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ABSTRACT

Genome-wide association studies (GWASs) underly-
ing case-control design have uncovered hundreds
of genetic loci involved in tumorigenesis and pro-
vided rich resources for identifying risk factors and
biomarkers associated with cancer susceptibility.
However, the application of GWAS in determining the
genetic architecture of cancer survival remains un-
established. Here, we systematically evaluated ge-
netic effects at the genome-wide level on cancer sur-
vival that included overall survival (OS) and cancer-
specific survival (CSS), leveraging data deposited in
the UK Biobank cohort of a total of 19 628 incident
patients across 17 cancer types. Furthermore, we as-
sessed the causal effects of risk factors and circulat-
ing biomarkers on cancer prognosis via a Mendelian
randomization (MR) analytic framework, which in-
tegrated cancer survival GWAS dataset, along with
phenome-wide association study (PheWAS) and
blood genome-wide gene expression/DNA methyla-
tion quantitative trait loci (eQTL/meQTL) datasets.
On average, more than 10 traits, 700 genes, and 4,500
CpG sites were prone to cancer prognosis. Finally, we
developed a user-friendly online database, SUrvival
related cancer Multi-omics database via MEndelian
Randomization (SUMMER; http://njmu-edu.cn:3838/
SUMMER/), to help users query, browse, and down-

load cancer survival results. In conclusion, SUM-
MER provides an important resource to assist the
research community in understanding the genetic
mechanisms of cancer survival.

INTRODUCTION

Cancer ranks as a leading cause of death and remains an
important barrier to increasing life expectancy worldwide
(1). According to global cancer statistics, there was an esti-
mated 10.0 million cancer deaths occurred in 2020 (2). It is
noteworthy that survival probability is an important index
that can be used to directly measure the tumor burden of pa-
tients, and accurate survival estimate can provide valuable
insights into the precision therapy of cancer patients (3,4).
Thus, there is an urgent need to identify risk factors and
biomarkers that can be used in the clinic to predict cancer
prognosis early.

Currently, genome-wide association studies (GWASs)
have uncovered hundreds of genetic loci involved in can-
cer susceptibility (5–7), but their application in identify-
ing the genetic architecture of cancer survival has not been
widely established. GWASs provide a way to better under-
stand biological mechanisms linking potential risk factors
or biomarkers to diseases (8). Mendelian randomization
(MR) has become an important statistical approach rou-
tinely used in ‘post-GWAS’ analyses (9); it is a well-known
causal inference method that uses single nucleotide poly-
morphisms (SNPs) as instrumental variables (IVs, i.e. ge-
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netic predictors), and has been widely used to assess the
causal association between exposures [e.g. body mass index
(BMI) and smoking] and outcomes (e.g. cancer survival)
(10–12).

Therefore, we aimed to construct an online pan-cancer
survival database that included available survival GWAS
summary statistics, followed by causal risk factors and
biomarkers involving cancer survival obtained via MR
analysis. To meet this goal, we conducted a two-stage de-
sign in this study (Figure 1) as follows:

(i) Construction of pan-cancer survival GWAS dataset:
We aimed to systematically evaluate the effects of
genome-wide genetic variants on cancer survival that
included overall survival (OS) and cancer-specific sur-
vival (CSS), leveraging a total of 19,628 incident pa-
tients across 17 cancer types derived from the UK
Biobank cohort.

(ii) Integrative analysis to identify cancer prognostic risk
factors and circulating biomarkers: We aimed to eval-
uate the causal effects of risk factors and circulat-
ing biomarkers on cancer prognosis via a comprehen-
sive MR approach that integrated pan-cancer survival
GWAS dataset, along with phenome-wide associa-
tion study (PheWAS) and blood gene expression/DNA
methylation quantitative trait loci (eQTL/meQTL)
datasets.

