
Onishi‑Seebacher et al. BMC Med Genomics          (2021) 14:166  
https://doi.org/10.1186/s12920‑021‑01003‑z

RESEARCH ARTICLE

Repeat to gene expression ratios in leukemic 
blast cells can stratify risk prediction in acute 
myeloid leukemia
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Abstract 

Background: Repeat elements constitute a large proportion of the human genome and recent evidence indicates 
that repeat element expression has functional roles in both physiological and pathological states. Specifically for can‑
cer, transcription of endogenous retrotransposons is often suppressed to attenuate an anti‑tumor immune response, 
whereas aberrant expression of heterochromatin‑derived satellite RNA has been identified as a tumor driver. These 
insights demonstrate separate functions for the dysregulation of distinct repeat subclasses in either the attenuation 
or progression of human solid tumors. For hematopoietic malignancies, such as Acute Myeloid Leukemia (AML), only 
very few studies on the expression/dysregulation of repeat elements were done.

Methods: To study the expression of repeat elements in AML, we performed total‑RNA sequencing of healthy 
CD34 + cells and of leukemic blast cells from primary AML patient material. We also developed an integrative bioin‑
formatic approach that can quantify the expression of repeat transcripts from all repeat subclasses (SINE/ALU, LINE, 
ERV and satellites) in relation to the expression of gene and other non‑repeat transcripts (i.e. R/G ratio). This novel 
approach can be used as an instructive signature for repeat element expression and has been extended to the analy‑
sis of poly(A)‑RNA sequencing datasets from Blueprint and TCGA consortia that together comprise 120 AML patient 
samples.

Results: We identified that repeat element expression is generally down‑regulated during hematopoietic differentia‑
tion and that relative changes in repeat to gene expression can stratify risk prediction of AML patients and correlate 
with overall survival probabilities. A high R/G ratio identifies AML patient subgroups with a favorable prognosis, 
whereas a low R/G ratio is prevalent in AML patient subgroups with a poor prognosis.

Conclusions: We developed an integrative bioinformatic approach that defines a general model for the analysis of 
repeat element dysregulation in physiological and pathological development. We find that changes in repeat to gene 
expression (i.e. R/G ratios) correlate with hematopoietic differentiation and can sub‑stratify AML patients into low‑risk 
and high‑risk subgroups. Thus, the definition of a R/G ratio can serve as a valuable biomarker for AML and could also 
provide insights into differential patient response to epigenetic drug treatment.
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Background
Repeat elements constitute around 50% of the mamma-
lian genome and, in addition to their role as insertional 
mutagens, have been involved in functions for genome 
evolution and stability [34, 42], embryonic development 
[22, 31, 43], immune response [12] and in fine-tun-
ing of gene regulatory networks [17, 45, 51]. While the 
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majority of repeat elements are permutated and silent, it 
has been estimated that around 10–15% maintain tran-
scriptional competence [7, 53]. In addition, several sub-
classes of repeat elements have also been shown to be 
deregulated in cancer [8]. Derepression of centromeric 
satellite repeats (ALR, GSAT, HSATII), for example, have 
been found in multiple solid human cancers [57, 66]. 
Deregulated satellite RNA can induce repeat expansion 
at pericentric heterochromatin [4], generate genomic 
instabilities [66, 67] and aberrantly sequester some key 
epigenetic factors, such as YBX1 [35] or the Polycomb 
complex PRC1 [28]. By contrast, therapeutic activation of 
endogenous retroviruses (ERV) has been found to trigger 
an innate immune response in human prostate and breast 
cancer cell lines [11, 47], suggesting that some types of 
cancer maintain a suppressed level of ERV expression 
in order to evade immune surveillance. The analysis of 
repeat element expression/dysregulation has recently 
been extended to several hematological malignancies, 
particularly Acute Myeloid Leukemia [13, 14].

Acute Myeloid Leukemia (AML) is a heterogeneous 
cancer of the myeloid lineage of blood cells, which, in 
addition to prevalent genetic lesions, also exhibit epige-
netic alterations in DNA methylation and histone modifi-
cations [63, 65]. Treatments against AML with ‘epigenetic 
drugs’, such as the DNMT inhibitors Azacytidine and 
Decitabine [41], or combination therapies with DNMTi 
and ATRA [26] or DNMTi and HDACi [5] are effective 
and are under clinical investigation. However, the mecha-
nism behind these epigenetic alterations and how these 
epigenetic drugs target leukemic cells are only now start-
ing to become apparent. In addition, no clear biomarkers 
that can predict AML treatment response have yet been 
identified. Therefore, we set out to determine repeat ele-
ment expression in AML, by high-throughput sequenc-
ing of total-RNA of AML patient samples compared to 
healthy blood controls. The repeat expression analysis 
was further extended to poly(A)-RNA sequencing data 
sets of AML patient samples from the Blueprint [10] and 
TCGA consortia [9]. Our integrative analysis indicates 
that repeat element expression is dynamically regulated 
during hematopoiesis and that differences in repeat to 
gene expression ratios associate with distinct subgroups 
of AML patients and correlate with overall progno-
sis. Through this approach, we identified repeat to gene 
expression ratios (R/G ratios) as a signature in AML that 
may serve as a prognostic biomarker through which epi-
genetic drug efficacy may also be tested.

Methods
Purification of primary human CD34 + cells
Unused human blood transfusions were obtained 
from the University of Freiburg Medical Center 

(Transfusionsmedizin des Universitätsklinikums 
Freiburg). 50 ml blood was diluted 1:1 in PBS and sepa-
rated on a Ficoll gradient (Pancoll, Ibian Technologies). 
The interphase (buffy coat) was transferred to a 50  ml 
Falcon tube, the cell suspension was washed in PBS and 
cells were processed for MACS sorting which was done 
with anti-CD34 MicroBeads (Miltenyibiotec). Around 
0.5–1 ×  106 CD34 + cells are typically obtained from one 
buffy coat. Cells were resuspended in 1 ml Trizol (Sigma) 
and kept at − 80 °C until RNA extraction.

Samples of pre-therapeutic and newly diagnosed AML 
patients were obtained from the Hematology, Oncology 
and Stem cell Transplantation department of the Uni-
versity of Freiburg, Medical Center. Leukemic blast cells 
were isolated from peripheral blood of 7 patients and 
only for one patient were the leukemic blast cells isolated 
from bone marrow. For 6 patients, both bone marrow and 
peripheral blood blast percentages were analyzed (in the 
remaining 2 patients, no bone marrow puncture could be 
performed), indicating that the median bone marrow and 
blood blast percentages are highly comparable (61% and 
59%) (see Additional file 11: Table 1). Leukemic blast cells 
were purified by MACS sorting with both anti-CD34 and 
anti-CD117 MicroBeads (Miltenyibiotec).

Isolation of total RNA from primary human CD34 + cells
Total RNA from around 0.5–1 ×  106 cells was iso-
lated with Trizol (Sigma), digested with TurboDNAse 
(Ambion), washed and resuspended in  H2O. The RNA 
integrity was confirmed with an RNA Bioanalyzer 
(Agilent).

HiSeq RNA sequencing of non‑poly(A) selected total RNA
Comparable amounts (250  ng–1  ug) of total RNA was 
converted into non-poly(A) selected, ribosomal RNA 
depleted (TruSeq RNA Library Prep Kit v2) cDNA librar-
ies following Illumina protocols. The cDNA libraries were 
sequenced on a NextSeq 500 (Illumina) or HiSeq 2500 
(Illumina) platform using a 75 bp paired-end approach to 
give a coverage of 26–78 million reads per sample.

