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Abstract: Glioblastoma is the most aggressive malignant tumor of the central nervous system with
a low survival rate. The difficulty of obtaining this tumor material represents a major limitation,
making the real-time monitoring of tumor progression difficult, especially in the events of recurrence
or resistance to treatment. The identification of characteristic biomarkers is indispensable for an
accurate diagnosis, the rigorous follow-up of patients, and the development of new personalized
treatments. Liquid biopsy, as a minimally invasive procedure, holds promise in this regard. The
purpose of this paper is to summarize the current literature regarding the identification of molecular
and circulating glioblastoma biomarkers and the importance of their integration as a valuable tool to
improve patient care.
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1. Introduction

Gliomas constitute the most common type of tumors of the central nervous system.
They represent approximately 30% of all primary brain tumors and 80% of all malignant
tumors [1]. They are initially classified, based on their cell of origin, into astrocytoma,
oligodendroglioma, or ependymoma. Then, the establishment of the degree of malignancy
according to the World Health Organization (WHO) classification criteria allows the orga-
nization of these tumors into grades ranging from I to IV. In 2016, the WHO classification
of tumors of the central nervous system introduced molecular biology, for the first time, as
an essential tool for the characterization of many molecular markers of diagnostic and/or
prognostic interest [2]. The fifth edition of the WHO classification criteria (2021 version)
focuses more on the involvement of molecular biomarkers in tumor classification [3].

According to the CBTRUS Statistical Report, glioblastoma is the most commonly
occurring malignant central nervous system tumor (14.5% of all tumors). Despite the
considerable advances in the diagnosis and treatment of tumors in recent decades, GBM
remains one of the deadliest human cancers. Indeed, GBM presents the lowest median
observed survival of all primary malignant brain and other CNS tumors (8 months) [1].
This poor prognosis is mainly caused by therapeutic resistance and recurrence after surgical
removal. Current therapeutic approaches for GBM combine surgery, radiotherapy, and
chemotherapy. Still, even with the use of Temozolomide, the standard chemotherapeutic
drug, GBM patients show a low median survival of ~15 months [4]. Some immunotherapies
are being tested in several clinical trials and might improve GBM treatment [5,6].

Nowadays, the diagnosis of glioblastoma is mainly based on neuroimaging and
tumor resection [4]. Biological material can be obtained either from a tissue biopsy or
a liquid one. While tissue biopsy remains the standard procedure commonly used for
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the histological characterization of glioblastoma, liquid biopsy has recently emerged as a
promising way to improve patient care in terms of initial diagnosis, relapse, and choice of
appropriate treatments. In fact, liquid biopsy provides the advantage of being a minimally
invasive procedure that overcomes the high risks of surgery or even, in some cases, the
impossibility of performing it [7]. Furthermore, the most important hallmark of GBM is
tumor heterogeneity [8]. Hence, the need to rely on new approaches that might describe
the evolution of the tumor and avoid a static characterization of an ever-changing tumor
is primordial.

The aim of this review is to provide an overview of the molecular and circulating
biomarkers necessary for the diagnosis and monitoring of GBM. This paper also explores
the new advances in GBM therapy.

2. Molecular Biomarkers
2.1. IDH

IDH mutations play a crucial role in glioma classification and have great prognostic
significance [9,10]. Patients with the IDH mutant present a better probability of survival
than patients with IDH wild-type glioma due to a younger average age at diagnosis [11–13].
Several studies have demonstrated that resection of the entire tumor correlates with a better
prognosis in patients with mutated IDH1, compared with the wild type [14–17].

Isocitrate dehydrogenase (IDH) catalyzes the oxidative decarboxylation of isocitrate to
alpha-ketoglutarate during the Krebs cycle and is the primary source of cytosolic NADPH
production in the human brain and other tissues. IDH1 (2q33) and IDH2 (15q26) are also
involved in protecting against replicative senescence by reducing lipid peroxidation in cell
culture and oxidative DNA damage.

IDH mutation occurs in the early stage of gliomagenesis [18,19]. Glioblastomas with
wild-type IDH are predominantly primary or de novo and arise early in patients over
50 years of age. These patients are characterized by a short clinical history, usually less
than three months before diagnosis, and with no pre-existing lower-grade glioma [2].

In contrast, glioblastomas with mutated IDH are generally seen in young adults and
include mostly secondary glioblastomas that can develop as a result of the evolution of
a pre-existing grade II or III glioma. They represent approximately 10% of all glioblas-
tomas [2,20]. Secondary glioblastomas are described by the arginine–histidine substitution
at codon 132 of IDH 1 (c.395 G > A) [2,20]. However, others express IDH 2 mutations
located at codon 172, and arginine is substituted by lysine (c.515 G > A).

IDH1 and IDH2 mutation occurrences are mutually exclusive [21]. These mutations
reduce alpha-ketoglutarate, the normal product, to D-2-hydroxyglutarate (D2HG) to con-
sume NAPDH and participate in gliomagenesis. D2HG may be an oncometabolite that
competitively inhibits alpha-ketoglutarate-dependent enzymes, which play an important
role in gene regulation and tissue homeostasis [22].

However, the process by which D-2HG induces tumorigenesis is still unknown, but
it is probably related to the effects of D-2HG on DNA demethylases, causing DNA and
histone methylation. In addition, alpha-ketoglutarate levels influence the hypoxia-inducible
transcription factor HIF-1α, which promotes tumor growth when oxygen levels are low.

In addition, the level of 2-HG was assessed using magnetic resonance spectroscopy and
found to be a relevant biomarker for monitoring treatment response [23,24]. A molecular
study of IDH1 (exon 4) and IDH2 (exon 4) by DNA sequencing is required to exclude the
presence of other IDH1 or IDH2 mutations [2].

The IDH mutation can be detected by immunohistochemistry using an antibody
directed against the IDH1 R132H mutation [19,25]. This method detects the missense muta-
tion and is very reliable in different laboratories [26]. The sensitivity and specificity of the
immunohistochemistry technique with the anti-IDH R132H antibody can reach 100% [25].

Given the impact of the IDH mutation, the inhibition of mutant IDH1/2 is a promising
treatment for gliomas. Several clinical trials are underway [27,28]. Nevertheless, the effects
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of IDH inhibitors are controversial. Some studies have reported that IDH inhibitors inhibit
the proliferation of IDH1 mutant glioma cells [29] while other studies find it ineffective [30].

2.2. MGMT

The MGMT (O6-methylguanine DNA methyltransferase) gene is located at 10q26. It
codes for a DNA damage repair protein that plays a major role in the repair of alkyl adducts
at the O6 position of guanines [31–33].

The methylation of the MGMT promoter leads to a loss of expression of the MGMT by
reducing DNA repair activity. As a result, the tumor is more chemosensitive to alkylating
agents such as temozolomide [31–33].

This methylation induces an inaccurate pairing of the methylated guanine with
the thymine that has just been incorporated during replication. The mismatch repair
(MMR) system, responsible for removing the thymine but leaving the methylated guanine,
causes double-strand breaks in the DNA, irreparable damage to the genome, and activates
cell death [34–36].

To contain this action, MGMT removes and transfers the methyl group from the O6-
MeG position to a cysteine residue irreversibly. This effectively reverses alkylation-induced
DNA damage and attenuates the cytotoxic effects of temozolomide. This mechanism
explains why patients with MGMT-expressing cancer cells generally do not respond to
temozolomide therapy [37,38].

To observe the MGMT methylation status in GBM patients, nested polymerase chain
reaction (PCR) or combinatorial PCR with MS (methylation-specific PCR) [39], SYBR
Green [40], or even pyrosequencing are used [41].

MGMT promoter methylation is found more often in secondary glioblastomas than in
primary glioblastomas (75% versus 36%) [42,43].

Several studies have shown that MGMT methylation corresponds to better overall
survival and progression-free survival (probably with IDH mutations) in patients treated
with alkylating agents. In glioblastoma, the combination of IDH and MGMT status is more
predictive of survival than IDH or MGMT alone [44]. These mutations are associated with
better response rates to TMZ [17,45].

In addition, Roszkowski and his team found that patients with IDH mutations and
MGMT promoter methylation receiving radiation therapy had a better prognosis than those
with MGMT methylation alone [46].

The survival time and progression-free survival of glioblastoma patients with IDH
mutations alone was shorter than that of patients with IDH mutations and MGMT
methylation [17,44,47,48].

Nevertheless, another study reports that only patients with TERT promoter mutation
combined with MGMT methylation may benefit from temozolomide and be sensitive to its
activity [49]. Additionally, Nguyen and al. report that patients with MGMT methylation
had improved survival only in the presence of TERT promoter mutations [50].