MATERIALS AND METHODS

Construction of pan-cancer survival GWAS dataset

UK Biobank cohort. The UK Biobank cohort was a
prospective, population-based study that recruited 502 528
adults aged 40–69 years from the general population be-
tween 2006 and 2010 (13). Participants visited one of 22
assessment centers across England, Scotland and Wales,
where they completed touchscreen and nurse-led question-
naires, and provided biological samples. The study proto-
col and information about data access are available on-
line (https://www.ukbiobank.ac.uk/). The current study was
conducted using the UK Biobank Resource under Applica-
tion #45611.

A total of 355 543 participants remained for analysis after
the following individual-level quality control (QC) process:
(i) excluded individuals with prevalent cancer (except non-
melanoma skin cancer, based on the International Classifi-
cation of Diseases, 10th revision [ICD-10, C44]) at baseline;
(ii) excluded individuals of sex discordance; (iii) excluded
outliers for genotype missingness or excess heterozygosity;
(iv) retained unrelated participants; (v) restricted to ‘white
British’ individuals of European ancestry and (vi) removed
individuals who decided not to participate in this program.
The follow-up time of cancer survival was calculated from
cancer diagnosis (defined by ICD-10 codes (14)) to death
or the last follow-up (14 February 2018). We determined
whether an individual died of a specific cancer by consider-
ing the ICD-10 codes listed as the primary cause of death.

Pan-cancer survival GWAS analysis. All samples de-
rived from UK Biobank were genotyped using the UK

BiLEVE Axiom Array or UK Biobank Axiom Array by
Affymetrix (15). The genotyping data were imputed using
SHAPEIT3 and IMPUTE3 based on the reference pan-
els of Haplotype Reference Consortium (HRC), UK10K
and 1000 Genomes Project (Phase 3). The study pro-
tocol and information about data access are available
online (http://www.ukbiobank.ac.uk/wp-content/uploads/
2011/11/UKBiobank-Protocol.pdf).

We kept variants based on a strict QC process consist-
ing of (i) SNPs located within autosomal chromosomes;
(ii) imputation info score ≥0.3; (iii) minor allele frequency
(MAF) ≥0.01; (iv) call rate ≥95% and (v) Hardy–Weinberg
Equilibrium (HWE) P value ≥1 × 10–6. Subsequently, the
Cox proportional hazards regression analysis in an addi-
tive genetic model was applied to evaluate the association
between each SNP and cancer survival that included OS
and CSS, with adjustment for sex, age at diagnosis, BMI,
smoking status, drinking status, and the top 10 principal
components of population stratification when approximate.
The genomic control inflation factor was used to assess the
population stratification issues, and we determined cancer
survival-associated loci at a suggestive genome-wide signif-
icance threshold of P-value ≤1 × 10–6.

Identification of cancer survival-associated risk factors

PheWAS dataset. The GWAS summary statistics in
the PheWAS dataset were accessed through the IEU
Open GWAS project (https://gwas.mrcieu.ac.uk/) and
were extracted with the R package TwoSampleMR
(16,17).

Based on a curated list of traits analyzed previously with
an MR framework (18) and a strict QC process consisting
of (i) limited in European population and (ii) with ≥3 in-
dependent [linkage disequilibrium (LD) r2 < 0.01] genetic
instruments (defined by SNPs with P-value ≤ 5 × 10–8), we
included a total of 150 traits in this study, which spanned the
categories of anthropometric, autoimmune/inflammatory,
behavioural, cardiovascular, ICD10 codes, miscellaneous,
non-cancer illness, and psychiatric/neurological traits (Sup-
plementary Table S1).

MR analysis. MR is a causal inference method, that uses
germline genetic variants (i.e. SNPs) as genetic instruments
to estimate and test for the causative effect of an exposure
variable on an outcome (10).