Blueprint data sets
In the Blueprint-HSC dataset [10], an ultra-low RNA 
input kit (Clontech SMARTer Ultra Low RNA Kit) for 
library preparation was used [52], which may also ena-
ble the detection of repeat element transcripts that are 
only weakly poly-adenylated. The Blueprint-HSC cDNA 
libraries were done in an unstranded manner using 
100  bp paired-end reads (100  bp paired–end reads also 
for Blueprint-MPP and 75 bp paired-end reads for Blue-
print-CMP) and had a coverage of 42–103 million reads 
per sample. The Blueprint-AML dataset enriched for 
poly(A)-RNA using standard mRNA library generation 
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protocols that can analyze transcripts in a strand-specific 
manner. The Blueprint-AML libraries used 75 bp paired-
end reads and had a coverage of 53–79 million reads per 
sample. In accordance with the Ft Lauderdale agreement, 
these data are available for additional analysis under 
https:// europ epmc. org/ artic les/ PMC63 63099.

TCGA data sets
For the TCGA-AML dataset, mRNA purification by 
oligo-dT was supplemented by the use of random hex-
amer primers (TCGA-AML NEJM). The TCGA-AML 
libraries used 50  bp paired-end reads and had a cov-
erage of 21–34 million reads per sample. Data were 
downloaded from the documentation published for the 
TCGA-AML study [9].

Bioinformatic analysis of repeat element expression 
and R/G ratio
Paired-end reads in Fastq files were first trimmed (strin-
gency 2) using Trim Galore! (v0.4.0) and aligned to the 
human genome build GRChg38 from Ensembl using 
STAR (Dobin et  al. [16]) with the “–outFilterMultimap-
Nmax 100 –winAnchorMultimapNmax 100” options. 
Short sequencing reads (75–100  bp) containing repeat 
element sequences align to multiple positions in the 
genome and only the minority of these reads can be 
uniquely assigned to a distinct location. In our bioinfor-
matic pipeline, we therefore defined the total number of 
repeat transcripts for each repeat subclass, rather than 
analyzing repeat transcripts at individual genomic loci. 
We also did not filter according to intergenic and genic 
(i.e. intronic) repeat assignments. This maximized the 
number of read counts and also enabled a comparative 
analysis of the total number of reads for each distinct 
repeat subclass and for genes. Repeat and gene expres-
sion was quantified with TETranscripts version 2.00 [32]. 
Repeat transcripts refer to annotated repeat elements 
obtained from the TETranscripts website and non-
repeat transcripts refer to annotated genes from Gencode 
(release 24). The resulting counts were then analyzed in R 
with the DESeq2 (Love et al. [40]) package to obtain nor-
malized expression levels for repeat elements and genes, 
using rlog transformation for the Uniklinik Freiburg sam-
ples and the variance stabilizing transformation function 
for the Blueprint and TCGA samples. These transforma-
tions stabilize the mean–variance relationship seen in all 
RNA-seq expression datasets and were done as detailed 
in Love et  al. ([40]). P-values were extracted using the 
DESeq2 package (Love et al. [40]), calculated by the Wald 
test and adjusted using the BH (Benjamini-Hochberg) 
method.

An R/G ratio is defined by the median of normalized 
counts for all repeat transcripts versus the median of 
normalized counts for all gene transcripts. For exam-
ple, a R/G ratio of 0.82 had a median rlog normalized 
expression for repeat transcripts of 7.83 and a median 
rlog normalized expression for gene transcripts of 9.57. 
Data visualization was performed using ggplot2 [29, 62]. 
Heatmaps for dysregulated repeat element expression in 
Uniklinik Freiburg and Blueprint datasets were gener-
ated using pheatmap in R (pheatmap: Pretty heatmaps. R 
package version 1.0.8. https:// CRAN. Rproj ect. org/ packa 
ge= pheat map).

MA plots
Differential expression analysis for the Uniklinik Freiburg 
samples was conducted with DESeq2, using gender, batch 
and cell type as the design matrix. Differential expres-
sion analysis of TCGA patient samples based on R/G 
ratio stratification used gender and R/G ratio stratifica-
tion group as the design matrix. MA plots were created 
using the baseMean values on the x-axis and the log2 fold 
change values on the y-axis (DESeq2), using ggplot2 for 
visualization. Multiple testing adjustments were done 
using the BH (Benjamini-Hochberg) method.

Inter‑patient variation plots
Normalized counts (DESeq2) for each patient were plot-
ted along the x-axis using consistent patient ordering. 
The median of the normalized counts per repeat was 
plotted as a black horizontal line.

Consensus coverage plots for repeat sequences
For coverage plots, reads were aligned to consensus 
repeat sequences rather than the human genome. Con-
sensus repeat sequences were first downloaded from 
Repbase [2] and then highly similar (sequence iden-
tity > 95%) sequences merged together using CD-HIT 
version 4.6 (Fu et  al. [23]). After alignment, per-base 
coverage normalized to average 1X coverage was deter-
mined using bamCoverage from DeepTools version 2.5.3 
(Ramírez et al. [44]). Final coverage tracks were then plot-
ted in R using the Gviz package (Hahne and Ivanek 2016).

Stratification of AML patient samples by R/G ratio
The R/G ratios were calculated as the median of repeat 
element expression divided by the median of gene 
expression per patient sample. Patient samples were 
stratified based on z-score normalized R/G ratios using 
the cut_interval function from ggplot2, to create patient 
subgroups with equal R/G ratio range. For our study, the 
numeric vector represents the z-score normalized R/G 
ratios and n represents the “high-repeat”, “mid-repeat” 
and “low-repeat” categories (therefore, n was set to 3). 

https://europepmc.org/articles/PMC6363099
https://CRAN.Rproject.org/package=pheatmap
https://CRAN.Rproject.org/package=pheatmap
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We did not use a cut-point in between the categories, as 
using the cut_interval function is a more unbiased way 
to divide numeric data into categorical data. The Unik-
linik Freiburg low-repeat AML samples had R/G ratios 
between 0.82 and 0.85 and the Uniklinik Freiburg high-
repeat AML samples had R/G ratios between 1.03 and 
1.08. The Blueprint low-repeat AML samples had R/G 
ratios between 0.97 and 1.01 and the Blueprint high-
repeat AML samples had R/G ratios between 1.14 and 
1.17. The TCGA low-repeat AML samples had R/G ratios 
between 0.98 and 1.09 and the TCGA high-repeat AML 
samples had R/G ratios between 1.21 and 1.32.

Gene ontology annotations and ingenuity pathway 
analysis
The downstream functional analyses were generated 
through the use of IPA (Qiagen Inc, https:// www. qiage 
nbioi nform atics. com/ produ cts/ ingen uity- pathw ay- analy 
sis). IPA is a frequently updated and comprehensive data-
base that uses GSEA-like statistics. The log2FoldChange 
values from the differential expression analysis were 
used, after filtering for a minimum expression (baseMean 
expression > 100 normalized reads), fold-change (absolute 
value of log2FoldChange > 1), and significance (adjusted 
p-value < 0.05) as inputs for IPA. This filtering strategy 
extracts statistically significant expression changes that 
are meaningfully above background level. The data were 
exported and plotted using R/Bioconductor.

Survival probability
Survival analysis was conducted on AML patient sam-
ples using metadata available from TCGA. Covariates 
used were the R/G ratio-based groups, age, gender, and 
AML cytogenics risk category. Univariate Cox propor-
tional hazards regression modeling to determine the 
effect of covariates on survival was performed using the 
R survival package (Therneau ([58]). A Package for Sur-
vival Analysis in S version 2.38, < URL: https:// CRAN.R- 
proje ct. org/ packa ge= survi val >), which showed R/G 
ratio-based groups, age, and cytogenetic risk category to 
have statistically significant regression coefficients. Plots 
were created with the survminer library (Kassambara 
and Kosinski [33]). survminer: Drawing Survival Curves 
using ‘ggplot2’. R package version 0.4.0. https:// CRAN.R- 
proje ct. org/ packa ge= survm iner). Multivariate statistical 
modeling using the Cox proportional hazards model was 
performed using R/G ratio-based groups, age, gender, 
AML subtypes and acute myeloid leukemia cytogenetic 
risk category as covariates, where the R/G ratio-based 
groups and cytogenetics risk category remained statisti-
cally significant. To check for the proportional-hazards 
assumption and to confirm a Cox regression, we used the 
cox.zph R function from the survival package (Therneau 

[58]). The forest plot for Cox proportional hazards mul-
tivariate analysis was generated using ‘ggforest’ function 
from survminer library.

