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As next-generation sequencing data become increasingly available for non-model

organisms, a shift has occurred in the focus of studies of the geographic distribution

of genetic variation. Whereas landscape genetics studies primarily focus on testing the

effects of landscape variables on gene flow and genetic population structure, landscape

genomics studies focus on detecting candidate genes under selection that indicate

possible local adaptation. Navigating the transition between landscape genomics and

landscape genetics can be challenging. The number of molecular markers analyzed has

shifted from what used to be a few dozen loci to thousands of loci and even full genomes.

Although genome scale data can be separated into sets of neutral loci for analyses of

gene flow and population structure and putative loci under selection for inference of local

adaptation, there are inherent differences in the questions that are addressed in the two

study frameworks. We discuss these differences and their implications for study design,

marker choice and downstream analysis methods. Similar to the rapid proliferation

of analysis methods in the early development of landscape genetics, new analytical

methods for detection of selection in landscape genomics studies are burgeoning. We

focus on genome scan methods for detection of selection, and in particular, outlier

differentiation methods and genetic-environment association tests because they are the

most widely used. Use of genome scan methods requires an understanding of the

potential mismatches between the biology of a species and assumptions inherent in

analytical methods used, which can lead to high false positive rates of detected loci

under selection. Key to choosing appropriate genome scanmethods is an understanding

of the underlying demographic structure of study populations, and such data can be

obtained using neutral loci from the generated genome-wide data or prior knowledge

of a species’ phylogeographic history. To this end, we summarize recent simulation

studies that test the power and accuracy of genome scan methods under a variety

of demographic scenarios and sampling designs. We conclude with a discussion of

additional considerations for future method development, and a summary of methods

that show promise for landscape genomics studies but are not yet widely used.
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INTRODUCTION

Understanding the spatial distribution of adaptive genetic
variation is at the very core of evolutionary biology and
population genetics. Recent advances in next-generation
sequencing make studies of the genomic basis of local adaptation
now possible for virtually any organism. Simultaneously, spatial
data for nearly every corner of the Earth are available due to
dramatic increases in GIS and mapping technologies. These
technological developments have led to the rapid proliferation
of studies that integrate geographic and genomic data to test
for spatial patterns of genes under selection, collectively termed
“landscape genomics” (Joost et al., 2007; Lowry, 2010; Manel
et al., 2010).

Landscape genomics stems from landscape genetics, an
explicitly spatial suite of analysis methods that focus on testing
the influence of landscape features on genetic population
structure (Manel et al., 2003; Storfer et al., 2007; Manel and
Holderegger, 2013). The transition from landscape genetics to
landscape genomics has come with the shift from utilizing a
dozen or so loci (often microsatellites) to thousands and even
millions of loci (often single nucleotide polymorphisms-SNPs)—
and even complete transcriptomes or genomes—in studies of
spatial genetic variation.

Is landscape genomics just landscape genetics with more loci?
In the original article that coined the term “landscape genetics,”
Manel et al. (2003) state that, “Dozens of markers are available

for numerous taxa” and that “identification of loci under selection
can help us understand the genetic basis of local adaptation. . . ”
(p. 190). However, except for candidate gene approaches, where
a priori information about the function of specific genes is
known, dozens of markers are generally insufficient for tests
of selection; such tests commonly rely on orders of magnitude
more loci to have appropriate statistical power to conduct outlier
analyses (Luikart et al., 2003; Pritchard and Di Rienzo, 2010)
or genotype-environment associations (i.e., GEAs, Rellstab et al.,
2015). As a result, the literature commonly refers to landscape
genomics studies as those that (have the power to) focus on
describing spatial patterns of selection and adaptation, whereas
landscape genetics studies primarily focus on the influence of
landscape variables on gene flow (Rellstab et al., 2015; Haasl and
Payseur, 2016).

Semantics aside, scientists are now awash with data, and
analytical methods have lagged behind our ability to generate
massive data sets. The shift from analyzing dozens to thousands
to millions of markers (and even whole genomes) brings about
new computational challenges. Whereas landscape genetics relies
upon a rich history of spatial statistics dating back to the 1950s
and 1960s, genome-wide selection analyses have primarily been
developed in the last decade. New methods are rapidly being
developed, and embarking on a landscape genomics study may
seem like a daunting task for some researchers. Here, we aim
to disentangle some of the complexity involved in conducting a
landscape genomics study and associated downstream analyses,
and we hope to offer some perspective for novice and experienced
researcher alike. We focus primarily on marker-based studies of
non-model organisms, as it is in these systems that landscape

genomics studies are most rapidly expanding. Additionally,
inference in non-model organisms is particularly challenging
as they lack the genomic tools such as reference genomes and
transcriptomes, which are typically available for model systems
(Manel et al., 2010; Storfer, 2015). We emphasize that this piece
is not meant to be an exhaustive review of the subject, as many
substantial articles have already been published to this effect
(e.g., Haasl and Payseur, 2016; Hoban et al., 2016; Rellstab et al.,
2016). Rather, we provide a brief guide to navigate this new and
rapidly changing field and in the following sections, we focus on:
(1) study design; (2) data generation; (3) analysis methods and
associated challenges; (4) methods at the interface of landscape
genetics and landscape genomics; and, (5) future directions.