The dual inactivation of MGMT by the loss of 10 q and promoter methylation
induces a greater sensitivity to TMZ treatment than the absence of 10q or promoter
methylation alone [32].

All these studies show that MGMT methylation represents a good prognostic marker
in glioblastoma. It is very useful to establish different approaches in glioblastoma patients
based on their MGMT status, and to introduce MGMT biomarker assessment into routine
clinical practice.

2.3. Epidermal Growth Factor Receptor

EGFR is a transmembrane receptor with tyrosine kinase activity involved in several
signaling pathways such as the (PI3K/AKT/mTOR) pathway that promotes prolifera-
tion, cell survival through the progression of the cell cycle and the inhibition of apopto-
sis, and the (Ras/Raf/MAPK) pathway that drives cell differentiation, proliferation and
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migration [51,52]. These signaling pathways inhibit apoptosis and reduce the efficacy of
temozolomide treatment [51,53]

The most common genetic alterations present in approximately 57% of glioblastomas
are mutations, alternative splicing, rearrangements, and the focal ample of EGFR [54].

EGFR is amplified in approximately 60% of glioblastomas. This amplification is found
almost exclusively in patients with primary glioblastoma, and is very rare in secondary
glioblastomas (Wang et al., 2015).

Several studies have shown that IDH mutations and EGFR amplification are mutually
exclusive [55,56]. They are often accompanied by overexpression; 97.7% of glioblastomas
with non-amplified EGFR do not show EGFR overexpression [57,58]. The mutation of
EGFR due to histone modifications on the enhancer of its gene located at chromosome 7p12
and exons 2 and 7 leads to the formation of EGFRvIII [58].

This rearrangement is the most common variation of EGFR and is found in almost 50%
of these cases, causing an increase in its activity. In fortification, EGFRvIII is characterized
by a 267 amino acid deletion in the extracellular domain, which results in a lack of binding,
constitutive activation, and the proliferation of glioblastomas via protein kinase (PKA)-
dependent activity [57,59,60].

The alteration of EGFR can be detected by fluorescence in situ hybridization (FISH),
immunohistochemistry, and real-time PCR (qPCR) [55,61].

Studies have shown that EGFR amplification alone has no prognostic impact on
survival [42,62]. However, Shinojima N et al. have noted a significantly shorter survival
in patients with EGFR overexpression. Moreover, the prognosis is even worse when this
alteration is accompanied by amplification [58]. Patients without an EGFRvIII mutation
have significantly longer survival (1.4 years) than patients with a mutation (0.8 years) [58].

Montano et al. noted a significantly longer overall survival in GBM patients with
EGFRvIII treated with total resection and standard radiochemotherapy (Temozolomide).
In addition, EGFRvIII/Ki67 (20% or less) and EGFRvIII/methylated MGMT combinations
positively impacted the prognosis of glioblastoma patients [63].

Another study showed that, in combination with the TERT mutation, patients with
wild-type EGFR had an average survival twice that of patients with EGFR amplification [64].
Furthermore, glioblastoma patients with wild-type EGFR had longer survival with wild-
type TERT than patients with wild-type EGFR and mutated TERT [65].

Up to now, various drugs have been developed to target EGFR. The latter’s mono-
clonal antibodies such as cetuximab and nimotuzumab have been studied as anti-tumor
agents, as well as tyrosine kinase inhibitors (TKIs) targeting signal transduction, such
as afatinib, gefitinib, and erlotinib. Unfortunately, no inhibitors have been approved for
glioblastoma [66–68]. This is probably due to the presence of the blood–brain barrier that
prevents access to resistance-promoting mutations [69].

EGFRvIII has also been targeted by vaccination approaches, using a unique antigenic
epitope from the mutant protein sequence. The rindopepimut vaccine trial for newly
diagnosed glioblastoma did not show a survival benefit in phase 3 [15,70].

2.4. TERT

Telomerase is a ribonucleoprotein enzyme complex that maintains and extends telom-
eres in eukaryotes using a native RNA molecule as a template. Therefore, it can extend
the number of cell divisions and act as an RNA-dependent DNA polymerase that compen-
sates for the loss of these DNA sequences by producing telomeric replicas in cells capable
of division [71].

Somatic mutations in TERT involving regulatory regions, in addition to coding se-
quences, may be involved in oncogenesis [72]. In addition, mutations in the TERT promoter
reactivate telomerase, which prevents telomere shortening and leads to the immortalization
of tumor cells [73].

This alteration is a biomarker that can provide additional diagnostic information.
According to the fifth edition of the WHO Classification of Tumors of the Central Nervous
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System (WHO CNS5), the detection of this alteration allows the reclassification of an IDH
wild-type astrocytoma of grade 2 or 3 into an IDH wild-type glioblastoma [10].

Approximately 70–90% of glioblastomas have mutations in the TERT promoter (C228T
or C250T) located at −124 bp and −146 bp upstream of the TERT translation start site
(5p15.33) [74]. The mutations were cytosine to thymine transitions: 1295228 C > T and
1295250 C > T) [74]. The C228T mutation accounts for 75% and the C250T for 25% of all
TERT promoter mutations [75].

These alterations can be detected by MS PCR, Sanger, mass spectrometry-based assays,
next-generation sequencing (NGS), and digital droplet PCR (ddPCR) [76].

Several studies have shown that the prognostic significance of TERT mutations de-
pends on age, tumor histology, surgery, IDH wild status, and unmethylated MGMT
promoter status [50,74,77,78]. The TERTp mutation is a favorable prognostic factor in
IDH-mutant glioblastoma. [64,65]. In addition, the patients with TERTp and unmethy-
lated MGMTp mutations have the worst prognosis. TERT promoter mutation is a poor
prognostic factor in IDH wild-type glioblastomas [74,79,80].

Given the high frequency of TERT mutations in glioblastoma, strategies inhibiting
telomerase activity may present an attractive therapeutic target, namely inhibitors, im-
munotherapy, and vaccines. Despite many promising results, no therapy has been able to
demonstrate clinical efficacy in the management of patients with glioblastoma [72].

2.5. LOH: Loss of Heterozygosity

According to CN5S (2021), the diagnosis of IDH wild-type glioblastoma is based on
the presence of EGFR amplification or TERT promoter mutation, or the combined gain of
the whole chromosome 7 and the loss of whole chromosome 10 (+7/−10) [3,81–83].

LOH primarily affects tumor suppressor genes such as PTEN and TP53, which results
in the decreased protection of the body′s systems against tumorigenesis [84,85].

Glioblastomas often have a loss of heterozygosity, particularly on chromosomes 7, 9p,
10, 17p, 19q, and 22 [85–87]. The gain of whole chromosome 7 is associated with a 4.7 fold
increased risk of tumor recurrence [88].

LOH 10q23 is present in 70–80% of primary glioblastomas [3,81–83] and LOH 10q25qter
is useful for the diagnosis of secondary glioblastomas [89].

Thus, LOH 10 alteration is involved in the pathogenesis of both primary and secondary
glioblastomas. Moreover, LOH 10 is present in 84.2% of patients aged 40 years and older
versus 16.7% of patients aged 40 years and younger [89].

The loss of chromosome 10q is a form of MGMT inactivation located on chromosome
10q26. One study showed that glioblastoma patients with the dual inactivation of MGMT,
by loss of the long arm of chromosome 10 and the hypermethylation of the MGMT pro-
moter, have longer progression-free survival and overall survival, and respond well to
temozolomide therapy [32,79].

LOH 10 has also been observed in 40% to 80% of glioblastomas with p53 mutation
and 60% to 100% of glioblastomas with EGFR amplification [90]. Hata and his team
believe that LOH 10 has a very important prognostic biomarker for primary and secondary
GBM [89]. Studies have shown that patients with no alterations in chromosome 10 have
longer survival than those with LOH 10 [91]. LOH 19q is frequently involved in the
progression of low-grade astrocytoma to secondary GBMs [92].

LOH 1p has been detected in 10% of GBMs [91–93], while LOH 13q has been recorded
in 35% of GBMs [85,94,95]. LOH 22q is an alteration present in 11–39% of gliomas, but
more frequent in glioblastomas. This strongly suggests a link between this alteration and
tumor progression [33].

Gains in chromosome 7 and alterations in chromosomes 9 and 17 are also common in
glioblastomas. They are associated with the amplification of oncogenes such as EGFR, as
well as the mutation and/or deletion of tumor suppressor genes such as TP53 [52,96].
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2.6. TP53

The TP53 gene is located on chromosome 17q13.1 and encodes p53. The TP53/MDM2/
MDM4/p14AR pathway is involved in differentiation, apoptosis, cell cycle regulation, DNA
damage response, and genomic stability [97,98].