Correlation between R/G ratios and chromatin factor 
expression
The Pearson correlation coefficient (PCC) between R/G 
ratios and chromatin factor expression levels (rlog for 
Uniklinik Freiburg AML and vst for Blueprint AML and 
TCGA AML) were calculated using the cor() function in 
R for the Uniklink Freiburg, the Blueprint-AML, and the 
TCGA-LAML dataset separately. P-values were adjusted 
using the BH (Benjamini-Hochberg) method. The mean 
PCCs are shown on the plots.

Results
Dysregulation of satellite and LTR/ERV repeats in AML 
patient samples
Repeat elements and repetitive DNA constitute around 
50% of the human genome (Additional file 1: Figure S1A 
and S1B) and have been classified as Long Interspersed 
Nuclear Elements (LINE) (~ 22%), Short Interspersed 
Nuclear Elements (SINE), also called ALU (Arthrobacter 
luteus restriction endonuclease) (~ 13%), and Endoge-
nous RetroViruses (ERV) with their associated regulatory 
elements within the Long Terminal Repeats (LTR) (~ 9%). 
Satellite repeats are subdivided into centromeric (ALR 
for alpha like repeats, GSAT and HSATII) and pericentric 
(BSR for beta satellite repeats and HSTAIII) repeats and 
make up around 4% of the human genome [24, 53]. These 
distinct subclasses of repeat elements greatly differ in size 
and repeat organization (Additional file  1: Figure S1C) 
and by their potential to impart transcription regulatory 
sequences (Additional file 2: Figure S2).

From the Hematology, Oncology and Stem Cell Trans-
plantation department of the University of Freiburg 
Medical Center (Uniklinik Freiburg), we obtained puri-
fied leukemic blast cells (see "Methods" section) from 
eight pre-therapeutic and newly diagnosed AML patients 
(see Additional file  11: Table  1). Leukemic blast cells 
were isolated from peripheral blood of 7 patients and 
only for one patient were the leukemic blast cells iso-
lated from bone marrow. Although the range of leukemic 
blasts in the blood versus bone marrow can greatly dif-
fer in AML tumor dynamics, peripheral blood blast or 
bone marrow blast isolates have been shown to be highly 
comparable for the analysis of diagnostic markers (mor-
phology, immunocytochemistry and immunopheno-
type) [61]. In addition to these leukemic samples, we also 
obtained buffy coats from five healthy blood transfusion 
donors (see "Methods" section). From the buffy coats, 
CD34 + cells were FACS sorted, but not further sub-
purified and represent a mixed population of progenitor 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
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Fig. 1 Repeat element expression in AML patient samples (Uniklinik Freiburg). a Fraction of repeat transcripts that align to the main repeat classes 
in the CD34 + control and in the M1, M2 and M4 AML patient samples (Uniklinik Freiburg). 40% of reads consist of SINE/ALU repeats, around 30% are 
LINE elements, 9% LTR/ERV, and between 0.1 and 0.3% are Satellite repeats. Samples are grouped into CD34 + control and the M1, M2 and M4 AML 
subtypes. Error bars represent the standard error of the mean (SEM). b MA‑plots (mean expression versus the log2 fold change) depicting changes 
in repeat expression in the in the CD34 + controls (n = 5) and the three AML subtypes: M1 (n = 2), M2 (n = 3) and M4 (n = 3). X‑axis indicates the 
baseMean values and y‑axis the log2 fold change values. c/d Inter‑patient variation plots show normalized read counts for distinct repeat types in 
Satellite repeats (c) or LTR/ERV elements (d). Each data point represents one sample for each of the CD34 + control (n = 5) and AML samples (n = 8). 
e/f Coverage plots represent transcript reads that are aligned to consensus repeat sequence for distinct repeat types in Satellite repeats (e) or LTR/
ERV elements (f). Per‑base coverage is normalized to average 1X coverage as determined using bamCoverage from DeepTools
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and more differentiated myeloid cells. From these cell 
samples, we prepared total RNA sequencing libraries 
and performed paired-end, 75  bp Hiseq RNA sequenc-
ing with the number of mapped reads ranging from ~ 20 
to 75 million reads (median of ~ 42 million reads) (see 
"Methods" section). The isolation of total RNA, rather 
than selection for poly(A) RNA, should ensure that we 
obtain a more complete expression profile of repeat ele-
ments that also includes solo-LTR transcripts, truncated 
LINE transcripts and all satellite repeat sequences.

AML patient samples can be subtyped into distinct 
FAB groups [3], of which we obtained material classi-
fied as M1 (n = 2), M2 (n = 3), and M4 (n = 3) (Additional 
file 11: Table 1). The M1 subtype refers to leukemic mye-
loblast cells with minimal differentiation, the M2 subtype 
to myeloblasts with some maturation, while the M4 sub-
type represents a state of myelomonocytic differentiation.

We first determined the overall expression of repeat 
elements by comparing the fraction of repeat reads 
that align to the main repeat subclasses. Around 40% 
of all repeat reads comprise SINE/ALU repeats, around 
30% contain LINE elements, ca. 9% LTR/ERV, and only 
between 0.1 and 0.3% are satellites (Fig.  1a). While the 
fraction of repeat reads between the CD34 + controls and 
the distinct AML subtypes did not consistently change 
for SINE/ALU and LINE repeats, we observed a modest 
increase for LTR/ERV reads in all three AML subtypes. 
Although their overall expression is very low, satellite 
repeats were most derepressed in the AML subtypes. Sta-
tistical inference for differential expression was done by 
the Wald test and p-values were adjusted using the BH 
(Benjamini-Hochberg) method. Unless directly speci-
fied (see below), these differences have a non-significant 
tendency.

We next used an MA plot (mean expression versus the 
log2 fold change) to identify dysregulation of distinct 
repeat elements in the CD34 + controls and the three 
AML subtypes (Fig. 1b). For the M1, M2 and M4 AML 
subtypes, the MA plots show a general down-regulation 
for a large number of repeat elements in the M2 (19 sig-
nificantly down-regulated repeats; adj. p-value < 0.05, 
log2FC <  − 1) and, most pronounced, in the M4 (922 
significantly down-regulated repeats; adj. p-value < 0.05, 
log2FC <  − 1) AML subtype. This global repression of 
repeat elements is not reflected by overall changes in 
gene expression, as the average level of gene transcripts 
remains constant in the M1, M2 and M4 AML subtypes. 
Despite this general down-regulation, there are several 
satellite (e.g. ALR, LSAU, HSATII,III) and LTR/ERV (e.g. 
LTR2B ERV1, LTR10B ERV1, MER61E ERV1) repeats 
that appear enriched or upregulated in at least two of the 
AML subtypes (Additional file 3: Figure S3).