STUDY DESIGN

Early work in landscape genetics went through an exploratory
phase, where sampling was geographically widespread and
involved testing the effects of various landscape variables on
gene flow and population genetic structure (Storfer et al., 2007,
2010). Similarly, early landscape genomics studies lacked specific
hypotheses and were designed to take an unbiased approach
to search for candidate loci across populations that differed in
key environmental variables (e.g., altitude; Haasl and Payseur,
2016). Instead of using candidate gene or QTL approaches
(Stinchcombe and Hoekstra, 2008), tests for selection were
conducted across a suite of loci spread throughout the genome
without a priori information about putative function. High
false positive rates are perhaps the most significant problem
with landscape genomics studies that rely on genome scans
(Lotterhos and Whitlock, 2014, 2015; Rellstab et al., 2015; Haasl
and Payseur, 2016), and this is further exacerbated without
a priori hypotheses. Studies that lack specific hypotheses are
prone to choose candidate loci with the strongest associations
with environmental variables, with a reasonable chance of
detecting spurious result(s). One way to identify false positives
is that loci in close proximity do not show a signature of
selection. Even if loci detected in such analyses are “true”
positives, the function of the candidate loci remains unknown,
particularly when lacking a reference genome and thus the ability
to map a candidate locus (Pavlidis et al., 2012). Even when a
candidate is in linkage disequilibrium with a gene of known
function, downstream functional verification may be necessary.
Thus, landscape genomics studies should aim to be hypothesis-
driven, because inference is stronger when there is documented
variation in phenotypes or other specific information that
provides evidence of spatial variation in local adaptation among
populations.

It is also important to note that landscape genomics studies
can test for candidate genes underlying local adaptation, as well
as the effects of landscape variables on gene flow. That is, the large
number of loci generated for landscape genomics studies can be
partitioned into sets of loci that are putatively neutral and those
that are putatively under selection, with the former being used to
test spatial patterns of gene flow and population structure. Note,
however, that sampling designs for assessing population genetic
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structure and testing for loci under selection have important
similarities and differences (Table 1).

For both landscape genetics and landscape genomics studies,
choosing an appropriate spatial scale for a proposed study area is
extremely important. In general, the extent of the study area and
spacing of demes within that study area should match the spatial
scale of dispersal and thereby the likely scale of environmentally-
mediated selection for the study species (Anderson et al., 2010;
Richardson et al., 2014; Rellstab et al., 2015; Hoban et al., 2016).
Additionally, the resolution of the environmental data should
be appropriate for the study species (e.g., sampling at a 2.5 km
scale would be inappropriate for a slug species; Anderson et al.,
2010). Also, GIS layers chosen for each study should be those
deemed to be those most reasonable based on the ecology of
the study species and what is known regarding habitat use.
However, researchers should be aware that many environmental
layers available for analysis in a GIS tend to be multicollinear
(e.g., various temperature measures, such as seasonality and
maximum temperature). Without some reduction of the number
of variables (e.g., via ordination such as PCA), significant
relationships between detected between environmental variables
and allele frequencies may be spurious and/ or correlated with
the true variables. Alternatively, problems with multicollinearity
can be avoided by selecting one environmental variable as a
representative of each correlated set (e.g., Trumbo et al., 2013).

An overview of the use of GIS in landscape genomics studies is
provided in Leempoel et al. (2017).

A key difference between landscape studies of gene flow
and those designed to detect selection is regarding design of
spatial sampling (Table 1). For example, in landscape genetics,
when testing hypotheses about effects of a specific environmental
variable such as precipitation on population genetic structure, a
stratified random design is often preferred (Storfer et al., 2010).
In contrast, landscape genomics simulations have repeatedly
emphasized that replicated sampling of environmental extremes
hypothesized to drive selection (e.g., high and low altitude)
results in higher power to detect candidate loci under selection
than random sampling or transect designs (De Mita et al.,
2013; Lotterhos and Whitlock, 2014, 2015; Rellstab et al., 2015;
Stucki et al., 2016; see also Table 2). Nonetheless, transect
sampling can be appropriate when populations are expected to
be maladapted to extremes, but locally adapted to intermediate
conditions (Lotterhos and Whitlock, 2015). Sampling transects
can also be useful when sampling across a zone of introgression
or when geographic clinal analyses are to be employed (see
Section Clinal Analyses). Thus, an important distinction to note
between landscape genetics and landscape genomics studies is
that the former involves study designs that tend to focus on
sampling across environmental variation that should influence
gene flow, whereas the latter should most often be designed

TABLE 1 | General differences between landscape genetics and landscape genomics studies.

Questions Scale of study Sampling design Analysis methods

Landscape

genetics

Influence of landscape

on gene flow

Among populations Stratified random, opportunistic,

clumped, individual-level

Mantel tests, Assignment tests (spatial and aspatial; e.g.,

Structure, Tess, Geneland), Ordination (dbRDA, sPCA. MDS),

Least cost paths (multiple regression, MLPE), Spatial

autocorrelation, Spatial regression, EEMS*

Influences of landscape

on at-site variation

Within populations Across ecological gradients,

stratified

Graph models (e.g, Popgraph), GDMs, Structural equation

models

Barriers Among populations Across hypothesized barrier(s) Wombling, Monmonier’s maximum difference algorithm,

spatial assignment tests (e.g., Geneland)

Species’ ecology Within and among

populations

Across ecological gradients

(stratified)

Ordination, Least cost paths, Spatial autocorrelation, Spatial

regression

Source-sink dynamics Among populations Across populations of different

sizes or fragmentation levels

Mantel tests, genetic diversity estimates (e.g., F-statistics,

bottleneck tests)

Landscape

genomics

Spatial patterns of

selection

Among populations Paired sampling, transect sampling Outlier differentiation methods (eg., Bayescan, FLK, XTX);

Genotype-environment associations (e.g., Bayenv2, PC

Adapt, LFMM, sGLMM, Samβada), Ordination, Assignment

tests (e.g., FASTSTRUCTURE, Admixture, Tess3)