P53 is a well-known transcription factor and antioncogene and is involved in most
cancers, including glioblastoma [97]. TP53 can be inactivated indirectly after deletion
or mutation, or directly due to the alteration of its associated genes. Based on TCGA
data, 78% of glioblastomas have mutations in the TP53/MDM2/MDM4/p14AR pathway.
These alterations often coexist with the IDH mutation and may promote progression from
low-grade astrocytoma to glioblastoma [98].

Therefore, 35% of patients are affected by mutations or the homozygous deletion of
TP53, 14–20% due to amplification of MDM2/MDM4, and 49% following homozygous
deletion or the mutation of p14ARF (Cancer Genome Atlas Research Network, 2008).

The accumulation of the mutated protein p53 is the core of tumor cells [99]. This has
been observed in 59% of low-grade astrocytomas and 53% of anaplastic astrocytomas [100].
It also characterizes 30% of primary glioblastomas (mostly at exons 5, 6, 7, and 8) and
65–90% of secondary glioblastomas at codons 248 and 273 (Exons 7 and 8) and in CpG sites
(methylation region) [98,100,101].

The presence of these mutations at different grades suggests that they occur early
in gliomagenesis and accumulate as the glioma progresses [100,102]. The p53 mutations
seen in primary glioblastomas may occur as a secondary event resulting from genomic
instability in the glioblastoma tumor microenvironment [52,100]. These mutations can be
detected by immunohistochemistry and the mutation of the TP53 gene can be detected
by qRT-PCR.

MGMT promoter methylation is highly correlated with TP53 mutation (92%) [102].
Indeed, p53 can downregulate MGMT via an interaction with the transcription factor
Sp1 [103]. Clinically, glioblastoma patients with lower MGMT expression have a better
prognosis with p53-expressing phenotypes [104]. In general, TP53 mutation is associated
with a bad prognosis, but it is still largely undetermined in glioblastomas. P53 represents a
viable therapeutic target for the treatment of glioblastoma [98].

In an attempt to overcome the p53 mutation, wild-type p53 expression can be in-
creased in tumor cells using adenovirus-mediated p53 gene therapy that can appropriately
arrest cell progression at checkpoints. As a result, cell proliferation, tumorigenesis, and
progression in vivo will significantly decrease [98].

In a phase I trial, Lang and colleagues were able to show that the intra-tumoral
injection of an adenoviral vector containing p53 resulted in TP53 gene transfer and the
expression of functional exogenous p53 in all patients. The transfected cells were found
near the injection site, indicating the absence of systemic viral dissemination [105].

Other studies have attempted to evaluate the efficacy of transduction and the ef-
fectiveness of wild-type Ad5CMV-p53 gene therapy (trial NCT00004041) or recombinant
adenovirus-p53 SCH-58500 (NCT00004080) in combination with surgery. However, there is
potential resistance and poor gene transfer [98].

Several studies using drugs that attempted to facilitate the folding of the mutant
proteins into their wild-type conformation were not effective. Other trials targeting MDM2
and MDM4 neutralization for glioblastoma patients with impaired p53 function after
MDM2 or MDM4 gene amplification are underway (NCT03107780) [80].

2.7. ATRX

The ATRX gene is linked to ATRX syndrome (i.e., X-linked mental retardation syn-
drome). The ATRX protein exists in two isoforms (180 and 280 KDa) and is highly enriched
in GC-rich palindromic sequences. The C-terminal end of the ATRX protein contains the
helicase/ATPase domain classifying ATRX in the SNF2 family of chromatin remodeling
proteins. Besides the N-terminal domain presents the ATRX-DNMT3-DNMT3L (ADD)
with cysteine-rich motifs and similar characteristics to those of DNMT3 proteins involved
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in methylation. Furthermore, ATRX is a regulator of chromatin remodeling and tran-
scription by establishing an ATP-dependent complex with a DAXX transcription cofactor.
In addition, ATRX also modifies the DNase I digestion pattern and triple-helix displace-
ment activity and participates in cell cycle regulation and the maintenance of genomic
stability [106].

ATRX mutations are detected through immunohistochemistry staining (the lack of
nuclear staining in this case) which are relatively associated with an ATL (i.e., alternative
lengthening of telomeres) phenotype. The loss of ATRX prevents the recruitment of the
protein DAXX in the telomeric region of the chromosome. The complex ATRX-DAXX-H3.3
is inhibited by the ATRX alteration, affecting the process of DNA remodeling. As a conse-
quence, the compaction of the chromatin will be reduced and reachable for the transcription
enzymes that can lead to the transcription of different genes including oncogenes. TEERA is
an enzyme activated in this process creating an R-loop that escorts the telomere lengthening
process alongside TERT triggering, which is highly implicated in glioblastomas [107].

ATRX mutation is mutually exclusive with the 1p/19q co-deletion; thus, this mutation
is characteristic of secondary glioblastoma from an astrocytic descent [9]. The correlation
established between IDH and ATRX in GBM expresses that there is a loss of function in
ATRX in 75% of IDH-mutant secondary GBM. However, the rate of patients expressing IDH
wild type associated with ATRX loss is 3%, pronouncing a better overall survival compared
to IDH-mutated and ATRX-WT [107,108].

2.8. VEGF

Vascular endothelial growth factor VEGF (VEGF-A) is a member of a family of pro-
teins including VEGF-B, VEGF-C, VEGF-D, and VEGF-E [109]. VEGF-A has been detected
as a primary mediator of angiogenesis and tumor progression through the activation of
phosphatidylinositide-3 kinase (PI3K)/Akt-dependent or RAS/ERK signaling pathways [110].

VEGF’s overexpression has been detected by immunohistochemistry in 64.1% of
glioblastomas, triggering efforts to develop the anti-VEGF drug “Bevacizumab” [111–113].
This is an anti-angiogenic therapy that can block tumor vascularization by neutralizing
VEGF-A overexpression [114].

This antibody was approved by the FDA and used as a treatment of glioblastoma
based on encouraging progression-free survival results and high radiological response
rates in pre-clinical and clinical (phase II) trials [111,115–117]. However, bevacizumab did
not improve overall survival in patients with glioblastoma [115,117,118].

This failure may be explained by the complexity of pro-angiogenic signaling [119],
and the activation of VEGFR by another ligand during bevacizumab treatment [120–122].
Moreover, the VEGF ligand family includes several ligands such as VEGF-C, which is
overexpressed in glioblastoma and associated with tumor progression [64,123,124]. High
levels of VEGF-C are a poor prognostic factor [125,126].

2.9. Ki-67

Ki-67 is an index of cell proliferation that ranges from 15% to 40% in most glioblas-
tomas. It is mostly detected in high mitotic activity areas [127].

In neuro-oncology, the monoclonal antibody Ki-67 is widely used [128–130]. It reacts
with nuclear proteins expressed in the GI, S, G2, and M phases of the cell cycle. Nuclear
positivity for Ki-67 is determined by using IHC, counting at least 1000 tumor cells in
a homogeneously stained area. Cases with <10 and ≥10% stained cells are defined as
negative and positive, respectively [131].

Rashmi et al. enrolled 83 patients with GBM presenting Ki67 positivity; they also
reported a high expression of Ki-67 in IDH wild-type gliomas [132]. Tokano et al. showed
that a glioma with wild-type IDH and Ki-67 ≥10% strongly suggests the diagnosis of
glioblastoma. A high expression of Ki-67 is associated with lesion volume, increased risk of
recurrence, and consequently worse prognosis [131].
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Other studies have reported that the presence of low ki-67, methylated MGMTp,
unmutated TERTp, and mutated IDH in young patients have a positive synergistic effect on
survival. These results may suggest that glioblastoma survival depends on a combination
of intrinsic patient characteristics and genetic mutations [78,133,134].

Using Ki-67 reflects the aggressiveness of tumor phenotypes. Currently, the use of
Ki67 varies between the prognostic stratification of patients and resistance or sensitivity
to chemotherapy [135–137].

Similarly, Bredel et al. proposed that tumors with increased proliferation are more
prone to the cytotoxic effects of chemoradiotherapy [138]. Thus, therapeutic decisions
should be guided by clinically relevant prognostic factors such as Ki-67 expression, which
could be a predictive factor of poor prognosis in gliomas [139].

Some studies suggest a relationship between a higher level of the Ki67 index and a
longer life span [128–130,138], while others demonstrate that this parameter has no value
in determining the prognosis of glioblastoma [135,140]. To overcome this discrepancy, it
is necessary to standardize the methods of quantification of this index, which suffer from
inter-and intra-observer variability [135,141–143].