We then analyzed inter-patient variation by plotting 
normalized read counts for each of these repeat elements 
and per AML patient sample (Fig.  1c/d). Centromeric 
ALR repeat transcripts, which are also derepressed in 
other cancers [57], are found elevated in 2/8 AML patient 
samples. The LSAU (Long Sau3a) satellite sequence refers 
to a ~ 2.8 kb long, GC-rich repeat sequence that is inter-
spersed among beta satellite arrays [2]. LSAU transcripts 
are derepressed in 1/8 AML patient samples. The peri-
centric satellite sequences (GAATG)n and (CATTC)n 
(HSATII,III) are also overexpressed in 1/8 AML patient 
samples (Fig. 1c). Since overexpression occurs in four dis-
tinct M1 and M2 AML patient samples (there is no over-
lap for dysregulation of a distinct satellite subtype in the 
different AML patient samples), these data indicate that 
50% (4/8) of AML patients display deregulation of satel-
lite repeats. For the LTR/ERV repeat class, LTR2B, which 
functions as the regulatory element for the ERV type 
Harlequin-int, is overexpressed in 3/8 AML patient sam-
ples. LTR10B, as well as its associated HERVIP10B3-int, 
is overexpressed in 4/8 AML patient samples. MER61E 
is an LTR for MER4-type ERV and is derepessed in 3/8 
AML patient samples (Fig.  1d). Together, 88% (7/8) of 
distinct AML patient samples display elevated transcript 
levels of at least one of these LTR repeat elements.

To further illustrate derepression of these selected 
examples, we generated coverage plots (see "Methods" 
section), where the number of repeat reads from one 
CD34 + sample and from individual AML patients were 
aligned to the consensus sequence of a distinct repeat 
type that was derived from the repeat element library of 
RepBase (Bao W., et  al. 2015). The coverage plots were 
done in a strand-specific manner and are shown for 
the ALRalpha, LSAU and HSATII,III satellite repeats 
(Fig.  1e). For the LTR/ERV repeats, coverage plots are 
displayed for LTR2B ERV1, LTR10B ERV1 and MER61E 
ERV1 (Fig.  1f and data not shown). Together, this com-
bined bioinformatic analysis in AML patient samples 
from the Uniklinik Freiburg indicates that we can detect 
dysregulation of particular satellite and LTR/ERV repeat 
types. However, there is considerable inter-patient vari-
ation and the low number of AML patient samples does 
not reveal a robust signature for a distinct repeat type 
that would consistently be derepressed in AML patient 
samples vs. CD34 + healthy control samples.

Repeat element expression in Blueprint data sets
To expand our analysis, we also gained access to RNA 
sequencing data of healthy CD34 + and AML patient 
samples that were generated within the Blueprint con-
sortium [10]. In contrast to our Hiseq RNA sequenc-
ing of total RNA preparations with CD34 + cells and 
AML patient samples from the Uniklink Freiburg, the 
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Blueprint data used poly(A)-RNA selected libraries (see 
"Methods" section). Also, with its focus on the epig-
enomic profiling of human blood cells and the analysis of 
hematopoietic differentiation, the Blueprint samples for 
healthy CD34 + cells had been subdivided into hemat-
opoietic stem cells (HSC, n = 3), multipotent progenitor 

cells (MPP, n = 3), and common myeloid progenitor cells 
(CMP, n = 3). In addition to these 9 CD34 + controls, we 
also used RNA sequencing data from 14 AML patient 
samples that were, however, not subtyped based on the 
FAB classification.
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Fig. 2 Repeat element expression in Blueprint AML data sets. a Fraction of repeat transcripts (blue) versus protein coding transcripts (green) in the 
HSC (n = 3), MPP (n = 3) and CMP (n = 3) CD34 + cell populations. b Fraction of repeat transcripts for distinct repeat classes in HSC, MPP and CMP 
samples. Error bars represent the standard of the mean (SEM). c MA‑plots (mean expression versus the log2 fold change) comparing CD34 + control 
(n = 9) versus AML patient samples (n = 14). Dots above and below the dashed lines are statistically significant as confirmed by multiple testing 
adjustments using the BH (Benjamini–Hochberg) method. Some examples for de‑repressed Satellite repeats and LTR/ERV elements are highlighted. 
Red dots represent Satellite repeats, blue dots LTR/ERV elements and orange dots LINE repeats
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We first analyzed overall repeat expression (i.e. the sum 
of all repeat reads for all distinct repeat classes) in the dif-
ferent subpopulations of healthy CD34 + cells. We then 
compared the fraction of repeat transcripts with the frac-
tion of gene and other unique (as annotated in Gencode) 
transcripts from within the entire set of read counts. The 
data show that there is progressive down-regulation of 
repeat expression when cells proceed in their differentia-
tion, such that HSC have a high number of repeat reads, 
MPP have a reduced number and CMP have the lowest 
number of repeat reads (Fig. 2a). This relative expression 
of repeat vs. gene transcripts also establishes a repeat to 
gene expression ratio (‘R/G ratio’) that may be useful for 
the comparative analysis of genomic expression profiles 
in stem/progenitor cells as compared to more differenti-
ated cells.

We next determined the fraction of repeat reads that 
align to the main repeat subclasses. Around 40% of all 
repeat reads comprise SINE/ALU repeats, around 40% 
contain LINE elements, ca. 12% LTR/ERV, and only 
around 0.2% are satellites (Fig. 2b). While the fraction of 
repeat reads for SINE/ALU transcripts modestly increase 
from HSC to MPP to CMP, we detect a progressive 
decrease for LINE and LTR/ERV transcripts and for sat-
ellite repeats (Fig.  2b), although these data have a non-
significant tendency.

We then used an MA plot to analyze differential 
expression of distinct repeat elements between the 9 
CD34 + controls and the 14 Blueprint AML patient 
samples (Fig.  2c). Similar, but not as pronounced as 
with the data analysis of AML patient samples from 
the Uniklinik Freiburg (see Fig.  2b), we observe a par-
tial down-regulation for a large amount of repeat 
elements. There are, on the other hand, several satel-
lite (e.g. HSAT5, adj. p-value = 0.04 and MSR1, adj. 
p-value = 0.00015) and LTR/ERV (e.g. LTR12E ERV1, 
adj. p-value = 2.046e−07; and HERVK13-int ERVK, 
adj. p-value = 4.72e−05) repeat transcripts that are 
appreciably enriched in the Blueprint AML patient 
samples (Fig.  2c). We also generated heatmaps for the 
top 30 dysregulated repeat elements in the Blueprint 
and Uniklinik Freiburg data sets. There is no common 
repeat subtype that is up-regulated in these top 30 hits 
of the Blueprint or Uniklinik Freiburg AML samples 
and only the D20S16 satellite is found to be down-reg-
ulated in both data groups (Additional file 4: Figure S4).

Repeat element expression in TCGA AML data sets
We next obtained access to RNA sequencing data of 
AML patient samples that were generated within The 
Cancer Genome Atlas (TCGA) initiative [9]. Similar to 
the Blueprint data sets, the TCGA used poly(A)-RNA 

selected libraries (see "Methods" section). In total, 
we processed raw Hiseq RNA sequencing data from 
98 TCGA AML patient samples. The selected TCGA 
AML patient samples had been subtyped based on the 
FAB classification as M1 (n = 35), M2 (n = 35) and M4 
(n = 28).

To gain insight into inter-patient variation, we deter-
mined normalized read counts for distinct repeat 
elements within each of the main repeat classes (Addi-
tional file 5: Figure S5, Additional file 6: Figure S6 and 
data not shown) in every individual TCGA patient 
sample. For satellite repeats, we analyzed 22 diverse 
satellite sequences, of which 15 had a mean expres-
sion above cutoff (baseMean expression > 100 normal-
ized reads) (see Additional file  5: Figure S5). We used 
this cutoff to extract statistically significant expres-
sion changes that are meaningfully above background 
level. Of these 15 satellite sequences, 7 (SATR2, SATR1, 
MSR1, REP522, HSAT5, LSAU and GSATII) showed, 
to a varying degree, read counts that deviate by two–
threefold above a median expression level, as it was 
determined for the TCGA data sets (see "Methods" sec-
tion). For LTR/ERV repeats, we analyzed 578 diverse 
subtypes, of which 549 had a mean expression above 
cutoff (baseMean expression > 100 normalized reads). 
In particular, we focused on 11 differentially expressed 
LTR elements that drive ERV-1, ERV-K and ERV-L ret-
rotransposons (see Additional File 6: Figure S6). Using 
similar analyses with ‘inter-patient variation plots’ for 
171 LINE subtypes and for 57 SINE/ALU repeats did 
not robustly expose a distinct LINE or SINE/ALU ele-
ment that would considerably be derepressed in AML 
patient samples (data not shown).