Here, we used the R package TwoSampleMR to ap-
ply multiple MR methods in the phenotype-survival as-
sociation analysis, including inverse variance weighted
(IVW), weighted median, penalized weighted median,
and MR Egger methods. In addition, the heterogeneity
test was used to assess whether a genetic variant’s ef-
fect on outcome was proportional to its effect on ex-
posure, and the MR-Egger intercept test was fitted to
evaluate the presence of horizontal pleiotropy (19). The
suggestive evidence between phenotypes and cancer sur-
vival was identified when three nominal thresholds were
met, including P-value for IVW analysis ≤0.05, P-value
for egger intercept >0.05, and P-value for heterogeneity
>0.05.

https://www.ukbiobank.ac.uk/
http://www.ukbiobank.ac.uk/wp-content/uploads/2011/11/UKBiobank-Protocol.pdf
https://gwas.mrcieu.ac.uk/
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Figure 1. Summary of the study design. Note: GWAS, genome-wide association study; PheWAS, phenome-wide association study; eQTL, expression
quantitative trait loci; meQTL, methylation quantitative trait loci.

Identification of cancer survival-associated circulating
biomarkers

eQTL and meQTL datasets. We obtained an eQTL dataset
from the eQTLGen consortium (https://eqtlgen.org/), that
incorporated 37 datasets, with a total of 31 684 blood sam-
ples with the majority in European ancestry. The detailed
methods were described in previous studies (20). In addi-
tion, the meQTL dataset was derived from Hannon et al.’s
study, with a total of 1175 blood samples of European an-
cestry for subsequent analysis (21).

Summary-data-based MR (SMR) analysis. Similar to
phenotype-based MR analysis, the associations between
biomarkers and cancer survival were evaluated using the
SMR analytic framework with default settings (–peqtl-smr

5E-08 –peqtl-heidi 1.57E-03 –cis-wind 2000) by integrating
the cancer survival GWAS summary statistics data with cis-
eQTL and cis-meQTL results (i.e. with a window of 2000
kb to select SNPs centred around the target biomarker)
(22,23). The genotype data from the European population
of the 1000 Genomes Project Phase 3 were used for the LD
estimation. The suggestive colocalized signals were deter-
mined at a nominal threshold of P-value for SMR analy-
sis ≤0.05 and P-value for HEIDI (i.e. heterogeneity test in
dependent instruments) >0.05.

RESULTS

Summary of cancer survival GWAS dataset

In the UK Biobank cohort, 19 628 of 355 543 individuals
were newly diagnosed with one or more of 17 cancer types,

https://eqtlgen.org/
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Table 1. Basic characteristics of incident cancer cases in the UK Biobank cohort

Gender (%) Death (%)