2.10. MMR

Several research projects have focused on understanding the involvement of DNA
repair mechanisms in the DNA damage response (DDR), which has been investigated in
multiple solid tumors such as glioblastoma. Mismatch repair is an extremely conserved
damage repair mechanism due to its fundamental approach in preserving genome integrity.
The MMR process has been described as the pathway targeting base substitution, as
well as other mismatches developed due to DNA replication errors [144]. The loss of
this mechanism has been associated with microsatellite instability (MSI) (i.e., a genomic
condition of hypermutability with a phenotype related to the loss of MMR) [145].

This pathway has been investigated through its eight proteins (i.e., MSH2, MSH3,
MSH5, MSH6, MLH1, PMS1, MLH3, and PMS2). The eight proteins operate in heterodimers
(MSH2–MSH3) that recognize a single base mismatch and (MLH1- PMS2) lead the degrada-
tion and resynthesis (Leelatian et al., 2021). Mismatch repair loss is investigated alongside
MGMT promoter silencing. O6-methylguanine expression is a result of a cytotoxic distur-
bance directed by the alkylation effect of prior GBM treatment. The mutational load is
established by a defective MMR pathway [6]. Through The Cancer Genome Atlas (TCGA)
program, it has been identified that the mismatch occurring in the CpG islands located in
MGMT promotor is a substitution of C *G by A *T. This mutation will be settled due to
the MMR pathway defect [6]. Notably, MSH6 inactivation associated with microsatellite
instability displays a tolerant aspect of tumor cell growth induced by therapy [144].

Proteins of the MMR pathway have been explored by immunohistochemical staining
by several antibodies. Other techniques can be used such as next-generating sequencing
for molecular detecting and fluorescent PCR and capillary electrophoresis in favor of
detecting MSI [146].

The majority of GBM diagnosed present a high mutational burden associated with
MMR deficiencies, MSI development, or mutations in the POLE gene (i.e., encoding the
catalytic subunit of DNA polymerase epsilon, an enzyme that plays a critical role in
DNA replication and repair). However, defective MMR has been correlated to sporadic
alterations, particularly, BRAF V600E mutations and/or MLH1 promoter silencing or
germline alterations, such as MLH1 gene mutations [147].

Considering the impact of alkylators on the installation of a defective mismatch repair
mechanism and microsatellite instability, some researchers have described potential im-
munotherapy for patients with biallelic MMR mutation using an anti-PD1 antibody [148].
Patients without prior alkylator treatment demonstrating germline mutations have dis-
played immunotherapy efficacity [149]. Accordingly, cases with recurrent GBM had ex-
pressed a limited efficacity with an OS of 14.4 months [144].
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2.11. PD-1 and PDL-1

Divergent immune checkpoints are a principal factor abused by tumors to escape
the targeting by the immune system [150]. The programmed cell death protein 1 (PD-1)
encoded by the PDCD1 gene is a transmembrane receptor expressed in different types of
cells including microglia, antigen-presenting cells (APC), and B lymphocytes. It is activated
by its ligand PD-L1 (i.e., programmed cell death protein ligand 1), a protein encoded
by the PDCDL1 gene. All along this activation process, several proteins are entangled
by phosphorylation and dephosphorylation mechanisms in which tyrosine phosphatase
protein is triggered to lead to Zap70 dephosphorylation [151]. As a result, a downregulation
of the T lymphocytes and their cytotoxicity associated with the production of cytokines
such as IFN-γ is a predominant factor in the pro-inflammatory process [150].

In all gliomas, GBM expresses a higher rate of PD-1- and PD-L1-associated forms to
tumor-infiltrated lymphocytes (TIL) compared to other grades. This tumorigenesis process
is related to the capacity of TIL to present PD-1 on their surface, impersonating normal LT .
Hence, they become unrecognizable by the immune system. In addition to its mechanisms,
the couple PD-1/PD-L1 is associated with fundamental cell signaling pathways such as
EGFR, IDH, and VEGFR. The correlation established between EGFR and PD-1 in glioblas-
toma is affiliated to the expanded rate of EGFR amplification due to the expression of PD-1.
PTEN is a relevant protein in this signaling pathway, being the expression regulator of
PD-L1. Consequently, the downregulation of the PI3K/AKT/mTOR signaling in the GBM
microenvironment by the expression of PD-1 leads to an immune-resistant phenotype [151].
IDH is another relevant biomarker investigated in GBM tumorigenesis. Its manifestation is
correlated to the expression of PD-1 and TIL expansion. The IDH wild-type tumor cells
present an activated form of the immune system and a higher level of PD-1 expression [150].

VEGF is a well-known marker implicated in the inhibition of the maturation of den-
dritic cells promoting a defective antigen presentation translating immunosuppressive fea-
tures [150]. Several studies have shown that the couple PD-1/PD-L1 implies the angiogenic
mechanism alongside VEGF; it shifts from immunosuppressive to immune-supportive in
the tumor microenvironment. According to Xue and et al., the expression levels of PD-1 cor-
relate with VEGF. Nevertheless, Joseph along with his team present in their data a negative
interconnection between the two units [152,153]. This contradiction provides a new arena
for further investigations considering the significance given to these relevant markers.

These biomarkers have been identified by immunohistochemical staining in sev-
eral studies [150,153].

The couple PD-1/PD-L1is implicated in the bio-stratification of GBM, and one of the
mainly discussed agents for therapeutic purposes. Immunotherapy is based on targeting
several immune pathways to restore the lost T-cells activity due to the confusion driven
by tumor cells. Nivolumab is the main monoclonal antibody used to block receptors
and ligands in effector cells belonging to the immune system [154]. Nevertheless, the
complicated combination of glioblastoma and its challenging character has been identified
by Simonelli et al. as the “immune-deserted phenotype”; due to the immunosuppressive
environment unaffected by single targeted therapy, a combined strategy is the greatest exit.

2.12. BRAF-V600E

BRAF is the v-RAF murine viral oncogene homolog B1 protein from the RAF family
related to a serine/threonine kinase signaling pathway [155]. It is a protein involved in the
mitogen-activated protein kinase/extracellular mutation-regulated kinase pathway [156].
The most common mutation in cancer related to this gene is BRAFV600E. It results through
the substitution of thymine-to-adenine at position 1799, leading to the substitution of
glutamic acid to valine in the 600 position. This phenotype is translated by hyperactivity
that might cause cell arrest in the presence of flawless repair mechanisms. Therefore, with
deficient ones, it can be considered as a pro-oncogenic factor expressed in 50% of cases of
epithelioid glioblastomas [157].
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MAPK (mitogen-activated protein kinase) is a crucial regulator of the BRAF signaling
pathway. Thus, MAPK inhibitors have displayed their efficacy, safety, and anti-BRAFV600E

ability in several studies [158]. BRAFV600E mutation has not presented any significant
reaction in favor of radiotherapy or chemotherapy [157].

However, targeted therapies against BRAFV600E have been associated with a better
overall survival, especially within pediatrics patients and young adults (17–35 years).
Everolimus and sorafenib are two drugs in phases 1 and 2 clinical trials, respectively, for
recurrent glioblastomas targeting BRAF-signaling-associated pathways [69].

2.13. ROS and Hypoxia

Cellular redox balance represents a physiological balance between ROS (reactive oxygen
species) and reduced equivalent that should be maintained in the cell compartment [159]. The
oxidative stress molecules are typically described by a state of unbound charged molecules
with oxygen-developing reactive properties, such as loose superoxide radical (O2

−) and
hydroxyl, as well as non-radical spices including hydrogen peroxide [160].

ROS are produced by multiple organelles included in various signaling pathways
such as cell respiration, and stimulate the transcription of several genes. Mitochondria,
endoplasmic reticulum (ER), and peroxisomes are the most highly implicated organelles
in the process of oxygen species production [160]. The deficient coupling of ROS in the
mitochondria during cellular respiration and the activation of the Warburg effect (i.e., the
elevated level of glucose consumption and privileged lactate production even in normoxia
conditions) is majorly supported in the malignancy of glioblastoma (GBM) [161]. In
addition, hypoxia is a predominant feature involved in the development of the GBM
microenvironment, considering its implication in the stability of HIF-1α. The latter is the
hypoxia-inducible factor that has been identified as a major operator of the Warburg effect
and the trigger in the occurrence of some solid tumors, including glioblastoma [162].