Thus, we again observed considerable heterogeneity for 
satellite and LTR/ERV repeat expression and high inter-
patient variation.

Repeat to gene expression ratios can stratify AML patient 
subgroups
We therefore were seeking to derive a more general 
definition for repeat element dysregulation that would 
more appropriately identify a repeat expression sig-
nature in human AML. This notion was further sup-
ported by our earlier observations on the global 
down-regulation of repeat element expression in the 
M4 AML subgroup from the Uniklinik Freiburg (see 
Fig.  1b) and during the progression of the Blueprint 
HSC to the Blueprint CMP cells (see Fig. 2a). We quan-
tified overall repeat expression in relation to genes and 
other unique transcripts in every AML patient sam-
ple of the TCGA M1 (n = 35), TCGA M2 (n = 35) and 
TCGA M4 (n = 28) AML cohorts. The profiles reveal 
that within each of the three TCGA AML subtypes, 
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there are two distinct AML patient subgroups, which 
either have a considerably reduced or elevated fraction 
of repeat transcripts (Fig. 3a).

We then determined the R/G ratios for the TCGA 
AML patient samples (n = 98), the Blueprint AML 

patient samples (n = 14) and the Uniklinik Freiburg 
AML patient samples (n = 8). The R/G ratio model can 
sub-stratify 16 AML patient samples (11 TCGA AML, 
2 Blueprint AML and 3 Uniklinik Freiburg AML) with 
a high R/G ratio (‘high-repeat’) and 15 AML patient 
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Fig. 3 R/G ratios can stratify AML patient subgroups. a Fraction of repeat transcripts (blue) versus fraction of protein coding transcripts (green) in 
TCGA AML patient samples. Within each M1 (n = 35), M2 (n = 35) and M4 (n = 28) AML subtype, patient samples are ordered according to increasing 
fraction of repeat transcripts. b Table showing the number of patient samples in each cohort (Uniklinik Freiburg AML, Blueprint AML and TCGA AML) 
that were classified by R/G ratio in High‑repeat, Mid‑repeat and Low‑repeat subgroups. c MA‑plots (mean expression versus the log2 fold change) 
depicting changes in repeat expression in the High‑repeat (n = 16) versus Mid‑repeat (n = 89) and in the Low‑repeat (n = 15) versus Mid‑repeat 
(n = 89) AML patient samples. x‑axis indicates the baseMean values and y‑axis the log2 fold change values (DESeq2). Dots above and below the 
dashed lines are statistically significant as confirmed by multiple testing adjustments using the BH (Benjamini–Hochberg) method
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samples (8 TCGA AML, 4 Blueprint AML and 3 Unik-
linik Freiburg AML) with a low R/G ratio (‘low-repeat’) 
(Fig. 3b) (see "Methods" section). In addition, we could 
subgroup 89 AML patient samples with an interme-
diate R/G ratio (‘mid-repeat’) that we used as a refer-
ence to determine differential expression of repeat 
elements in the ‘high-repeat’ and the ‘low-repeat’ 
AML patient samples. Notably, this sub-stratification 
by R/G ratios is now independent of FAB classifica-
tion or other cytogenetic (chromosomal aberrations) 
or gene mutation based parameters and only relies 
on the relative expression of repeat versus non-repeat 
transcripts. While there are differences in HiSeq RNA 
library preparations and variability in the sequencing 
depths (see "Methods" section), all three data groups 
(Uniklinik Freiburg, Blueprint and TCGA) allow for a 
comparable coverage and detection of repeat element 
transcripts and gene transcripts (Additional file 7: Fig-
ure S7).

The MA plot (Fig. 3c) validates that repeat elements 
are broadly derepressed in the ‘high-repeat’ AML 
patient samples (n = 16) compared to the ‘mid-repeat’ 
AML patient samples (n = 89) and that ‘low-repeat’ 
AML patient samples (n = 15) have a general down-
regulation of repeat elements. ‘Inter-patient variation 
plots’ for these sub-stratified ‘low-repeat’, mid-repeat’ 
and ‘high-repeat’ AML patient samples further indi-
cate that all repeat classes (satellites, LTR/ERV, LINE 
and SINE/ALU elements) equally segregate with R/G 
ratios, as defined by the cut_interval function (see 
Additional file 8: Figure S8).

‘High‑repeat’ and ‘low‑repeat’ AML patient subgroups have 
distinct alterations of cancer and inflammation pathways
In addition to up- and down-regulation of repeat tran-
scripts, we also analyzed differential gene expression 
between the ‘high-repeat’ vs. ‘mid-repeat’ AML patient 
samples and between the ‘low-repeat’ versus ‘mid-repeat’ 
AML patient samples. We identified Ingenuity Pathway 
Analysis (IPA, Qiagen) predicted downstream pathways 
that are either activated or repressed in the ‘high-repeat’ 
or ‘low-repeat’ AML patient samples compared to ‘mid-
repeat’ AML patient samples (Fig.  4a). In the ‘high-
repeat’ AML patient samples, we found the repression of 
cancer pathways (including metastasis and neoplasms) 
and the activation of a death/apoptosis pathway. We 
identify, for example, down-regulation of MYC and ABL1 
oncogenes and increased expression of PELLINO and a 
sorting nexin SNX13 (Fig. 4b, left and middle panels). By 
contrast, the ‘low-repeat’ AML patient samples showed 
changes in immune response-related pathways, such that 
hypersensitive reaction pathways are activated, whereas 
infection and inflammation pathways are suppressed. We 

found, for example, that expression of PDGF receptor B 
and Transferrin is decreased (Fig. 4b, right panels). These 
distinct differences of altered gene expression pathways 
between ‘high-repeat’ and ‘low-repeat’ AML patient 
samples are in addition to upregulated Toll-like recep-
tor signaling, NF-kb activation and interferon signaling, 
which are similarly stimulated in both ‘high-repeat’ and 
‘low-repeat’ AML patient subgroups as compared to the 
CD34 + (Blueprint) control cells (see Additional file  9: 
Figure S9).

Increased survival probability for AML patients with a high 
R/G ratio
The IPA data suggested that the stratification of AML 
patient samples by the R/G ratio model could possibly be 
used as a prognostic biomarker in the risk prediction for 
AML. Patient data were available from the entire TCGA 
AML cohort (98 patient samples), of which 58 TCGA 
AML patient samples (across the TCGA M1, TCGA M2 
and TCGA M4 subtyping) had an event (i.e. relapse, pro-
gression or death). We determined the R/G ratio of these 
58 TCGA AML patient samples which could define two 
AML patient subgroups with either a high R/G ratio or a 
low R/G ratio. We then performed a Kaplan–Meier uni-
variate survival analysis and found that the ‘high-repeat’ 
TCGA AML patients (n = 27) had a higher overall sur-
vival probability as compared to the ‘low-repeat’ TCGA 
AML patients (n = 31) (p-value of 0.0039) (Fig.  5a). We 
also used a Cox proportional hazards multivariate analy-
sis on 96 patient samples from the TCGA AML cohort (2 
patient samples had no identified cytogenetic risk). This 
Cox multivariate hazard analysis compared age, gender, 
cytogenetic risk category (favorable, intermediate and 
adverse), AML subtypes and R/G ratios. It showed that 
R/G ratios significantly segregate from age and cytoge-
netic risk categories with a median hazard index of 
0.00016 (95% confidence interval: 4.2e−07–0.06; p-value 
of 0.004) (Fig. 5b). The R/G based stratification of AML 
subgroups is therefore independent of age and cytoge-
netic risk classification, although R/G ratios have a broad 
range of reduced hazard risk. We conclude that the R/G 
ratio model can serve as a novel biomarker in the stratifi-
cation of AML patient samples and may also be useful in 
the prognosis of high-risk vs. low-risk AML patients.