Cancer type Cases

Median
follow-up time

(months) Male Female
Agea

(mean ± SD)
BMI

(mean ± SD) All-cause
Cancer-
specific

Bladder cancer 526 49.63 426 (80.99) 100 (19.01) 67.11 ± 5.61 28.25 ± 4.34 170 (32.32) 113 (21.48)
Brain cancer 397 8.83 246 (61.96) 151 (38.04) 64.24 ± 7.04 27.65 ± 4.76 354 (89.17) 334 (84.13)
Breast cancer 4350 62.13 0 (0) 4350 (100) 61.84 ± 7.78 27.46 ± 5.10 319 (7.33) 233 (5.36)
Colorectal cancer 2621 48.57 1555 (59.33) 1066 (40.67) 65.25 ± 6.53 27.94 ± 4.59 779 (29.72) 569 (21.71)
Corpus Uteri 698 57.58 0 (0) 698 (100) 64.17 ± 6.29 30.30 ± 6.95 105 (15.04) 78 (11.17)
Esophagus cancer 460 19.57 344 (74.78) 116 (25.22) 66.42 ± 5.81 28.63 ± 5.61 296 (64.35) 255 (55.43)
Gastric cancer 303 14.60 222 (73.27) 81 (26.73) 66.30 ± 6.63 28.68 ± 4.91 220 (72.61) 141 (46.53)
Lung cancer 1700 11.47 945 (55.59) 755 (44.41) 66.65 ± 5.99 27.46 ± 4.73 1,287 (75.71) 1,113 (65.47)
Lymphoid Leukaemia 350 51.90 209 (59.71) 141 (40.29) 65.42 ± 6.04 27.96 ± 5.11 58 (16.57) 26 (7.43)
Multiple Myeloma 355 43.10 207 (58.31) 148 (41.69) 65.86 ± 6.78 27.79 ± 4.54 122 (34.37) 90 (25.35)
Oral and pharynx cancer 458 50.45 312 (68.12) 146 (31.88) 62.80 ± 6.94 27.27 ± 4.92 120 (26.2) 71 (15.5)
Ovarian cancer 437 40.33 0 (0) 437 (100) 63.65 ± 7.26 27.29 ± 4.86 201 (46) 177 (40.5)
Pancreatic cancer 506 5.35 274 (54.15) 232 (45.85) 66.27 ± 6.29 28.21 ± 5.02 460 (90.91) 422 (83.4)
Prostate cancer 4882 57.93 4,882 (100) 0 (0) 66.77 ± 5.32 27.55 ± 3.83 460 (9.42) 258 (5.28)
Renal cancer 649 44.40 425 (65.49) 224 (34.51) 65.21 ± 6.38 29.18 ± 5.26 209 (32.2) 147 (22.65)
Skin Melanoma 1402 56.27 717 (51.14) 685 (48.86) 63.39 ± 7.68 27.58 ± 4.48 119 (8.49) 79 (5.63)
Thyroid cancer 179 60.27 57 (31.84) 122 (68.16) 62.06 ± 7.56 27.66 ± 4.70 16 (8.94) 6 (3.35)

aAge at diagnosis.
Note: BMI, body mass index.

ranging from 179 thyroid cancer cases to 4882 prostate can-
cer cases (Table 1). During a median follow-up time of
4.06 years after the clinical diagnosis, the proportion of all-
cause deaths ranged from 7.33% (319/4350, breast cancer)
to 90.91% (460/506, pancreatic cancer), and the proportion
of cancer-specific deaths ranged from 3.35% (6/179, thyroid
cancer) to 84.13% (334/397, brain cancer; Table 1).

Subsequently, we applied GWAS analysis to evaluate the
prognostic effects of an average of 8 332 476 SNPs across
17 cancer types. The genomic control inflation factor (i.e.
lambda; OS/CSS) ranged from 0.77/0.37 for thyroid cancer
to 1.12/1.12 for brain cancer, indicating no residual popu-
lation stratification issues for most cancers. Based on a sug-
gestive genome-wide significance threshold (P ≤ 1 × 10–6),
we identified a total of 1209 OS-associated and 1539 CSS-
associated SNPs across 17 cancer types, ranging from 4 loci
for lung cancer to 57 loci for lymphoid leukemia among OS-
related SNPs, and from 7 loci for colorectal cancer to 54 loci
for gastric cancer among CSS-related SNPs (Table 2; Sup-
plementary Figure S1; Table S2).

Identification of risk factors and circulating biomarkers as-
sociated with cancer survival

Furthermore, we performed an integrative MR analy-
sis to identify cancer survival-associated risk factors and
biomarkers. By combining cancer survival GWAS with Phe-
WAS, eQTL and meQTL datasets, we found an average of
11 phenotypes [ranging from 4 (brain cancer) to 23 (thyroid
cancer)], 716 genes [ranging from 629 (corpus uteri) to 847
(brain cancer)] and 4828 CpG sites [ranging from 4350 (skin
melanoma) to 5514 (brain cancer)] associated with cancer
OS, and an average of 11 phenotypes [ranging from 4 (brain
cancer) to 18 (prostate cancer)], 705 genes [ranging from 451
(thyroid cancer) to 877 (brain cancer)] and 4702 CpG sites
[ranging from 2491 (thyroid cancer) to 5574 (brain cancer)]
associated with cancer CSS (Table 2; Supplementary Fig-

ures S2–S4). Interestingly, most of the prognostic biomark-
ers were specific to one cancer type, indicating high hetero-
geneity across cancers.