In normoxia conditions, oxygen levels range from 3.1% to 8.7%. Therefore, HIF-1
is hydroxylated by Fe2+ and 2-oxoglutarate-dependent dioxygenases (PHDs) in proline
and asparagine residues, and then ubiquitinated. However, PHDs cannot work through
hypoxic conditions, preventing the signaling pathway and leading to HIF-1α degradation.
Thus, this protein is functional when it is accumulated and binds to another isoform
HIF-1β. The complex targets the transcription of several key factors (e.g., plasminogen
activator mitogen 1, vascular endothelial growth factor, VEGF receptor, etc.) [163], as
well as regulating some pro-angiogenic chemokines such as stromal cell-derived factor
1α and chemokine receptor 4, along with the recruitment of endothelial cells improving
proliferation [164]. This contributes to the development of GBM alongside the VEGF
receptor, given its large involvement in the angiogenic signaling pathway, and the master
regulator of glioblastoma expansion and aggressivity [163], otherwise known as hypoxia-
induced angiogenesis [164].

HIF-1α is a prime driver in the regulation of glycolytic enzymes; it promotes the
expression of PDK1 (pyruvate dehydrogenase kinase 1) that inhibits the pyruvate dehy-
drogenase implicated in glycolysis [159]. The limited accessibility of pyruvate to the Krebs
cycle declines the rate of the oxygen consumed by mitochondria. This effect is linked to
radiotherapy, which has been involved in the accumulation of ROS in solid tumors by the
water radiolysis mechanism [160].

The effect of hypoxia can be seen through a distinguished standpoint considering the
association between some epigenetic modifications and the accumulation of HIF-1α. These
changes, such as protein folding in the ER (endoplasmic reticulum), are an important site
for ROS production by 25% [159]. HIF-1α levels are also related to IDH1 mutated forms,
preventing their degradation, which can lead to a worse prognosis [161]. In a recent study,
Sfifou et al. (2021) provided some relevant results on a Moroccan population in which they
revealed, through an immunohistochemistry study, that patients with a negative expression
of HIF-1α had improved overall survival. The group with “negative HIF-1α and positive
IDH1” illustrated a better outcome with 85% survival rate at 12 months. Nevertheless, the
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patients with “positive HIF-1α and negative IDH1” expressed the worst prognosis with
18% survival [162].

Several studies have shown that oxygen-generated species resulting from irradiations
are the main cause of the accumulation of electrons and protons in different cells. DNA
ionization, directly or through ionized water molecules, is involved in double-strand breaks
(DSB) and single-strand breaks (SSB) that spark the most poisonous form of DNA damage.
In consequence, the combination of radiotherapy and chemotherapy produces a high level
of free radicals influenced by mitochondrial modification, and induces an up-regulation
of catalase and SOD-2. As a result, it leads to the accumulation of GSH (glutathione
disulfide) which inhibits some drug’s effects and is involved in some chemotherapeutic
resistance mechanisms [160].

2.14. MET

The MET gene encodes a proto-oncogene located on chromosome 7q 21–31 known as
the HGF receptor. It allies with multiple tumor cell functions such as proliferation, survival,
and mobility, and it particularly contributes to migration and invasion mechanisms, with
2 to 3% expression in GBM. However, it has a low standard activity in normal cells. c-MET
is a protein investigated through immunohistochemistry. Normally, c-MET is a tyrosine
kinase receptor expressed in epithelial and endothelial cells, but it exists in low levels
in brain tissue. HGF is the only known ligand for this receptor. The coupling of c-MET
and HGF activates multiple key signaling pathways such as MAPK and PI3K, since they
altogether belong to the RTK (receptor tyrosine kinase) family-activated proteins [6].

The binding process between HGF and its receptor is affected by the autocrine or
paracrine mechanisms. The aberrant c-MET form (i.e., a gain of expression, elevated
paracrine and autocrine expression, mutation or gene amplification, and continuous re-
ceptor activation [165]) is correlated to primary and secondary GBM in 47% and 44%,
respectively, of total confirmed cases. These results obtained by Q-PCR were reported
by [166]. The autocrine signal is associated in some studies with a predictable sensitivity
to HGF inhibitors. Furthermore, PTEN presents an affinity to HGF due to its main role
as a co-regulator protein. This association reveals a certain response in therapy dictated
by PTEN’s presence [167]. Several clinical trials have proceeded in MET inhibitor-based
therapies. For instance, cabozantinib, a drug in phase 2 trials, is used for recurrent and
progressive glioblastoma in children [69] (Figure 1).

(1) EGF receptors activate survival signaling pathways, including the RAS/MAPK and
PI3K/AKT signaling pathways, leading to cell growth and proliferation. (2) The binding of
VEGF to VEGFR-2 leads to form a receptor dimer and then activates the PI3K signaling
pathway, including the activation of PTEN and the PKC-Raf kinase-MEK-mitogen-activated
protein kinase (MAPK) pathway, which initiates DNA synthesis to promote endothelial cell
proliferation. (3) The association between the glucose molecule and its receptor GLUT-2
activates mitochondrial mechanisms, including the production of ROS and α-KG; the latter
produces 2-HG, inhibiting the ubiquitination of HIF-1α developed by ROS involved in
angiogenesis (4). (5) P53 ubiquitination is related to MDM2 activity. MDM2 in mutated
form inhibits P53 degradation, and the P53-mutated form is not recognized. (6) ATRX
absence leads to the blockade of the complex ATRX-DAXX-H3.3, a lead transcription factor
involved in the activation of TERT included in cell resistance and survival.
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3. Circulating Biomarkers
3.1. Circulating Tumor Cells

The first discovery of tumor-free cells in blood was made by Australian researchers
in 1869, more than a century ago. Circulating tumor cells (CTCs) are cancer cells released
by the primary tumors into the bloodstream, disseminating at distant sites and eventually
forming metastases. CTCs can exist in the form of single cells or clusters. The phenotypes
of CTCs change after epithelial-to-mesenchymal transition, which leads to the loss of
cell-to-cell contact and the development of less differentiated mesenchymal phenotypes
or stem cells [168].

The concentration of CTCs in the blood circulation is very limited, with only 1 CTC
per 109 blood cells, which explains why their detection with high specificity and sensitivity
is technically challenging. The problem of low CTC numbers is more accentuated in brain
tumors due to the blood–brain barrier, host immunity suppressing tumor migration, and
survival outside the neuroaxis [7,169].

Nowadays, the study of CTCs has been performed in different types of tumors includ-
ing lung [170], breast [171], prostate [172], and colorectal cancers [173], among others. The
clinical utility of CTCs has been deeply investigated [171].

Globally, there are several approaches used to quantify CTCs. This generally starts
with the CTC enrichment step, followed by either the positive selection of CTCs and/or
the negative selection of leukocytes. Negative-enrichment techniques are essentially based
on physical properties such as size, electric charge, or density. The positive selection of
CTCs can be achieved by the use of immunological identification, which can detect specific
tumor markers expressed on the surface of CTCs [174].
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The Cell-Search® system (Veridex) is the most common positive selection approach.
It is currently the only clinically validated, FDA-cleared system for the identification,
isolation, and enumeration of circulating tumor cells (CTCs) from a simple blood test. It
is based on the use of antibodies against the transmembrane glycoprotein epithelial cell
adhesion molecule (EpCAM), which is highly expressed in proliferating carcinomas [175].
To evaluate the cell viability of CTCs after separation, the use of the nuclear fluorescent
dye 4,6-diamidino-2-phenylindole (DAPI) is essential. An antibody against cytokeratin or
the intermediate filament of epithelial cells is also used (positive markers). In addition, a
negative marker such as anti-CD45 is required. Eventually, the CTCs will be identified as
DAPI+/CK+/CD45- cells. Cell-Search® system is used in the monitorization of metastatic
prostate [176], breast [177], and colorectal cancer [178]. However, non-epithelial cancers
do not express epithelial biomarkers. Glioblastoma cells do not express EpCAM and,
therefore, are not detectable using this Cell-Search® approach. The isolation of CTCs from
non-epithelial tumors is dependent on less specific microfluidic techniques that isolate cells
based on physical properties and non-conventional methods [179] (Table 1).

Table 1. Some commercial technologies for the detection of circulating tumor cells.

Methods Commercial
Kit Key Features Tumor Type Clinical Utility Limits Ref

Immune-Based Detection

Magnetic
nanoparticles

Cell-Search®

Positive (EpCAM) and
negative (CD45) selection

followed by
Immunofluorescent staining

of CKs and DAPI;
Only FDA approved;

Most clinically validated
platform for the detection

of CTCs.

Metastatic Breast;
Colorectal;

Prostate

Prognosis;
Treatment

Reliance on
specifically

expressed protein
markers;

expensive;
low cell viability

[176,179]

AdnaTest®

Antibodies against
epithelial and

tumor-associated antigens
conjugated to magnetic
beads for the labeling of

tumor cells in whole blood;
Positive selection followed

by RT-PCR analyses;
Analyzes clinical relevance

by testing the gene
expression of specific

tumor markers.