Expression of chromatin factors that correlate with high 
or low R/G ratio in the AML patient subgroups
A variety of chromatin-modifying mechanisms (e.g. 
DNA methylation, histone modification and nucleo-
some remodeling) have been involved in the regulation 
of repeat elements, where a repressed chromatin state 
silences their expression during normal development 
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and differentiation. To address whether distinct chro-
matin-modifying enzymes or other chromatin factors 
are also differentially dysregulated in the AML patient 
subgroups with a high or low R/G ratio, we interro-
gated ~ 100 instructive chromatin enzymes/factors (see 
Additional file  12: Table  2) with a particular focus on 

components that have been shown to regulate repeat ele-
ment expression.

We calculated the Pearson correlation coefficients 
between the R/G ratio and chromatin enzyme/factor 
expression in each individual AML patient sample from 
the ‘high-repeat’, ‘mid-repeat’ and ‘low-repeat’ data sets. 

Fig. 4 IPA analysis in AML patient subgroups with high or low R/G ratios. a Ingenuity pathway analysis (IPA) performed in High‑repeat (n = 16) 
versus Mid‑repeat (n = 89) and in Low‑repeat (n = 15) versus Mid‑repeat (n = 89) AML patient samples. As inputs for the IPA, the log2FoldChange 
values from the differential gene expression analysis were used, after filtering for a minimum expression (baseMean expression > 100 normalized 
reads), fold‑change (absolute value of log2FoldChange > 1), and significance (adjusted p‑value < 0.05). z‑score values are indicated by color code, 
where purple represents down‑regulation and orange up‑regulation of a pathway. The numbers specify the number of genes that are dysregulated 
in each of the different pathways. b Example for specific genes that are dysregulated in High‑repeat (High) versus Mid‑repeat (Mid) (MYC, ABL1, 
PELI1, SNX13) or in Low‑repeat (Low) versus Mid‑repeat (Mid) (PDGFR, TRANSFERRIN) AML patient samples. Shown are normalized read counts for 
gene specific transcripts. Statistical significance is indicated by adjusted p‑values

(See figure on next page.)
Fig. 5 Survival probability and Cox hazard risks in AML patient subgroups with high or low R/G ratios. a Kaplan–Meier univariate survival analysis 
was performed on AML patient samples using metadata available from the TCGA study. Kaplan–Meier univariate survival analysis found the 
High‑repeat TCGA AML patients (n = 27) had a higher overall survival probability as compared to the Low‑repeat TCGA AML patients (n = 31) 
(p‑value of 0.0039). b Cox proportional hazards multivariate analysis was performed on AML patient samples using metadata available from 
the TCGA study by comparing age, gender, cytogenetic risk category (favorable, intermediate and adverse), AML subtypes and R/G ratios. All 
p‑values < 0.05 are considered significant. A hazard ratio above 1 (dashed line) indicates an increased risk for an event (relapse, progression, death), 
while a hazard ratio below 1 indicates a reduced risk. R/G ratios significantly segregate from age and cytogenetic risk categories with a hazard index 
of 0.00016 (95% confidence interval: 4.2e − 07–0.06; p‑value of 0.004)
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A high correlation (mean corr > 0.8) was revealed for 
transcription factors (e.g. ZNF407, POU5F2), ‘activat-
ing’ histone modifying enzymes (e.g. KDM3A/JMJD1, 
KMT2C/MLL3 and ASH1L) and chromatin remodelers 
(e.g. ATRX) (Fig. 6, top panels). The transcription factor 
POU5F2 is a paralog of Oct4 [56]. Increased expression 
of POU5F2 (x-axis) correlates with higher R/G ratios 
(y-axis). Another example is ASH1L, a histone lysine 
methyltransferase (KMT) that methylates histone H3 
lysine 36 (H3K36) [25], often in synergy with another 
activating KMT, Mixed-Lineage Leukemia 3 (KMT2C/
MLL3) that methylates H3K4 [54]. BAZ2B (Bromo-
domain Adjacent to Zinc finger domain 2B), which binds 
to acetylated histone H3 lysine 14 (H3K14Ac) [21] and 
the chromatin remodeler ATRX (Alpha Thalassemia/
mental Retardation syndrome X) [38] also correlate with 
elevated R/G ratios.

We also found, although with only a weaker correlation 
(mean corr > 0.4), described repeat element repressors 
that display increasing expression in AML patient sam-
ples with a low-level repeat transcription (Fig. 6, middle 
panels). For example, the SUV39H1 [7] and G9A [55] 
KMT, which methylate H3K9, anti-correlate with higher 
R/G ratios. TRIM28 (KAP1), a transcriptional co-repres-
sor that is recruited to ERV repeat elements through 
KRAB-Zinc finger transcription factors [48, 59], is also 
expressed at higher levels in AML patient samples with 
low R/G ratios, as is the histone H3.3 chaperone DAXX 
(death domain associated protein). Recently, it has been 
shown that DAXX association with SETDB1-TRIM28 
(KAP1) selectively represses ERV repeat elements [19]. 
Notably, our analysis indicates an inverse correlation 
profile for DAXX and ATRX, although a DAXX-ATRX 
complex has been reported to be targeted to tandemly-
repeated telomeric and centromeric sequences [38, 49]. It 
is possible that in the AML patient samples where ATRX 
expression is high (and DAXX expression is low), uncom-
plexed ATRX may function as an activating component 
solely through its nucleosome remodeling activity [30]. 
Finally, we did not find an apparent correlation profile for 
other chromatin enzymes/factors that have been shown 
to repress repeat element expression (Fig.  6, bottom 
panels). Expression levels for the H3K9 KMT SETDB1, 
the heterochromatin protein HP1α, the DNA methyl-
transferase DNMT1 and the chromatin assembly factor 
CHAF1 [64] did not correlate with R/G ratios in the AML 
patient samples. A recent screen in several human AML 
cancer cell lines has identified up-regulated SETDB1 to 
secure silencing of retrotransposons, thereby attenuating 
an anti-cancer immune and interferon response [15].

Discussion
With the advanced technologies for high-throughput 
RNA sequencing and the growing interest in non-cod-
ing RNA, it has become more and more apparent that 
repeat RNA transcripts have functional roles both dur-
ing normal and perturbed development and that they 
also contribute to the adaptation of cell fates [20, 22, 31, 
43]. Specifically for cancer, aberrant expression of hetero-
chromatin-derived satellite RNA has been identified as 
a novel hallmark in a variety of human solid tumors [57, 
66] and forced expression of satellite repeat transcripts 
has recently been shown to induce breast neoplasia in a 
mouse model [67]. Overexpression of human HSATII,III 
repeats has also been detected as circulating RNA in the 
blood of pancreatic cancer patients, suggesting that aber-
rant satellite repeat expression can serve as a diagnostic 
marker of disease [36, 37]. Together, these data indicate 
derepression of satellite repeat transcription to be a 
tumor driver. By contrast, cancer cells appear to suppress 
transcription of LTR/ERV elements and of other retro-
transposons, in order to attenuate an anti-tumor immune 
response. Therapeutic activation of LTR/ERV repeat 
transcription by, for example, low dose DNMT inhibition 
with azacytidine (DNMTi) can break immune tolerance 
of cancer cells and revealed a novel quality for ‘epigenetic 
therapy’ [11, 47]. Collectively, these insights demonstrate 
separate functions for the dysregulation of distinct repeat 
subclasses in either the progression or attenuation of 
human solid tumors. For hematopoietic malignancies, 
such as AML, only very few studies on the expression/
dysregulation of repeat elements were done [13, 14].

