaches: the novel Docking Consensus Approach and the
already established Common Hits Approach.[19] Considering
both methods, we identified 10 compounds with high
potential to be a starting point for the development of a
future coronavirus-inhibitor drug (see Figure 4).

Table 3. Top 10 Ranked Molecules by the Common Hits Approach according to the Mean Ranking.[a]

Protein-
System

Hit[b] Mean
Ranking[c]

QHD
43421
_0[d]

QHD
43415
_5[d]

QHD
43415
_7[d]

QHD
43415
_9[d]

QHD
43415
_10[d]

QHD
43415
_11[d]

QHD
43415
_12[d]

QHD
43415
_13[d]

QHD
43415
_14[d]

QHD
43415
_15[d]

1 947305629 10 8.7 22 7 6 4 4 6 9 6 2 21
2 1297875291 10 9.5 7 9 22 8 14 1 1 5 23 5
3 27889059 10 13.1 66 1 12 3 2 8 19 4 3 13
4 298908912 10 14.0 1 16 9 20 36 10 5 18 19 6
5 2472594070 10 15.1 3 25 11 13 6 19 45 19 8 2
6 234051742 10 17.2 74 5 14 1 1 2 20 1 1 53
7 2147483647 10 17.3 2 19 2 11 3 40 54 13 26 3
8 1062747692 10 19.5 10 18 5 16 8 52 34 27 5 20
9 262518317 10 19.7 18 15 31 17 23 17 15 8 28 25
10 61442343 10 19.8 83 3 19 2 9 11 38 3 4 26
[a]The best performing molecules according to the Mean Ranking. The three best ranks for one protein-system are coloured red. [b]The
number of protein-systems for which the corresponding molecule was retrieved given here. All 10 best ranked molecules of this table got
retrieved for all 10 protein-systems. [c]The Mean CHA Ranking was calculated as the sum of the individual ranks of one protein-system divided
by the count. [d]The individual ranks for every protein-system. The ranking of all molecules for one protein-system was carried out according
their CHA Score (from one upwards, ranking the molecule with the highest CHA Score for the given system as the first one).

Table 4. Top 10 Ranked Molecules by the Common Hits Approach according to the Mean Standardized Ranking.[a]

Protein-
System

Hit[b] Mean Strd
Ranking[c]

QHD
43421
_0[d]

QHD
43415
_5[d]

QHD
43415
_7[d]

QHD
43415
_9[d]

QHD
43415
_10[d]

QHD
43415
_11[d]

QHD
43415
_12[d]

QHD
43415
_13[d]

QHD
43415
_14[d]

QHD
43415
_15[d]

1 234051742 10 0.559 0.825 0.876 1.000 1.000 0.899 0.604 1.000 1.000 0.418 0.818
2 947305629 10 0.729 0.801 0.965 0.892 0.899 0.495 0.813 0.613 0.985 0.561 0.775
3 27889059 10 0.586 1.000 0.923 0.904 0.937 0.405 0.615 0.810 0.760 0.617 0.756
4 1297875291 10 0.882 0.718 0.796 0.856 0.692 1.000 1.000 0.620 0.113 0.696 0.737
5 61442343 10 0.528 0.882 0.835 0.915 0.772 0.317 0.459 0.845 0.655 0.526 0.673
6 1046720863 10 0.717 0.587 0.860 0.866 0.713 0.539 0.921 0.972 0.108 0.318 0.660
7 2472594070 10 0.970 0.495 0.927 0.800 0.792 0.125 0.424 0.413 0.325 0.890 0.616
8 2147483647 10 0.997 0.578 0.994 0.831 0.913 0.098 0.361 0.481 0.110 0.797 0.616
9 298908912 10 1.000 0.594 0.940 0.544 0.364 0.376 0.879 0.444 0.215 0.679 0.603
10 1062747692 10 0.802 0.577 0.966 0.742 0.782 0.034 0.491 0.372 0.537 0.576 0.588
[a] The best performing molecules according to the Mean Standardized Ranking. The best rank for every protein-system is coloured red. [b] The
number of protein-systems for which the corresponding molecule was retrieved is given here. All 10 of the best ranked molecules in this
table got retrieved for at least 9 protein-systems. [c] The Mean CHA Ranking (higher is better) was calculated as the sum of the individual
Standardized Ranks of one protein-system divided by the count. [d] The individual Standardized Ranks for every protein-system. The ranking
of all molecules for every protein-system was carried out according to their CHA Score. Hereby, every CHA Score was divided by the
maximum CHA Score obtained for the protein-system. Additionally, all compounds, which weren’t retrieved as a hit for that protein-system
were assigned the lowest possible CHA Score (0.000).
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