Web design and interface

Finally, we applied the R package Shiny to develop a user-
friendly database for the findings of the above two-stage
analysis [SUrvival related cancer Multi-omics database via
MEndelian Randomization (SUMMER): http://njmu-edu.
cn:3838/SUMMER/; Figure 2A] with the following four
modules: (i) ‘Survival GWAS Dataset’ module, to help users
browse the association effects of over eight million ge-
netic variants on pan-cancer survival; (ii) ‘Phenotype-Wide
Association Analysis’ module, to help users browse the
causal effects of 150 phenotypes on pan-cancer survival;
(iii) ‘Biomarker-Wide Association Analysis’ module, to help
users browse the causal effects of genome-wide genes and
CpG sites on pan-cancer survival and (iv) ‘Running your
data’ module, to allow users to evaluate their own data on
pan-cancer survival. The ‘About’ page provides more details
about the function of this database.

Data browsing and querying of the four modules

On the ‘Survival GWAS Dataset’ page, when users select a
cancer type and enter a batch of SNP IDs or a genetic re-
gion, a table with cancer type, chromosome ID, SNP ID,
SNP genomic position, SNP alleles (A1: minor/effect allele;
A2: major/reference allele), MAF, hazard ratio (HR), stan-
dard error (SE) and P-value will be built to display the asso-
ciations of SNPs with cancer survival that includes OS and
CSS. Users can download the results by clicking the ‘Down-
load’ button. Besides, users can select one SNP-survival pair
and click the ‘Plot’ button, and the diagrams of Kaplan–
Meier (KM) plot will be provided to display the associa-
tions. For example, our analysis showed that gastric can-
cer patients with the SNP rs12798030 TG or GG genotypes

http://njmu-edu.cn:3838/SUMMER/
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Table 2. Summary of the significant associations of risk factors and circulating biomarkers with cancer survival via Mendelian randomization analysis

Significant associations with overall survival Significant associations with cancer-specific survival

Cancer type
No. of
SNPs Lambda SNPsa Locia Phenotypesb Genesc

CpG
sitesc Lambda SNPsa Locia Phenotypesb Genesc

CpG
sitesc

Bladder cancer 8 326 282 1.03 34 23 12 710 4692 1.03 134 38 13 737 5017
Brain cancer 8 390 743 1.12 108 39 4 847 5514 1.12 98 38 4 877 5574
Breast cancer 8 338 638 1.01 99 15 11 705 4681 1.01 29 12 14 677 4731
Colorectal cancer 8 334 629 1.01 7 5 5 692 4425 1.01 10 7 15 689 4301
Corpus Uteri 8 360 934 1.01 161 35 7 629 4774 0.98 138 31 8 708 4700
Esophagus cancer 8 296 714 1.07 47 36 9 717 5034 1.07 36 31 7 729 5198
Gastric cancer 8 283 963 1.06 177 50 11 743 4953 1.07 270 54 12 716 5117
Lung cancer 8 355 227 1.01 24 4 12 677 4518 1.01 13 9 13 666 4678
Lymphoid
Leukaemia

8 425 952 0.97 98 57 12 757 5208 0.84 271 36 15 792 5142

Multiple Myeloma 8 258 091 1.07 73 39 12 680 4861 1.05 104 41 13 710 5041
Oral and pharynx
cancer