Breast;
Prostate;
Ovarian;

Colon

Prognosis;
Treatment [180,181]

Microfluid
device GEM chip

Mixing chip structure for
enhanced capture of CTC on

antibody-coated surfaces.
Pancreatic Diagnosis;

Treatment

Limited sample
volume;

Slow flow rate.
[182]

Dual Modality Ephesia
(CTC-chip)

Magnetic beads coated with
EpCAM antibodies

self-assemble into a periodic
array under a high

magnetic field.

Lung;
Breast;

Colorectal;
Prostate

Diagnosis;
Prognosis

Moderate
sensitivity;
Expensive
technology

[183]

Biophysical properties

Size
ISET®

(Rarecells
Diadnostics)

Filtration system to
eliminate white blood cells

(WBC) followed by the
enrichment of CTCs,

cytomorphology analyses,
and immunostaining

characterization

Breast;
Melanoma;

Lung;
Hepatocellular

carcinoma

Prognosis;
Treatment

Difficulty in the
detachment of

CTCs from the filter;
Different sizes

of CTCs

[184]
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Table 1. Cont.

Methods Commercial
Kit Key Features Tumor Type Clinical Utility Limits Ref

Electric charge ApoStream®

Isolation of CTCs based on
cell differences in dielectric
properties (polarizability)

using a process called
dielectrophoresis (DEP)

field-flow assist in a
microfluid chamber

Breast N.A

Cell electrical
properties can be

affected during the
procedure;

Large number of
parameters to

control
simultaneously

[185,186]

Density OncoQuick®

Isolation of CTCs using
porous membrane filtration

followed by density
gradient centrifugation

Gastrointestinal;
Breast Prognosis Loss of large CTCs

and cell aggregates [187]

Imaging FASTcell (SRI)

An array of optical fibers
provides a larger
field-of-view than

traditional optical systems;
Reduces time for imaging
using a laser light source

and a sensitive
photomultiplier detector

Breast;
Lung

Prognosis;
Treatment

Difficult sample
processing;

Loss of cells under
investigation

[188]

Inertial
focusing Vortex

Selective capture of CTCs
using micro vortices and

inertial focusing

Breast;
Lung

Diagnosis;
Prognosis;
Treatment

Complicated
principle;

Morphological
deformation of
captured cells

[189]

Although the metastatic spread of glioma is extremely rare, several studies have
reported the detection of circulating tumor cells with glioma characteristics.

Sullivan et al. reported the presence of rare circulating brain tumor cells within the
peripheral blood in patients with glioblastoma. They proceeded to a “negative-depletion”
through a CTC-iChip using a cocktail of antibodies specific to GBM markers (CD14, CD16,
and CD45). CTCs were identified in at least one blood specimen from 13/33 GBM pa-
tients (39%) at different times in the treatment schedule. The isolated CTCs demonstrated
an enrichment for mesenchymal over the neural differentiation markers compared with
primary GBMs [190].

Mac Arthur et al. developed a strategy to detect CTCs based on telomerase activity.
This technique offers high sensitivity, as more than 90% of solid tumors express elevated
levels of telomerase, and high specificity, as telomerase is not found to be expressed in
normal cells. The authors found that CTCs significantly reduced following radiotherapy.
They suggest that this assay might assist the interpretation of treatment response in patients
receiving radiotherapy and monitor disease recurrence [191].

Müller et al. identified CTCs using an anti-glial fibrillary acidic protein (GFAP) anti-
body. The authors identified CTCs in the blood of 30 out of 147 patients. The tumor origin
of these cells was confirmed by the identification of shared mutations in the MDS1 and
EVI1 complex locus, myosin 11, and neurofibromin 1, as well as the platelet-derived growth
factor receptor Alpha and the amplification of the endothelial growth factor receptor [192].

Gao et al. developed an advanced integrated cellular and molecular approach of
Immunostaining-FISH to detect CTCs in the peripheral blood (PB) of patients with seven
different pathologic entities of primary gliomas (grade II-IV). The CTCs presented a strong
polyploidy of chromosome 8 (≥5 copies) and a negative expression of both GFAP and CD45.
The authors identified CTCs in the blood of 24 out of 31 (77%) patients with glioma in all
seven subtypes. The study revealed the importance of CTCs in monitoring the treatment
response and differentiating radionecrosis from the recurrence of glioma. CTCs can be used
to complement radiographic imaging [193].
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Krol et al. captured CTCs with a size-based antigen-agnostic approach, while red
and white blood cells flowed through the device. The assessment of CTC presence and
composition in 13 GBM patients was made during an open-label phase 1/2a study with
the microtubule inhibitor BAL101553 [194].

In a more recent study, the authors examined CTCs collected from the peripheral
blood of patients undergoing GBM resection. Cytomorphology was used for the size-
based enrichment CTCs and their origin was confirmed based on mutational analysis.
Next-generation sequencing (NGS) was performed for the identification of CTCs. The
GeneReader™ sequencing platform allows the targeted sequencing of a 12-gene panel. The
NGS approach in this study presents a major advantage of simultaneously identifying
several markers relevant for GBM diagnostics, allowing more accurate diagnostics and the
potential administration of innovative targeted therapies [195].

3.2. Circulating Cell-Free DNA

Mandel et al. revealed in 1948, for the first time, that tumors release nucleic acids into
body fluids. Later, circulating DNA was shown to carry the same molecular information
as tissue biopsies, opening up the possibility of using circulating DNA as a potential
biomarker for diagnosing and monitoring cancers [196].

Circulating cell-free DNA (ccfDNA) are DNA fragments that circulate in body fluids
at low concentrations (1–10 ng/mL). In normal conditions, ccfDNA is released during pro-
cesses of cellular apoptosis or inflammation. In cancer patients, DNA fragments released
by necrotic and/or apoptotic cells are called circulating tumor DNA (ctDNA) [197]. The
total amount of ctDNA represents less than 0.1% to 5% of total ccfDNA and correlates
with tumor type, grade, and burden. ctDNA exhibits somatic genetic alterations such as
single nucleotide variants, chromosomal rearrangements, or gene copy number variations.
However, due to the low concentration of ctDNA, the detection technology has to be highly
sensitive and specific to distinguish ctDNA from normal leucocyte DNA. Conventional se-
quencing methods such as Sanger sequencing and pyrosequencing cannot always identify
mutations in ctDNA, especially in cases of low-grade tumors. Furthermore, the mean half-
life duration of ctDNA is short, varying from 1.5 to 2 h. All these facts make the detection of
ctDNA extremely challenging [198]. Actually, two different approaches are used for ctDNA
analysis. The first one is based on mutation-targeted analysis, and includes droplet digital
PCR (ddPCR), BEAMing (beads, emulsion, amplification, and magnetics), the amplification
refractory mutation system (ARMS), PCR, or PNA Clamp technologies [199]. The second
approach is the use of next-generation sequencing (NGS). While ddPCR and BEAMing
technologies allow the detection of low amounts of ctDNA (around 0.01%), the sensitivity
is limited when using ARMS PCR or PNA Clamp techniques: it does not exceed 0.1%. On
the other hand, NGS technology allows the exploration of a wide array of mutant DNA se-
quences present in a sample with high sensitivity and reproducibility. Furthermore, unlike
previous techniques, NGS can detect novel and unknown genetic modifications [200].

Several studies have shown the possibility of the detection of tumor-associated muta-
tions in ctDNA in patients with primary CNS tumors, including GBM. An initial study de-
tected IDH1R132H substitution in the plasma samples of 80 glioma patients and 31 healthy
controls. Fifteen out of twenty-five mutated tumors exhibited the mutation, and no mu-
tation was detected in the fourteen patients with nonmutated tumors. The sensitivity
increased in high-grade gliomas (WHO grades III and IV) and with enhancing tumor
volume [201]. In 2014, Bettegowda et al. reported that ctDNA was detected in a limited
subset (less than 10%) of patients with gliomas, significantly less than the other cancer types
included in this study [202]. Piccioni et al. and Zill et al. identified ctDNA mutations in
55% and 51% of blood samples collected from GBM patients, respectively, using multigene
sequencing platforms [203,204]. However, due to the low amount of ctDNA in the plasma
of patients with primary brain tumors, CSF became an ideal alternative for highly sensitive
ctDNA detection. Wang et al. analyzed CSF-tDNA in 35 primary CNS malignancies, using
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targeted or genome-wide sequencing. They identified detectable levels of CSF-tDNA in
74% of cases.