Influence of landscape

on local adaptation

Among populations Transect sampling, paired sampling,

stratified sampling

Outlier differentiation methods; Genotype-environment

associations, Ordination, Assignment tests, Genomic cline

analysis*, GDM*, EEMS*

Note that, when conducting a landscape genomics study, that when loci under selection are removed and putatively neutral loci remain, that landscape genetics questions and analyses

can then be conducted. Nonetheless, sampling designs generally differ between landscape genetics and landscape genomics studies, so some landscape genetics questions may not

be addressable in studies with landscape genetics goals. Bolded sampling designs indicate preferred designs for that particular question. Not all analysis methods under each study type

are listed, just those that are most commonly used or best suited to address the goals of the study. Note also that assignment test methods generally differ between landscape genetics

and landscape genomics studies. Italicized words under analysis type indicate those commonly used in both landscape genetics studies of gene flow and landscape genomics studies

of loci involved in adaptation. dbRDA, distance-based redundancy analyses; sPCA, spatial principal components analysis; MDS, multidimensional scaling; MLPE, maximum likelihood

of population effects (Clarke et al., 2002); LFMM, latent factor mixed models; sGLMM, spatial generalized linear mixed models; EEMS, Estimated Effective Migration Surface (Petkova

et al., 2016). Software names include: Geneland (Guillot et al., 2005), Structure (Pritchard et al., 2000), Tess (Durand et al., 2009), Popgraph (Dyer and Nason, 2004); Bayescan Foll

and Gaggiotti, 2008, FLK (Bonhomme et al., 2010), Bayenv2 (Günther and Coop, 2013), PCadapt (Duforet-Frebourg et al., 2014) Faststructure (Raj et al., 2014), Admixture (Alexander

et al., 2009), Tess3 (Caye et al., 2016). * indicates methods not yet widely used but show promise–see Sections Generalized Dissimilarity Modeling (GDM)–Clinal Analyses.
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to sample replicated pairs of populations that experience the
same environmental extremes. Replication also helps reduce the
chance that candidate loci under selection are false positives; loci
detected repeatedly across different environments are less likely
to result from confounding effects of population structure or
environmental covariances (Rellstab et al., 2015).

With limited resources, researchers generally face a tradeoff
between the total number of samples and the total number
of localities that can be sampled in genetics studies of natural
populations. Landscape genetics study designs often focus on
maximizing the number of individuals per location to obtain
accurate allele frequency estimates (Storfer et al., 2010;Manel and
Holderegger, 2013). Most landscape genetics analyses are genetic
distance-based, and inaccurate estimates of allele frequencies
can bias gene flow estimates (Storfer et al., 2007, 2010). While
replication of sites or transects is favored for reasons above in
landscape genomics studies, the balance between sample size and
number of sites depends on downstream analysis type. Power
is generally limited by the total number of samples collected
in landscape genomics studies (Lotterhos and Whitlock, 2015).
Indeed, it is important to sample a sufficient number (e.g.,
> 10) of individuals per locality to generate accurate allele
frequency estimates for analyses that rely on estimates of genetic
differentiation among populations (i.e., differentiation outlier
analyses below). However, optimizing the number of population
pairs sampled (with smaller sample sizes per location) can be
robust for detecting selection when sampling locations represent
a range of environmental variable values across the study area (De
Mita et al., 2013; Table 2).

DATA GENERATION

Initially, landscape genomics studies expanded from
microsatellites commonly employed in landscape genetics
studies to a few hundred AFLPs (amplified fragment-length
polymorphisms; Joost et al., 2007). Currently, landscape
genomics studies typically rely on genome-wide SNP marker
sets generated using short-read next generation sequencing
technologies (e.g., Illumina). Perhaps the most widely used of
such reduced-representation approaches in the last few years
is RAD-seq (restriction-associated digest DNA sequencing;
Andrews et al., 2016; Lowry et al., 2017). RAD-seq is particularly
appealing because it does not rely on availability of a reference
genome. In short, whole genomic DNA is cut into fragments
using a restriction enzyme, sequencing bar codes are ligated to
restriction sites, individuals are bar-coded and fragments are
sequenced using next-generation technology (Andrews et al.,
2016). Homologous fragments among individuals are aligned
(e.g., using Stacks Catchen et al., 2013 or other software), and
thousands to millions of SNPs are identified. RAD-seq has
been extremely beneficial for studies of population genetic
structure, as well as pedigree and other analyses (Andrews
et al., 2016; Catchen et al., 2017). Therefore, RAD-seq can be a
powerful approach for landscape genetics studies. As with other
genotyping-by-sequencing methods, RAD-seq, while beneficial
for genotyping large numbers of individuals, suffers frommarker

attrition. That is, the more individuals sequenced, the fewer loci
become available for robust analyses due to genotyping errors
due low coverage or missing data. Additionally, a shortcoming
of RAD-seq for landscape genomics studies is that generally only
a small fraction of a genome is sampled, and thus loci involved
in adaptation are often missed (Lowry et al., 2017). Further,
without a reference genome, identified SNPs are anonymous,
and downstream work is necessary to determine their function
(Lowry et al., 2017).