Expression analysis of distinct repeat elements in AML
We performed an integrative bioinformatic analysis of 
repeat element expression/dysregulation in human AML. 
First, we used primary leukemic cells from AML patients 
(Uniklinik Freiburg) and processed non-poly(A) selected 
total RNA for Hiseq RNA sequencing. Non-poly(A) 
selected RNA libraries maximize the read coverage and 
will also include satellite repeat transcripts and truncated 
LTR/ERV transcripts which would lack poly(A) tails. We 
find that several satellite repeats (e.g. ALRalpha, LSAU 
and HSATII/III) and LTR/ERV repeats (e.g. distinct LTR/
ERV1 subtypes) are derepressed in the AML patient 
(Uniklinik Freiburg) samples as compared to healthy 
CD34 + control cells (see Fig. 1c/d and Additional file 3: 
Figure S3).

We then extended this analysis to poly(A) selected 
RNA sequencing data sets from the Blueprint and TCGA 
consortia that together comprised 112 AML patient 
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samples. For satellite repeats, we can identify a number 
of subtypes, including, for example, SATR2 (minisatel-
lite present on human chromosomes 3, 5, 16, 19 and 22), 
MSR1 (minisatellite present on human chromosome 
19) and GSATII (centromeric gamma satellite) that dis-
play elevated transcript levels in individual patients (see 
Additional file 5: Figure S5). For LTR/ERV repeats, sev-
eral transcripts, such as LTR12C ERV1, LTR12E ERV1 
and LTR18C ERVL transcripts also appear derepressed 
in some patient samples (see Additional file 6: Figure S6). 
These repeat subtypes are different from a subset of 14 
transposable elements (e.g. ALUJo, MER11A, LTR14A 
and others) that were recently described as being 

prognostic biomarkers in TCGA AML patient samples 
and where expression of LTR14A, LTR45B, MER77 and 
Tigger9b are hazardous covariates that correlate with 
increased AML risk [14]. The distinct repeat subtypes 
identified in our study and in previous work [13, 14] 
appear to be the most susceptible repeat elements that 
are found to have altered expression in AML.

The expression of satellite repeats is generally very low 
(only around 0.2% of all repeat transcripts), whereas LTR/
ERV repeat transcripts reach 9–12% (see Figs. 1a and 2b). 
LTR12C seems to be an exceptionally ‘hot’ repeat ele-
ment, since it is also very highly expressed in several can-
cer cell lines [39] and appears particularly responsive to 

Fig. 6 Expression of chromatin factors in AML patient samples with high or low R/G ratios. Pearson correlation coefficients between the R/G ratio 
and chromatin enzyme/factor expression in each individual AML patient sample from the High‑repeat (n = 16), Mid‑repeat (n = 89) and Low‑repeat 
(n = 15) subgroups, as they were classified in Fig. 3b. A high correlation (mean PCC > 0.8) is found for POU5F2, ASH1L, BAZ2B and ATRX, a medium 
correlation (mean PCC > 0.4) is found for SUV39H1, G9A, TRIM28 and DAXX and no correlation (mean PCC = 0) is found for SETDB1, HP1α, DNMT1 
and CHAF1A
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derepression by a combination treatment with vitamin C 
and decitabine (DNMTi) in these cancer cells [39] or in 
mobilized healthy human CD34 + cells (PhD thesis Zoe 
[50]. DNMTi and HDACi inhibitors have recently been 
shown to activate cryptic transcription start sites in the 
LTR12 ERV9 repeat family in a lung cancer cell line [6]. 
While LINE and SINE/ALU repeat transcripts display 
the highest expression of repeat elements (each at around 
30–40%), we have not found appreciable dysregulation 
of distinct LINE or SINE/ALU elements in AML patient 
samples (see Additional file  4: Figure S4 and data not 
shown). A recent study has demonstrated that MDA5, a 
cytosolic dsRNA sensor that induces anti-viral immune 
response and inflammation is specifically stimulated by 
inverted ALU duplex RNA repeats [1].

Repeat to gene expression ratio as an instructive signature 
for repeat element dysregulation
Whereas we do not exclude that there is dysregulation of 
some satellite and LTR/ERV repeat elements in human 
AML, we have observed considerable heterogeneity in 
the expression of all repeat subclasses and significant 
inter-patient variation (see Fig. 1c/d and Additional file 5: 
Figure S5 and Additional file 6: Figure S6). We therefore 
derived another method that is not restricted to the anal-
ysis of distinct repeat subclasses or individual repeat ele-
ments and which can quantify the expression of all repeat 
transcripts in relation to the expression of all gene and 
non-repeat transcripts (as described above and also see 
"Methods" section). This approach therefore establishes 
a repeat to gene expression ratio (R/G ratio), which can 
be used as an instructive signature for repeat element 
expression and its possible adaptation to different physi-
ological or pathological settings.

Indeed, R/G ratios differ significantly between hemat-
opoietic stem cells (HSC), multipotent progenitor cells 
(MPP) and common myeloid progenitor cells (CMP), 
as they were subtyped in the Blueprint data sets. While 
HSC have a high R/G ratio, there is a progressive 
decrease in repeat expression in MMP and in CMP (see 
Fig. 2a). These data suggest that the R/G ratio model can 
distinguish subpopulations of hematopoietic cells at vari-
ous stages of their differentiation and that HSC display 
the highest level of repeat element expression. Similar 
to embryonic stem cells [18, 31], HSC may have a more 
accessible chromatin structure, possibly allowing for 
less restricted transcriptional activity across the entire 
genome.

The R/G ratio model also discriminated M1, M2 and 
M4 AML subtypes (Uniklinik Freiburg), such that over-
all repeat expression was lowest in the more differen-
tiated leukemic cells of the M4 AML patient samples 
(see Fig.  1b). Importantly, we could use R/G ratios to 

sub-stratify AML patient samples into two distinct sub-
groups with either a low or high overall repeat expression 
(see Fig.  3a/c). This R/G ratio filtered sub-stratification 
correlated with survival probability, such that ‘low-
repeat’ AML patients have a poorer prognosis as com-
pared to ‘high-repeat’ AML patients (see Fig.  5a). Since 
the R/G ratio model only relies on the relative expression 
of repeat vs. non-repeat (gene) transcripts, it is independ-
ent of the FAB classification or other cytogenetic (chro-
mosomal aberrations) and gene mutation based variables 
(Fig.  5b). We therefore propose the R/G ratio model as 
an instructive signature that can be used to distinguish 
hematopoietic stem/progenitor cells from more differen-
tiated cells and as a novel biomarker for the analysis of 
repeat element dysregulation in human AML.

The R/G ratio model can identify low‑risk and high‑risk 
AML patients
Gene expression ontology annotations and IPA analyses 
show that ‘low-repeat’ and ‘high-repeat’ AML patient 
samples display a similar activation of pattern recogni-
tion pathways and interferon response as compared to 
healthy CD34 + control cells (see Additional file 9: Figure 
S9), but differ in the dysregulation of other gene expres-
sion pathways.

In the ‘low-repeat’ AML patient samples, there appears 
to be an uncoupling of the sensory (activation of immune 
response) and the operational (suppression of infection 
and inflammation pathways) components of an anti-
tumor immune response (see Fig. 4a), possibly indicating 
that leukemic cells in the ‘low-repeat’ AML patients are 
more likely to be immuno-tolerant. In addition, down-
regulation of inflammation pathways entails reduced 
growth factor and cytokine signaling (see Fig. 4b), result-
ing in less differentiation. Leukemic stem cells have been 
associated with chemotherapy resistance and higher rates 
of relapse and show broader down-regulation of repeat 
elements as compared to leukemic blast cells [13]. Drug-
tolerant cancer cells also are characterized by profound 
repression of LINE-1 elements [27].