Martínez-Ricarte et al. performed the genomic analysis of IDH1, IDH2, TP53, TERT,
ATRX, H3F3A, and HIST1H3B gene mutations in the CSF ctDNA of patients with diffuse
gliomas [205]. They concluded that the analysis of these seven genes in CSF ctDNA
facilitated the diagnosis of diffuse gliomas and supported surgical and clinical management.
Indeed, the possibility of the detection of ctDNA in the blood and CSF samples allowed the
tracking of specific alterations during treatment. It is from this perspective that Wang et al.
(2015) tried to detect the methylation status of the MGMT promoters of 89 GBM patients
using methylation-specific PCR. They found a higher sensitivity of detection when using
CSF compared to serum samples (33.3% and 21.3%, respectively). Consequently, ctDNA
provides a valuable option of pursuing and monitoring treatments.

Pan et al. performed a deep sequencing of glioma-associated genes on CSF-derived
ctDNA from 57 patients with primary CNS tumors and compared the results with blood
and tumor DNA. The study indicated that mutation detection using plasma ctDNA is less
sensitive than sequencing the CSF ctDNA, and concluded that it is an alternative approach
to stereotactic biopsy for detecting tumor-specific alterations in brainstem tumors [206].

Millet et al. evaluated the representation of the CSF genome from 85 glioma patients.
ctDNA was detected in the CSF of 49.4% patients [207]. Despite the fact that the alterations
detected in the CSF ctDNA of the patients closely resembled those in the tumor biopsies,
the authors noted an important evolution in the growth factor receptor signaling pathways,
leading to the possibility of monitoring the evolution of the tumor genome and using
genotype-directed therapies through a minimally invasive technique.

Bagley et al. performed a prospective cohort study of 42 GBM patients [208]. They con-
firmed, once again, on a prospective cohort study of 20 GBM patients, that plasma cfDNA
can be an effective noninvasive biomarker of tumor burden and prognosis. They also sug-
gested cfDNA as a substrate for molecular profiling that can complement tissue sequencing.

A more recent study was conducted by Sheng et al. on 10 patients with glioma grade
III or IV [209]. They proved the feasibility of characterizing the genomic landscape of these
tumors using ctDNA extracted from tumor in situ fluid (fluid at the local surgical cavity)
by analyzing the concordance between TISF and the tumor tissue results.

3.3. Cell-Free RNA

Cell-free RNAs are another group of molecules released from cells and tissues into
body fluids. Their origin could be from passive secretion from necrotic or apoptotic cells, or
active secretion through membrane-bound vesicles or a vesicle-free RNA-binding protein
dependent pathway. There are different kinds of cell-free RNAs (cfRNAs). Globally, we
distinguish coding RNAs (messenger RNAs) and noncoding RNAs (ncRNAs). Several
studies have shown that the quasi-majority of the transcriptome corresponds to ncRNAs,
and less than 2% of the human genome is transcribed into protein-coding RNAs [210].
This fact, together with the high stability of cf-ncRNAs (due essentially to their presence
inside vesicles or their association with others proteins), has greatly increased the interest
of studying their potential role as diagnosing or prognosing cancer biomarkers [211].

There are two classes of ncRNAs based on transcript size: small ncRNAs that are
shorter than 200 nucleotides, and long non-coding RNAs (lncRNAs) that are longer
than 200 nucleotides. The small ncRNAs include microRNAs (miRNA), short inter-
fering RNAs (siRNAs), piwi-interacting RNAs (piRNAs), and small nucleolar RNAs
(snoRNAs). The lncRNAs include intronic lncRNAs, intergenic lncRNAs (lincRNAs),
enhancer lncRNAs (elncRNAs), bidirectional lncRNAs, sense-overlapping lncRNAs,
and antisense lncRNAs [212–214].

MicroRNAs are the most studied ncRNA molecules. Their length is between 18
and 25 nucleotides. They play an important role in post-transcriptional gene regulation
due to the fact that a single miRNA might affect different mRNAs and, in the same way,
one mRNA could contain target sites for different miRNAs. Their role in proliferation,
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development and apoptosis is also well established. Many cancers are associated with
altered miRNA expression. Eventually, cf-miRNAs have come to be considered useful
cancer biomarkers thanks to their relatively high diagnostic value, as proven by several
studies [215,216]. A systematic review of the expression profiles and function of miRNA
identified 253 upregulated and 95 downregulated profiles in GBM patients. Both oncogenic
and tumor-suppressive miRNAs were found to affect target genes involved in different pro-
cesses such as cell migration, invasiveness, and angiogenesis [217]. Other studies have tried
to functionally describe and associate some miRNAs with the survival or disease progres-
sion of GBM patients [218,219]. Since glioblastoma shows mostly resistance to radiotherapy
treatment, numerous miRNAs in connection with pathogenesis and the radio-responsive
state have been studied to identify their role and their potential as radiosensitizing agents
in GBM [220].

Mir-21 is the most investigated miRNA in cancer and its overexpression has been
consistently reported in the tissue and the plasma of GBM patients [221–223]. In fact, several
studies have associated miR-21 with tumor grading and lower overall survival. In 2019,
Wang J et al. conducted a meta-analysis of 47 studies including 2262 glioma patients and
1986 controls. They reported that cell-free microRNAs were relatively efficient in diagnosing
gliomas, with a sensitivity of 83% and a specificity of 87%. Like previous studies, miR-21
was the best biomarker, followed by miR-125 and miR-222 [224]. Zhi et al. found that the
upregulation in the serum miR-20a-5p, miR-106a-5p, and miR-181b-5p was significantly
associated with high-grade astrocytoma, and the high expression of serum miR-19a-3p,
miR-106a-5p, and miR-181b-5p was associated with poor patient survival [225]. Zhao et al.
performed global miRNA profiling in serum samples of 106 primary glioblastomas. They
also identified that elevated levels of serum miR-106a-5p and miR-20a-5p were associated
with poor overall survival and disease-free survival [226].

Alongside the miRNA class, the lncRNA class is presented as a potential cancer
biomarker. Indeed, lncRNAs are found to be overexpressed in gliomas and their sig-
nature has been associated with overall survival in patients with glioblastoma [227].
Gal Mazor et al. found that TP73-AS1 is a clinically relevant lncRNA in GBM. They ob-
served the significant overexpression of TP73-AS1 in primary GBM samples. They demon-
strated that TP73-AS1 constitutes a strong prognostic biomarker since lncRNA promotes
tumor aggressiveness and TMZ resistance in GBM cancer stem cells [228].

Numerous previous studies have evaluated the diagnosis and/or prognosis value of
the long noncoding RNA HOX transcript antisense intergenic RNA (HOTAIR). Shen et al.
observed high levels of HOTIAR and low levels of GAS5 in the serum of GBM patients.
These levels were associated with a reduced probability of 2-year survival [229]. Meanwhile,
Tan et al. revealed higher levels of HOTAIR expression in serum isolated from GBM
patients compared to controls. These levels were positively correlated in both tumor and
serum samples. They demonstrated that HOTAIR can be used as a peripheral biomarker
for detecting GBM [230]. Zhihai Yuan et al. also reported that LncRNA HOTAIR was
significantly upregulated in TMZ-resistant glioblastoma cells. They indicated that exosomal
lncRNA HOTAIR induced TMZ resistance and modulated TMZ resistance through the
miR-519a-3p/RRM1 axis. Furthermore, serum exosomal HOTAIR had a good diagnostic
value [231]. These results were confirmed in other studies [231].

Globally, most of cfRNA assays are still exploratory, and the need for clinical studies
with standardized protocols is essential before integrating these molecules in the clinical
management of glioblastoma.

3.4. Extracellular Vesicles

Extracellular vesicles (EVs) are a group of small membrane-enclosed spheres released
by cells. EVs can be classified into two categories depending on their biogenesis: exosomes
produced initially in the cytoplasm with an intact endosomal membrane before fusing
with the plasma membrane and which are released from the cell via exocytosis; and
microvesicles that shed directly from the extracellular membrane via budding. EVs can
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also be classified depending on their size, density, and cargo [232,233]. EVs contribute to
intercellular communication by carrying cell components including proteins, membrane
lipids, cell metabolites, and nucleic acids. Thus, the production of EVs is ubiquinone,
and tumor cells are very active in secreting EVs, especially during cancer progression, by
mediating the transportation of various factors contributing to the control and deregulation
of proliferation, drug resistance, migration, angiogenesis induction, and invasion [234].
Unlike ctDNA, EVs can arise from viable cancer cells and hold the capacity to protect their
contents from enzyme degradation, enabling further studies [235].

Many papers have shown that glioma—and particularly glioblastoma—cells are capa-
ble of producing EVs with molecular composition to characterize tumor cells. Moreover,
EVs can cross the blood–brain barrier, both in physiological and pathological conditions,
making them detectable in the bloodstream and CSF [236].