As a potential solution, transcriptome sequencing and exome
capture are reduced representation approaches that focus on
genic (i.e., coding) regions. Genes will contain much of the
functional genetic variation that underlies adaptation, and such
regions are also in linkage with promoter regions also under
selection (Hoekstra and Coyne, 2007; Stern and Orgogozo,
2008). RNA-seq is an approach to sequence total RNA or
the mRNA transcriptome, which can be used to evaluate
gene expression levels (in different environments) and, when
multiple transcriptomes are sequenced, SNPs can be identified.
A series of capture probes can then be designed to sequence
the flanking region around identified SNPs in cDNA. Assembled
transcriptomes, can then be used to annotate functional
information for candidate SNPs since they are all found in
coding DNA. Further, when SNP codon positions are identified,
traditional sequence-based population genetic tests for selection
can be applied (e.g., MK test; McDonald and Kreitman, 1991
or dN/dS ratios). Transcriptome sequencing, however, will only
capture a subset of all coding genes, as gene expression is tissue-
specific (Bishop et al., 1974). Exome capture sequencing will
increase the number of coding loci (Jones and Good, 2016).

Another method used for genome-wide marker generation in
non-model species is Pool-seq (reviewed Schlötterer et al., 2014),
whereby a large number of individuals (dozens to hundreds)
are pooled and sequenced together. Advantages include reduced
cost, and genome-wide data generation that facilitates SNP
identification and allele frequency generation for population
genetic analyses. Disadvantages include lack of ability to identify
individual samples, difficulties identifying rare variants, and
potential alignment issues owing to non-homologous sequences
(i.e., paralogs), and lower confidence in SNP assignment than
other methods (Schlötterer et al., 2014). Software such as
PoPoolation (Kofler et al., 2011) can help account for some of the
bias introduced by pooling and sequencing errors. Nonetheless,
pool-seq works much better when a reference genome is available
and short-read sequences can be aligned and mapped to reduce
alignment errors among pools. Even with a reference genome,
structural variation (e.g., inversions, indels) between pooled
resequenced samples and the reference can generate falsely
identified SNPs (Tiffin and Ross-Ibarra, 2014).

ANALYSIS CONSIDERATIONS

Similar to landscape genetic studies, there is a wide array of
analysis methods for landscape genomics analyses and new
methods are continuously being developed (Hoban et al., 2016).
The key difference between the two analytical frameworks is
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that landscape genetics studies rely on use of putatively neutral
markers to generate estimates of genetic population structure,
whereas tests of selection in landscape genomic studies generally
require the need to control for population structure (see Table 1).
As above, note that genome-wide marker sets generated for
landscape genomics tests of selection can also be parsed into
neutral data and landscape genetics analyses can be employed
(see Storfer et al., 2007, 2010; Guillot et al., 2009; Shirk
et al., 2017). Landscape genomics studies employ tests for loci
under selection using genome scans, candidate gene approaches,
quantitative trait locus mapping and genome-wide association
studies (see Stinchcombe and Hoekstra, 2008; Storfer, 2015).
However, genome scans are the most widely used, as the latter
analysis types tend to be used for model systems. It is important
to note that numerous excellent reviews (e.g., Rellstab et al.,
2015; Haasl and Payseur, 2016; Hoban et al., 2016) discuss in
detail the benefits and limitations of the various genome scan
methodologies and associated software. As such, we summarize
the main considerations here.

Genome scans generally use two approaches to detect loci
under selection: (1) differentiation outlier methods (which
were previously called FST-outlier tests, but now include other
methods of genetic differentiation among populations; Hoban
et al., 2016); and, (2) genetic-environment association (GEA)
tests (Schoville et al., 2012; Pardo-Diaz et al., 2015; Rellstab et al.,
2015; Hoban et al., 2016). Differentiation outlier methods rely on
the demonstration that, at migration-drift equilibrium under a
neutral island model with spatially uniform migration and gene
flow, population differentiation of allele frequencies (e.g., FST)
across a large number of loci can be used to infer the process
of selection acting on a subset of loci (Lewontin and Krakauer,
1973). Statistical outlier loci with significantly greater FST (or
other genetic distance) values than the distribution of genome-
wide FST values are presumed to be under diversifying or local
selection or linked to those under selection (Black et al., 2001;
Luikart et al., 2003). Similarly, loci with significantly lower FST
values are inferred to be under stabilizing or purifying selection
(Black et al., 2001; Luikart et al., 2003). Thus, unlike landscape
genetics studies which generate genetic distance estimates among
a small number of loci to elucidate effects of landscape variables
on gene flow, landscape genomics studies rely on a very large
number of loci to generate a frequency distribution of genetic
distance values as a null against which to test for outliers under
selection.

Early methods to conduct such outlier tests include FDIST
(Beaumont and Nichols, 1996; implemented in LOSISTAN) to
identify strong differences from the null distribution of FST
values across loci. Later, the widely used BayeScan (Foll and
Gaggiotti, 2008) was developed, which uses a Bayesian method
to estimate the relative probability that each locus is under
selection. PCAdapt is a recently developed popular method
that uses a principal components analysis framework to detect
candidate loci under local adaptation (Duforet-Frebourg et al.,
2014). Methods that use genetic distance measures other than
FST include FLK (Bonhomme et al., 2010), which uses a modified
version of the Lewontin and Krakauer (1973) test for selection
by comparing allele frequencies of different populations in a

neighbor-joining tree constructed using a matrix of Reynold’s
genetic distance (Reynolds et al., 1983), and XTX, which employs
a Bayesian method to test individual SNPs against a null
model generated by the covariance in allele frequencies between
populations from the entire set of SNPs (utilized in Bayenv2;
Coop et al., 2010; Günther and Coop, 2013). Summaries of
differentiation outlier methods can be found in Hoban et al.
(2016; Appendix 1). Notably, differentiation outlier methods are
aspatial in nature.