8 272 464 1.05 99 30 9 762 4802 0.99 80 39 13 760 4819

Ovarian cancer 8 351 777 1.07 138 48 11 713 4978 1.06 90 46 6 671 4856
Pancreatic cancer 8 299 001 1.07 29 22 9 700 4746 1.06 86 26 10 678 4512
Prostate cancer 8 333 069 1.01 15 11 13 703 4559 1.00 29 9 18 719 4415
Renal cancer 8 376 852 1.03 32 17 11 754 5007 1.03 91 24 6 728 4712
Skin Melanoma 8 339 443 0.99 55 22 14 668 4350 0.96 60 25 16 679 4635
Thyroid cancer 8 308 306 0.77 13 7 23 721 4977 0.37 0 0 12 451 2491

aP-value for Cox regression model ≤ 1 × 10–6.
bP-value for IVW analysis ≤0.05, P-value for egger intercept >0.05, and P-value for heterogeneity >0.05.
cP-value for SMR analysis ≤0.05 and P-value for HEIDI >0.05.
Note: SNP, single nucleotide polymorphism; IVW, inverse-variance weighted; SMR, summary-data-based Mendelian randomization.

had shorter OS times than patients with the rs12798030
TT genotype (HR = 1.67, P = 2.93 × 10–7; P for log-rank
test = 7.48 × 10–7; Figure 2B).

On the ‘Phenotype-Wide Association Analysis’ page,
when users select a cancer type, a phenotype category (e.g.
anthropometric and autoimmune/inflammatory) and a sur-
vival type (e.g. OS or CSS), a table with phenotype category,
trait, trait ID, cancer type, survival type, MR method, num-
ber of IVs, and beta, SE and P-value from the MR analysis
will be built to display the associations of related pheno-
types with cancer survival. Users can download the results
by clicking the ‘Download’ button. Besides, users can se-
lect one trait-survival pair and click the ‘Plot’ button, and
the diagrams of MR scatter plot will be provided to dis-
play the associations. For example, we found that sleep du-
ration was associated with an improved OS of gastric can-
cer (betaIVW = –3.53, PIVW = 0.003, Pegger intercept = 0.411,
PIVW heterogeneity = 0.798; Figure 2C).

On the ‘Biomarker-Wide Association Analysis’ page,
when users select a cancer type, a biomarker type (e.g. gene
expression or CpG site) and a survival type (e.g. OS or CSS),
a table with cancer type, survival type, probe ID, probe ge-
nomic position, top eQTL/meQTL SNP, top SNP genomic
position, MAF from 1000 Genomes EUR population, top
SNP-associated eQTL and survival GWAS results (includ-
ing beta, SE and P-value), and beta, SE and P-value (in-
cluding PSMR, Pmulti-SMR and PHEIDI) from SMR analysis
will be built to display the associations of related biomark-
ers with cancer survival. Users can download the results by
clicking the ‘Download’ button. Besides, users can select
one biomarker-survival pair and click the ‘Plot’ button, and
the diagrams of SMR scatter plot will be provided to dis-
play the associations. For example, our analysis showed that
higher expression of HTR6 was associated with poorer OS

in colorectal cancer (betaSMR = 0.72, PSMR = 2.38 × 10–4,
Pmulti-SMR = 0.007, PHEIDI = 0.692; Figure 2D).

On the ‘Running your data’ page, this module consists
of three steps: (i) selecting a cancer type, a data type (e.g.
phenotype or biomarker), a survival type (e.g. OS or CSS),
and entering a data name and email address (optional); (ii)
uploading your summary statistic data (csv format); and
(iii) submitting your data and performing analysis. A ta-
ble derived from the MR or SMR analysis will be built to
display the associations of related phenotypes/biomarkers
with cancer survival, which can be downloaded by clicking
the ‘Download’ button or received by email. Besides, users
can select one pair and click the ‘Plot’ button, and the dia-
grams of MR/SMR scatter plots will be provided to display
the associations.

DISCUSSION

In this study, we not only comprehensively evaluated genetic
effects at the genome-wide level across pan-cancer prog-
noses, but also applied MR analysis to identify multiple risk
factors and circulating biomarkers relevant to cancer sur-
vival. Importantly, we constructed a user-friendly database
called SUMMER to help users query, browse, and down-
load corresponding results.