Skog et al. have shown that EVs can be isolated from the serum of glioma patients,
identifying EGFRvIII mRNA in 7 out of 25 GBM patients. Furthermore, the authors found
that no EGFRvIII was detectable after 2 weeks of resection, which suggests a direct rela-
tionship with tumor burden [237]. Other genes and gene products with smaller alterations,
such as mutant IDH1 protein, were detected in glioma patient sera and cerebrospinal fluid
extracellular vesicles [66,238].

Akers et al. distinguished miR-21 [239] and a microRNA signatures [239] in the
extracellular vesicles of the cerebrospinal fluid of patients with GBM.

More importantly, extracellular vesicles might assist in the clinical diagnosis and
prognosis of patients with GBM [9]. Osti D et al. noticed reduced levels of EVs after
resection and higher levels at recurrence. The protein cargo of EVs could provide indications
about the tumor, therapy response, and monitoring [240]. Numerous studies have reported
that treatment with temozolomide may affect EV release and confer drug resistance. As an
example, EVs collected from TMZ-resistant patients showed increased expression levels of
MGMT [241]. Therefore, analyzing the molecular components of EVs could help monitor
temozolomide treatment [242,243].

Several commercial kits are used to purify extracellular vesicles [168]. Van Deun et al.
provided a comparative evaluation of four exosome isolation protocols and showed that
OptiPrep® density gradient centrifugation outperformed ultracentrifugation, ExoQuick®,
and Total Exosome Isolation® precipitation in terms of purity [244]. Saenz-Cuesta et al.
demonstrated that the highest EV concentrations were obtained using the ExoQuick®

protocol by comparing five different protocols [245]. Generally, there is no standard method
to isolate exomes or to discriminate tumor and non-tumor exosomes, which is limiting
their use in clinical practice.

3.5. Circulating Proteins

Circulating proteins can either be detected in blood or the CSF of patients with brain
tumors. Protein isolation is the most commonly studied technique, mainly due to its
relatively low cost. Nevertheless, since no glioma-specific proteins have been identified,
studies globally rely on detecting altered levels of some circulating proteins that are derived
from tumor cells [197].

GFAP is one of the most detected proteins highly expressed in glioblastoma patients.
Indeed, serum GFAP levels are correlated with tumor volume and histopathological tumor
characteristics [246]. Pérez-Larraya et al. proposed a combined profile analysis of IGFBP-2,
GFAP, and YKL-40 plasma levels, and suggested it as an additional diagnostic and prog-
nostic tool, especially for patients with inoperable brain lesions [247]. Furthermore, the
measurement of the expression of the seven markers involved in the angiogenesis and
inflammation pathways of patients with glioblastoma allowed them to establish statistically
significant associations between the presence of low levels of IL-8 and the development of
coagulation necrosis, high levels of VEGF, the development of ischemic necrosis and high
levels of IL-8, and the development of endothelial hyperplasia [248].
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Moreover, since YKL-40 is one of the most highly expressed genes in glioblastoma,
Qin et al. conducted a meta-analysis and found a strong association between high YKL-40
expression and worse overall survival in glioblastoma patients, making YKL-40 a potential
good biomarker of prognosis [249].

A more recent study reported alterations in other aspects of the proteome. Quanti-
tative comparisons of the plasma proteomes of GBM patients and healthy controls were
performed using SWATH (Sequential Windowed Acquisition of All Theoretical Fragment
Ion) mass spectrometry analysis. As a result, eight biomarker candidates for GBM were
identified. Among them, leucine-rich alpha-2-glycoprotein (LRG1), complement compo-
nent C9 (C9), and C-reactive protein (CRP) showed significant positive correlations with
tumor size [250].

In 2020, Naryzhny et al. tried to define the common exosomal proteins presented in
preparations from different cell lines and determine the potential glioblastoma biomarkers
in exosomes. Using the proteomic analysis of the exosomes, they generated a list of 133 pro-
teins common for all of the samples analyzed. A correlation between some of these proteins
overexpressed in glial cells and their presence in exosomes has been established, confirming
the existence of many potential glioblastoma protein biomarkers in exosomes [251].

4. Conclusions and Future Insights

Despite major advances in understanding the pathogenesis of glioblastoma, patients
are still facing poor overall survival and limited treatment options. The current diagnosis
of glioblastoma is mainly based on the histo-molecular study of tissue biopsies combined
with imaging. Several genetic techniques, including next-generation sequencing, have been
used to explain the signaling pathways and to determine the biomarkers characterizing
the diagnosis and prognosis status of these tumors. For instance, IDH, TP53, PTEN, ATRX,
TERT mutations, and EGFR amplification are some influential molecular biomarkers that
have shown a clinical impact regardless of the lack of improvement of the patients’ overall
survival. Therefore, it is crucial to integrate molecular analysis into the clinical process.

This standard protocol has many limitations. Indeed, tissue biopsies are generally
invasive and cannot easily be repeated. Conventional MRI may guide the surgeon, but
sometimes presents results that are difficult to interpret. Over the past decade, liquid
biopsy research has led to the development of new cancer management procedures for
more personalized medicine in oncology. In fact, liquid biopsy gives the possibility of
taking repetitive and non-invasive samples, which allows real-time monitoring of the
patient during treatment. A liquid biopsy can sometimes reveal information about the
tumor even before clinical progression. Nevertheless, the histology of the tumor and the
characteristics of its microenvironment are mainly provided by tissue biopsy. Therefore,
liquid biopsy should be considered as a complementary tool to current procedures, allowing
better follow-up and optimal management of the patient. Serum, CSF, and other body
fluids carry biomarkers such as CTCs, nucleic-acids, extracellular vesicles, and circulating
proteins that are linked to diagnosis and/or prognosis. Moreover, some of these particles
might be used to detect therapeutic resistance or identify tumor recurrence. However,
to date, no circulating biomarkers for managing GBM have been clinically validated. As
each biomarker has advantages and disadvantages, a combination of biomarkers could
be valuable to obtain diagnostic and prognostic information in a non-invasive method.
Nonetheless, further studies with larger cohorts are needed in order to increase specificity
and sensitivity, and to promote future clinical applications.

Author Contributions: Conceptualization, N.S., S.L. (Sara Louati) and S.B.; writing—original draft
preparation, N.S., A.S.H., S.L. (Sara Louati), S.L. (Salma Lamrabet) and S.B.; writing—review and
editing, N.S., S.L. (Sara Louati). and S.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.



Int. J. Mol. Sci. 2022, 23, 7474 20 of 30

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ostrom, Q.T.; Patil, N.; Cioffi, G.; Waite, K.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and

Other Central Nervous System Tumors Diagnosed in the United States in 2013–2017. Neuro-oncology 2020, 22 (Suppl. S1), iv1–iv96.
[CrossRef] [PubMed]

2. Louis, D.N.; Perry, A.; Reifenberger, G.; Von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.;
Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A
summary. Acta Neuropathol. 2016, 131, 803–820. [CrossRef] [PubMed]

3. Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.;
Reifenberger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro-oncology 2021,
23, 1231–1251. [CrossRef]

4. Stupp, R.; Brada, M.J.; van den Bent, M.; Tonn, J.-C.; Pentheroudakis, G.; ESMO Guidelines Working Group. High-grade glioma:
ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25,
iii93–iii101. [CrossRef] [PubMed]

5. Cloughesy, T.F.; Mochizuki, A.Y.; Orpilla, J.R.; Hugo, W.; Lee, A.H.; Davidson, T.B.; Wang, A.C.; Ellingson, B.M.; Rytlewski, J.A.;
Sanders, C.M.; et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune
responses in recurrent glioblastoma. Nat. Med. 2019, 25, 477–486. [CrossRef] [PubMed]

6. Wu, W.; Klockow, J.L.; Zhang, M.; Lafortune, F.; Chang, E.; Jin, L.; Wu, Y.; Daldrup-Link, H.E. Glioblastoma multiforme (GBM):
An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 2021, 171, 105780. [CrossRef]

7. Bunda, S.; Zuccato, J.; Voisin, M.; Wang, J.; Nassiri, F.; Patil, V.; Mansouri, S.; Zadeh, G. Liquid Biomarkers for Improved Diagnosis
and Classification of CNS Tumors. Int. J. Mol. Sci. 2021, 22, 4548. [CrossRef]

8. Decordova, S.; Shastri, A.; Tsolaki, A.G.; Yasmin, H.; Klein, L.; Singh, S.K.; Kishore, U. Molecular Heterogeneity and Immunosup-
pressive Microenvironment in Glioblastoma. Front. Immunol. 2020, 11, 1402. [CrossRef]
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