GEAs (also referred to as EAAs or environmental association
analyses; Rellstab et al., 2015) are spatial because they are
designed to test for significant correlations between allele
frequencies at particular loci with variation in environmental
variable(s) (Joost et al., 2007; Hancock et al., 2011; Rellstab
et al., 2015). Thus, unlike differentiation outlier approaches,
GEAs require availability of environmental data from sources
such as WorldClim data (http://www.worldclim.org, Hijmans
et al., 2005). Widely used methods include Bayenv2, which
tests for GEAs in addition to differentiation outliers, and latent
factor mixed models (LFMM; Frichot et al., 2013). Bayenv2,
tests for large allele frequency differences across environmental
gradients by comparing observed allele frequency differences
to transformed normal distribution of underlying population
frequencies. Latent factor mixed models (LFMM; Frichot et al.,
2013), include population structure as latent (or hidden) variables
to limit false positive signals. Spatial generalized linear mixed
models (SGLMMs; Guillot et al., 2014) are an extension to
LFMMs and have proven to be computationally more efficient.
Ordination approaches, such as redundancy analysis, can also
be used in GEAs (Forester et al., 2015); ordination is also
widely used in landscape genetics studies (Storfer et al., 2010).
Another more recently developed GEA method is Samβada
(Stucki et al., 2016), which is a multivariate analysis framework
that accounts for underlying population structure with estimates
of spatial autocorrelation in the data. To search for loci
under selection, Samβada uses linear regressions to model the
probability of observing a particular allele given the value of
environmental variables at the location it was sampled for each
locus independently (Stucki et al., 2016). A summary of GEAs
and their assumptions can be found in Rellstab et al. (2015;
Table 1).

Analysis Concerns
Fundamentally genome scanmethods operate on the assumption
that loci under selection can be differentiated from a null
distribution of allele frequencies generated by neutral processes.
Determining howmuch genetic differentiation can be expected in
populations in the absence of selection, however, remains a great
challenge (Lotterhos and Whitlock, 2014; Hoban et al., 2016).
Thus, the primary concern with employing genome scan analyses
is differentiating false positive signals from loci that are actually
under selection.

Underlying population demographic structure, when not
properly accounted for, can be a principal source of false
positives. There are several demographic scenarios that
can generate neutral allele frequency differentiation among
populations that can falsely be interpreted as signals of selection
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(Lotterhos and Whitlock, 2015; Rellstab et al., 2015; Haasl and
Payseur, 2016). A straightforward example is illustrated by the
case of allele surfing, whereby serial population bottlenecks that
occur during founder effects of small populations migrating
to new areas can result in fixed allelic differences among
populations that are solely due to genetic drift (Excoffier et al.,
2009; Waters et al., 2013). Similarly, recent population range
expansions from refugia can generate correlations between allele
frequencies and environmental variables that are not due to
selection. In general, landscape genomics studies are challenging
in small, patchy populations that are prone to genetic drift,
which can result in the appearance of spatially distributed loci
under selection. False signals of selection can also be generated
by locus-specific hybridization or introgression from related
taxa (Fraïsse et al., 2016; Hoban et al., 2016). Nonetheless, in
cases where selection gradients follow the same spatial pattern as
background genetic population structure, candidate loci under
selection can be missed due to false negative signals.

In general, demographic structure can influence the null
distribution of FST or other genetic differentiation measures and
thereby bias significance testing (Lowry, 2010; Whitlock and
Lotterhos, 2015). Each genome scan method utilizes a different
way to account for underlying population demography. For
example, FDIST assumes populations follow an island model
(Beaumont and Nichols, 1996) to generate null FST distribution.
The recently developed OutFLANK (Whitlock and Lotterhos,
2015), however, does not invoke a specific demographic model.
Rather, OutFLANK infers the distribution of FST for loci
unlikely to be strongly affected by spatially diversifying selection
(Whitlock and Lotterhos, 2015). Specifically, OutFLANK uses
a modified Lewinton-Krakauer method to infer a null FST
distribution, which approximates a χ2 distribution with adjusted
degrees of freedom. Then, differentiation outliers are identified
as those that fall outside this trimmed, putatively null FST
distribution.

Approaches that use covariance matrices or linear models
to account for population structure are also flexible because
they have no explicit underlying population demographic model.
For example, Bayenv2 is a GEA method that controls for
genetic population structure in by generating a variance-
covariance matrix of relatedness among samples; candidate
loci are determined as those for which an environmental
variable explains significantly more variation than the variance-
covariance matrix of all other loci (Günther and Coop, 2013).
Linear model approaches, such as LFMMs and SGLMMs, can
limit false positives in both GEAs and outlier tests by including
population structure as latent variables (Frichot et al., 2013;
Lotterhos and Whitlock, 2015). Samβada uses estimates of
underlying spatial autocorrelation in genetic data as a way to
control for underlying population structure (Stucki et al., 2016).

A number of informative simulation studies that explore the
power of the different methods under different demographic or
other scenarios have recently been published (De Mita et al.,
2013; Frichot et al., 2013; Jones et al., 2013; de Villemereuil
et al., 2014; Lotterhos and Whitlock, 2014, 2015; Forester et al.,
2015; See Table 2 for a summary of the study conditions and
their findings). The relative power of GEAs and differentiation

outlier tests is dependent on the underlying demographic model.
GEAs have higher power under an island model, whereas outlier
tests have higher power under an isolation-by-distance model
(Lotterhos and Whitlock, 2015). Within GEAs, the degree of
patchiness in the landscape affects the power and false positive
rates (Forester et al., 2015). With limited dispersal and strong
isolation-by-distance, univariate GEAs had high false positive
rates (FPRs; up to 55%) and constrained ordination procedures
(e.g., redundancy analyses, or RDA) performed much better
with lower FPRs (0–2%; Forester et al., 2015). Within outlier
differentiation methods, Bayenv2 and FLK outperformed FDIST
and Bayescan for systems experiencing IBD and recent range
expansions (Lotterhos and Whitlock, 2014). Of all GEAs and
outlier detection methods, LFMMs were generally found to have
relatively low false positive rates (Type I error rates) than other
methods (Jones et al., 2013; Joost et al., 2013).