Cancer mortality remains a major public health con-
cern; therefore, the identification of prognostic risk factors
or biomarkers may shed new light on precision oncology
(24,25). Especially, circulating biomarkers that are usually
detected in peripheral blood have been considered signifi-
cant tools for monitoring cancer progression and treatment
(26). Until now, it is still difficult for observational stud-
ies to estimate causal associations due to the potential con-
founding bias (27). Here, we proposed to apply GWAS anal-
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Figure 2. Overview of the SUMMER database. (A) Advanced search box of the ‘Survival GWAS Dataset’, ‘Phenotype-Wide Association Analysis’ and
‘Biomarker-Wide Association Analysis’ pages. (B) Example of a KM plot for rs12798030 and gastric cancer OS, HR and P value were from the Cox
regression model. (C) Example of an MR scatter plot for sleep duration and gastric cancer OS, beta and P value were from the IVW method. (D) Example
of an SMR scatter plot for HTR6 and colorectal cancer OS, beta and P value were from the SMR method. Note: KM, Kaplan–Meier; OS, overall survival;
MR, Mendelian randomization; SMR, summary-data-based Mendelian randomization; HR, hazard ratio; IVW, inverse-variance weighted.

ysis to calculate the genetic effects on cancer survival at the
genome-wide level, and then used the MR analysis frame-
work, a method for causal inference (28), to construct the
SUMMER database for re-evaluating the associations of
risk factors and circulating biomarkers with cancer survival.
Since SNPs are randomly assorted at meiosis, MR is less
likely to be affected by confounding factors compared to
conventional observational studies. For example, we found
that sleep duration was associated with an improved OS of
gastric cancer, which was in agreement with the previously
reported MR suggestive results between short sleep dura-
tion and increased gastric cancer risk (29).

Compared to other germline variants-related databases,
our SUMMER database has several strengths. First, this is
the first pan-cancer survival-related MR database that inte-
grates survival GWAS with large-scale PheWAS, eQTL and
meQTL datasets, to help users evaluate the causal effects of
risk factors and circulating biomarkers on predicting can-
cer prognosis. Second, our database allows users to upload
their own PheWAS or QTL summary statistics online. This
allows biologists to easily conduct MR analyses for cancer
survival without needing to use complex software packages.
Third, we constructed a large-scale online pan-cancer sur-

vival GWAS dataset with a sufficient sample size (almost
20 000 cancer cases) derived from the well-designed UK
Biobank cohort, which can help users easily evaluate the
effects of genome-wide variants on cancer survival. Com-
pared to some eQTL databases (e.g. PancanQTL) (30) with
survival-eQTLs function, our database has the following
advantages: (i) it is at the genome-wide level, not limited to
SNPs with eQTL effects and (ii) it has a larger sample size
than that from The Cancer Genome Atlas (TCGA) cohort.

Some limitations and future directions related to this
database should be noted. First, we only included European
individuals in our database, and more survival-related data
derived from multiple ancestries need to be incorporated
in the future. Second, we need to add more cancer GWAS
datasets with larger sample sizes and longer follow-up times
to further increase the statistical power of our calculation.
Third, more risk factors and multi-tissue biomarkers should
be further included in our database.

In summary, we created a comprehensive pan-cancer sur-
vival GWAS database underlying MR analysis to evaluate
the causal effects of risk factors and circulating biomarkers
on cancer prognosis. We believe that SUMMER will greatly
expand the understanding of the genetic mechanisms un-
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derlying cancer survival for researchers worldwide, further
providing an important resource for precision oncology.

DATA AVAILABILITY

The raw genotype and clinical data have been deposited
in UK Biobank (https://www.ukbiobank.ac.uk/). The pan-
cancer survival results have been deposited in http://njmu-
edu.cn:3838/SUMMER/. All other relevant data will be
shared upon reasonable request to the corresponding au-
thors.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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