Even after accounting for the underlying population structure,
however, there are other important considerations that can affect
the power of genome scan studies and their interpretation. To
date, no methods have been developed to account explicitly for
background selection (Hoban et al., 2016), which can result
in population diversification due to purifying and not positive
selection (Charlesworth et al., 1993). Background selection can
thus cause errors in estimating the null distribution and thereby
reduce power of genome scans (Tiffin and Ross-Ibarra, 2014;
Haasl and Payseur, 2016). Signatures of local adaptation can also
be incorrectly inferred as a result of spatially uniform positive
selection. That is, across landscapes with limited gene flow,
multiple beneficial mutations may arise to reach an optimal
phenotype, resulting in a patchwork of allele frequencies. This
can result in detectable genetic differentiation across the patches
that produces false signals of selection by local environment
(Hoban et al., 2016).

It is also important to note that genome scan analyses are
biased to detect large effect loci, because power to detect small
effect loci is generally low (Pritchard and Di Rienzo, 2010).
Because most phenotypic traits are likely to be polygenic, and
thus governed by many loci of small effect (Rockman, 2012),
genome scan methods are prone to miss most loci involved in
local adaptation (Stephan, 2015). Further, the polygenic nature of
phenotypic traits means candidate loci explain a small proportion
of phenotypic variation, which has been termed the “missing
heritability problem” (Hindorff et al., 2009; Visscher et al., 2010;
Yang et al., 2010, 2012). Recently, multilocus approaches have
been developed that quantify the strength of selection acting
on correlated loci using Bayesian sparse linear mixed models
(Gompert et al., 2017). However, these approaches necessitate
large sample sizes and time-series sampling, thereby limiting
their widespread applicability. In addition, for studies that
employ anonymous SNP markers when no reference genome
exists, such as RAD-seq, candidate genes are assumed to be in
linkage disequilibrium (LD) with loci under selection and are
most often not under selection themselves (Lowry et al., 2017).
With a reference genome, estimates of LD decay can be used to
determine the size of the window to search for possible genes
linked to a candidate SNP detected in a genome scan when the
SNP is not in a gene itself. However, we do not know the extent
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of LD for most species, and the size of LD blocks is not constant
throughout the genome (Tiffin and Ross-Ibarra, 2014; Lowry
et al., 2017). These factors can make mapping and annotating
candidate markers prone to error.

Combinatorics and Other Multivariate
Approaches
An important consideration in landscape genomics studies is
how to integrate data analyses across multiple genome scan
methods. One fairly standard approach is to construct Venn
diagrams and use combinatorics as a method of validation for
candidate loci. That is, the larger the number of genome scan
methods that detect a particular candidate locus under selection,
the more confident researchers tend to be that the candidate
is truly under selection. However, genome scan methods each
have different assumptions and different power to detect loci
under selection, depending on population demography, sampling
design and nature of the selective sweep (Lotterhos et al., 2017).
Thus, reliance on concordance of multiple univariate methods
to prioritize loci for further research is prone to miss loci under
weak selection (Lotterhos and Whitlock, 2015).

Recent proposed solutions have included multivariate
methods that combine P-values and control for false discovery
rates (FDR; Benjamini and Hochberg, 1995). For example,
de-correlated composite of multiple signals (DCMS) controls
for genome-wide correlations among statistics by weighting
each locus depending how correlated a particular statistic that
detected the locus is to other statistics (Ma et al., 2015). Thus,
the less a test statistic is correlated to another statistic(s), the
higher the locus is weighted. François et al. (2016) built on earlier
methods to control for FDR (e.g., Benjamini and Hochberg,
1995) using a “genomic inflation factor” to adjust the distribution
of p-values. In general, composite methods tend to perform
better than univariate methods, but their performance has only
been evaluated in a narrow set of circumstances (Lotterhos et al.,
2017).

Even newer methods include analyses to filter, visualize
and integrate multiple univariate analyses in multivariate space
(Lotterhos et al., 2017; Verity et al., 2017). For example,
MINOTAUR (Multivariate vIsualizatioN and OuTlier Analysis
Using R) is a program that uses one of four different distance
measures (Mahalanobis distance, harmonic mean distance,
nearest neighbor distance and kernel density deviance) to test
the significance of loci (Verity et al., 2017). An important future
direction is to continue to evaluate the variety of methods for
evaluating and prioritizing candidate loci for future research. As
we learnmore about the genomic architecture of different species,
we can continue to test the performance of existing methods, or
develop new methods as appropriate.

Analysis Considerations-Summary
In general, researchers should avoid the temptation to analyze
their data with as many genome scan methods as possible.
Instead, several factors that should be considered when choosing
genome scan method(s) to be employed. First, if attainable,
knowledge of underlying demographic structure can be used
to choose the most powerful methods that are least prone to

Type I errors for that specific demographic history. For example,
phylogeographic analyses can be used to assess whether there
have been recent geographic range expansions from glacial
refugia. To parameterize the number of latent factors (e.g.,
in LFMM or SGLMM), the number of genetic clusters (K)
could be determined using a Bayesian clustering algorithm
such as FastSTRUCTURE (Raj et al., 2014) or ADMIXTURE
(Alexander et al., 2009). Note that incorrect assumptions about
underlying demographic structure can increase both Type I
and Type II error (Pérez-Figueroa et al., 2010; Jones et al.,
2013; Lotterhos and Whitlock, 2014), and in such cases, model-
free approaches may be preferred. Second, given the numerous
additional concerns for which researchers have little ability to
estimate (e.g., variation in genome-wide LD) or control for
(e.g., the polygenic nature of most phenotypic traits), confidence
in candidate loci as real targets of selection comes from their
repeated detection across replicated transects or paired sampling
locations. Similarly, candidate loci detected by multiple analysis
methods also decreases the likelihood that they are false positives.
Third, as stated above, inference of candidate loci is improved
when selective agent(s) are known before embarking on a
landscape genomics study. Candidate genes identified in genic
pathways that influence particular phenotypes known to be under
selection are less likely to be false positives than randomly
detected loci or those without known function.

METHODS AT THE INTERFACE OF
LANDSCAPE GENETICS AND LANDSCAPE
GENOMICS

Generalized Dissimilarity Modeling (GDM)
Originally used to model species community turnover (Ferrier
et al., 2007), GDMs have recently been adopted for use in
landscape genetics studies. GDMs involve fitting I-splines that
are monotonic, nonlinear functions that, when rescaled between
0 and 1, represent importance of environmental variables in
explaining turnover of allele frequencies (Fitzpatrick and Keller,
2015). GDMs have been used to assess effects of at site
environmental differences on gene flow (also called “isolation by
environment”; Wang and Bradburd, 2014). I-splines can be non-
linear, providing an advantage over linear approaches because
they may be able to identify threshold values (i.e., the point
along the environmental axis where the slope of the spline
is greatest) for landscape variables. Similarly, GDMs can be
applied to landscape genomics studies by fitting I-splines to
the relationships of ecological variables on allele frequencies
at putatively adaptive loci. Related to GDMs, which employ
distance-based measures are gradient forests, an extension of
random forests, which both employmachine-learning algorithms
for model optimization (Breiman, 2001). Similar to GDM,
gradient forests fit nonlinear monotonic functions to characterize
allele-frequency turnover across environmental gradients for
each locus independently (see Fitzpatrick and Keller, 2015). As
such, both approaches can be used to identify a loci with high
degree of allelic turnover associated with specific environmental
variables, and thus yield candidate loci under selection.
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Estimated Effective Migration Rate
Another recently developed method that can be applied to
both landscape genetics and landscape genomics studies is the
Estimated Effective Migration Surface (EEMS: Petkova et al.,
2016). This method differs from other approaches that identify
underlying population demographic structure (e.g., clustering
and PCA-based approaches), because genetic differentiation is
modeled as a function of estimated migration rates. EEMS
uses a stepping stone model (Kimura and Weiss, 1964) that
allows for migrations of variable rates to occur among a set of
demes. This process is modeled by overlaying a dense regular
grid over the study area and calculating an approximation of
the expected genetic dissimilarity through the use of resistance
distance, similar to “isolation-by-resistance” (McRae, 2006).
Consequently, areas in which genetic dissimilarity decays more
slowly will be assigned a greater value of Effective Migration Rate
(EMR), than those for which genetic dissimilarity decays more
rapidly.

EEMS offers two potential applications to landscape genomics
studies. First, it can allow researchers to detect underlying
demographic population structure, which can be used to help
reduce false positive rates in genome scan methods. Second,
EEMS analyses could be run separately on data sets containing
only putatively neutral or putatively adaptive loci, and can then
be used to visualize geographic features that impede gene-flow of
neutral or adaptive loci, respectively.

Clinal Analyses
Clines have a rich history in population genetics and bridge both
at-site and between-site analyses used in landscape genetics and
genomics. To date, most clinal analyses on genome-scale data

have focused on the study of hybrid zones and the detection
of differential introgression (Gompert and Buerkle, 2010, 2011,
2012). While originally developed for use in identifying loci
involved in adaptive divergence and reproductive isolation
among hybridizing lineages, genomic cline models could be
applied to identify candidate loci for population pairs for which
a genome-wide admixture gradient (e.g., via ADMIXTURE or
another assignment-based program) has been identified. Loci
for which genomic clines possess outliers in one or both of
these cline parameters may be subject to selective forces. Outlier
loci with alleles introgressing most slowly can be interpreted
as those involved in differential adaptation among populations,
whereas loci introgressing most rapidly are likely to be uniformly
advantageous.

Geographic cline models can explicitly measure the strength
of selection on a locus, given the shape of a cline (Endler,
1977; Slatkin, 1987). Geographic cline analyses involve fitting a
sigmoidal tanh cline model to allele frequencies and quantitative
data such as environmental data or a measure of geographic
distance (Figure 1; Szymura and Barton, 1986, 1991). Then,
cline center, width and slope are estimated along a geographic
transect (requiring transect sampling). GEAs are essentially clinal
analyses but focus only on the slope of the cline between sampling
locations. However, geographic cline analyses analyze the shape
of the cline; selection tends to steepen the cline, gene flow widens
and reduces the steepness of the cline, and genetic drift narrows
the cline (Figure 1; Endler, 1977; Nagylaki, 1978). Researchers
can then compare the shapes of observed allele frequency clines
in putatively adaptive loci to the shape of clines for neutral
loci, as well as those predicted by models of pure migration or
drift (Nagylaki, 1978). Unfortunately, current implementations

FIGURE 1 | An illustration of clines. X-axes correspond to position along geographic transects (ecological gradient) or hybrid indexes (genomic gradient) in the case of

genomic cline analyses. (A) Illustration of the three parameters typically estimated in the use of geographic of genomic cline analysis. Cline slope is the estimate of the

rate of allele frequency turnover at the steepest point in the cline. In genomic cline analysis this corresponds to the rate of introgression. Cline center corresponds to

the point along the geographic transect or hybrid index at which allele frequency turnover is greatest. Cline width corresponds to the region along the gradient at

which it’s influence on allele frequency is greatest. (B) Three examples of clines. (i) A transect along which no selection appears to be acting, or the effects of gene flow

are such that changes in allele frequency are purely a function of distance. In the case of genomic cline analyses, the loci under consideration appears to be favored

equally in both parental taxa. (ii) A modest cline in which the allele favored by selection changes along the gradient. Given its shallower slope, selection may either be

weaker, gene flow stronger (in the case of geographic transects) or the ecotone separating ends of the transect greater. (iii) A steep cline, often called a step cline. In

the case of geographic clines, these are formed either by strong selection acting in favor of one allele along a sudden ecotone, or extremely limited gene flow along

said ecotone. In the case of genomic clines, this may be due to heterozygote disadvantage, as in the case of reinforcement.
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of geographic cline models (e.g.,Analyse: Barton and Baird, 1995;
hzar: Derryberry et al., 2014) are computationally burdensome,
thus limiting cline fitting to datasets with small numbers of loci.
Therefore, geographic cline analysis is currently best suited for
use with a reduced set of candidate loci as identified by genome
scans.

FUTURE DIRECTIONS

In the future, landscape genomics should integrate analyses on
two scales—the landscape of the genome, and the ecological
landscape. Specifically, the landscape of the genome refers
to overall genomic architecture, such as the arrangement of
loci on chromosomes, placement of inversions, deletions and
copy number variants. All of these, ultimately, can affect gene
expression, which is further modified by the environmental
context in which an individual exists. However, the current state
of landscape genomics studies is primarily to generate a list of
candidate loci under selection, and, when possible annotate genes
in LDwith identified SNPs or other genetic variants. Nonetheless,
scientists are increasingly aware that the genotype-phenotype
relationship is influenced by far more of the genome than just
genic sequences. For example, copy number variation and not
sequence variation that determines how much human amylase,
responsible for starch digestion, is expressed in saliva (Perry
et al., 2007). Selection has acted on copy number variation in
the amylase gene (AMY1) in the human populations; those with
high starch diets have higher numbers of copies than populations
with diets lower in starch (Perry et al., 2007). Similarly, camels
have the highest number of copies known (11) of the CYP2J
gene (related to salt homeostasis) likely due to selection for high
salt tolerance necessary in desert environments (Wang et al.,
2012). Transposable elements, which comprise over half the
genome of many eukaryotes, were once thought of as parasitic
or “junk” DNA (Federoff, 2012). However, evidence suggests
that transposable elements are maintained in eukaryotic genomes
due to their heritable role in epigenetic mechanisms, such as
gene silencing (Federoff, 2012). DNA methylation patterns also
influence gene expression and can also be heritable (Anway
et al., 2005; Skinner et al., 2012). Promoters and other regulatory
regions are also key determinants of gene expression levels
and consequently phenotypes. Further, genes are expressed
differently in different ecological environments, and selection
varies spatially across the ecological landscape. In summary,
genomic architecture plays a significant role in the genotype-
phenotype relationship, as evidenced by the fact that “large
effect SNPs” tend to explain a small fraction of phenotypic
variation in natural populations (Hindorff et al., 2009; Rockman,
2012).

Given that technological advances continue to make whole
genome sequencing more and more feasible in terms of cost
and computational speed for genome assembly, a key challenge
for the future of landscape genomics will be the development
of methods that integrate multiple data types. Difficulties will
include: (1) accounting for the effects of coding and non-coding
regions of genomes and overall genomic architecture, combined

with protein expression levels, on phenotypic variation; (2)
coding for genomic features such as copy number, chromosome
inversions or transposable element composition or location in
our population genetic models (i.e., Can they be considered in
the same way as alleles?); (3) constructing hierarchical models
to integrate sources of error from different data types. Then,
the challenge is compounded further with the necessity to
integrate these complex genomic models with multiple types
of spatial environmental data and habitat models in ways that
optimize sampling while avoiding potential biases. Mapping the
genotype-phenotype relationship has been a key challenge for
evolutionary biology for over a century, and landscape genomics
will provide the analytical framework to do so across spatially
variable ecological environments. A long road may lie ahead, but
it is certainly an exciting time for landscape genomics to unravel
the complexity of the genomic architecture that underlies local
adaptation.

CONCLUSIONS

Landscape genomics has emerged as a prominent framework
for studying the genomic basis of local adaptation. Using
large genomic data sets, researchers scan the genome for
loci that exhibit signatures of selection across heterogeneous
environments (Haasl and Payseur, 2016). These efforts have been
highly successful, for example, in identifying genes underlying
hypoxia adaptation in high-elevation human populations (Beall,
2007a,b; Simonson et al., 2010), environmental responses in Oak
populations along climatic gradients (Sork et al., 2016), and
differences in growth response amongst Salmon populations in
response to geological conditions (Vincent et al., 2013). Studies of
biotic factors, have also successfully in identified local adaptation
to life history traits (Sun et al., 2015), community composition
(Harrison et al., 2017), and disease prevalence (Leo et al., 2016;
Mackinnon et al., 2016;Wenzel et al., 2016). Landscape genomics
has already dramatically helped to further our understanding
of the genomic basis of adaptation (Funk et al., 2012; Shryock
et al., 2015). Here, we suggest the field can advance with a
careful consideration of explicit hypotheses that, in turn, guide
study design, and employment analysis methods that help control
confounding factors such as underlying demographic structure.
Future landscape genomic research will better integrate genomic
architecture in assessments of candidate loci under selection.
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