‘High-repeat’ AML patient samples, on the other hand, 
display suppression of cancer-promoting pathways and 
activation of a death/apoptosis pathway (see Fig.  4a/b). 
In addition, we found a statistically significant correlation 
(p-value of 0.0048 (n = 8), Wilcoxon rank-sum test) for 
RUNX1 mutations (one of the top recurring gene muta-
tions in AML) in the ‘high-repeat’ AML patients that was 
not as apparent for other gene mutations (e.g. DNMT3A, 
NMP1 or FLT3) or for TP53 (p-value of 0.04 (n = 6), Wil-
coxon rank-sum test) (Additional file  10: Figure S10). 
RUNX1 has been found to associate with the H3K9 KMT 
SUV39H1 and with HDAC to repress transcription [46]. 
A recent systematic profiling of chromatin signatures and 
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gene mutations in AML patient samples has identified 
two distinct subtypes, in which a RUNX1-mutant sub-
group appears to represent more late-stage leukemic cells 
with a better prognosis [65].

Conclusions
In summary, our integrative bioinformatic analysis of 
repeat element dysregulation in human AML revealed 
that some satellite repeats and distinct LTR/ERV repeat 
subtypes are derepressed in a sizeable fraction of AML 
patient samples, although there is considerable hetero-
geneity among individual repeat elements and significant 
inter-patient variation. This inter-patient variation can, 
at least in part, be restructured by a new bioinformatic 
approach that quantifies the expression of all repeat 
transcripts versus the expression of all non-repeat tran-
scripts. We show that this R/G ratio model can be used 
as a biomarker to sub-stratify AML patients into low-
risk and high-risk subgroups (model Fig. 7). ‘Low-repeat’ 
AML patients have a lower survival probability (high-risk 
AML group), whereas ‘high-repeat’ AML patients have 
a higher survival probability (low-risk AML group). Our 
data further suggest that ‘low-repeat’ AML patients are 
likely to be more refractory to epigenetic therapy and 
may require combination treatments, such as DNMTi 
and HDACi plus retinoic acid or even new inhibitors 
that target other chromatin enzymes/factors. Attractive 
candidates for these additional chromatin enzymes/fac-
tors could be the SUV39H1 and G9A KMT, the TRIM28/
KAP1 corepressor and the DAXX H3.3 chaperone (see 

Fig. 6). Although more functional work will be necessary, 
the results presented here illustrate that the R/G ratio 
model can be a valuable biomarker for AML and prob-
ably also other forms of human cancer.
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Additional file 1: Figure S1: Repeat elements in the human genome. (A) 
Ideogram of a human chromosome highlighting distinct types of repeat 
classes. (B) Pie chart of DNA composition of the human genome. 48% 
of the human genome comprise unique sequences and 52% comprise 
repeat sequences. The distinct repeat classes are ~22% Long Interspersed 
Nuclear Elements (LINE), ~13% Short Interspersed Nuclear Elements (SINE), 
~9% Long Terminal Repeats (LTR/ERV), ~4% DNA transposons and ~4% 
Satellite repeats. (C) Schematic representation of the basic organization of 
distinct types of repeat elements. Shown are examples of HSATII,III, ALR, 
LTR/ERV, LINE, SINE(ALU) and DNA transposons. Because it is difficult to 
distinguish between HSATII and HSATIII, we refer to HSATII,III as the combi‑
nation of (GAATG)n/(CATTC)n tandem‑repeats and the diverged, ~170bp 
(GAATG)n sequence [60]. Full‑length ERV elements comprise retroviral 
coding sequences (GAG, POL, ENV) and their regulatory sequences (5’ and 
3’ LTR) and range in size from 6‑11 kb. Solo‑LTR, a product of recombina‑
tion between two LTR resulting in the removal of the retroviral coding  
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Fig. 7 Summary model for repeat expression in low‑risk and high‑risk AML patients. Schematic representation of the relative gene expression 
(green) versus repeat element expression (blue) in High‑repeat AML patients (left) and Low‑repeat AML patients (right). High‑repeat AML patients 
have a higher survival probability (low‑risk AML group), whereas Low‑repeat AML patients have a lower survival probability (high‑risk AML group)
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sequences, are much smaller. Importantly, the number of annotated LTR 
is nearly 6‑fold greater than the internal retroviral coding sequence (Smit 
et al., n.d.), indicating that solo‑LTR significantly outnumber full‑length 
ERV. Similarly, full‑length LINE elements with ORF1 and ORF2 are typically 
around 6 kb, but there are many degenerated and truncated LINE ele‑
ments (consisting primarily of the 3’UTR) throughout the genome.

Additional file 2: Figure S2: DNA sequences for regulatory elements of 
distinct repeat classes. Shown are the consensus DNA sequences (identi‑
fied by tandem repeat finder for the human genome) of the basic unit of 
ALR (171 bp), 5’ LTR of the LTR12C ERV (160 bp) and 5’UTR of the L1PA14 
LINE element (268 bp). Predicted transcription factor binding sites and 
relevant transcription factors that can impart transcriptional competence 
to these regulatory sequences are indicated.

Additional file 3: Figure S3: MA plots for distinct repeat element expres‑
sion in M1, M2 and M4 AML patient samples (Uniklinik Freiburg). MA‑plots 
(mean expression versus the log2 fold change) depicting changes in 
repeat expression in the CD34+ controls (n=5) and the M1 (n=2), M2 
(n=3) and M4 (n=3) AML subtypes. Dots above and below the dashed 
lines are statistically significant as confirmed by multiple testing adjust‑
ments using the BH (Benjamini‑Hochberg) method. Some examples for 
de‑repressed Satellite repeats and LTR/ERV are highlighted. Red dots 
represent Satellite repeats, blue dots LTR/ERV elements and orange dots 
LINE repeats.

Additional file 4: Figure S4. Heatmaps for dysregulated repeat element 
expression in Uniklinik Freiburg and Blueprint AML samples. (A) Top 30 
statistically significant (absolute value of log2FoldChange >1; adjusted 
p‑value <0.05) dysregulated repeat subtypes in Uniklinik Freiburg AML 
(AML) (n=8) versus Uniklinik Freiburg CD34+ control (n=5) samples. 
(B) Top 30 statistically significant (absolute value of log2FoldChange >1; 
adjusted p‑value <0.05) dysregulated repeat subtypes in Blueprint AML 
(sample identifier shown by ERS number) (n=14) versus Blueprint control 
(HSC, MPP, CMP) (n=9) samples. In these heatmaps, the repeat subtypes 
are sorted and show the most up‑regulated repeat subtypes at the left 
and the most down‑regulated repeat subtypes at the right. There is no 
common repeat subtype that is up‑regulated in these top 30 hits for the 
Uniklinik Freiburg or the Blueprint AML samples and only the D20S16 sat‑
ellite (highlighted in red) is found to be down‑regulated in both data sets.

Additional file 5: Figure S5: Inter‑patient variation plots for expression of 
12 Satellite repeat subtypes in TCGA AML samples. Inter‑patient variation 
plots display normalized read counts of distinct Satellite repeat transcripts 
that are above the expression cutoff (baseMean expression > 100 normal‑
ized reads). Y‑axis indicates the normalized count. Each dot represents one 
TCGA AML patient sample. The black horizontal line specifies the median 
expression of the repeat across the entire dataset including the M1 
(n=35), M2 (n=35) and M4 (n=28) TCGA AML patient samples, as shown 
in Figure 3A.

Additional file 6: Figure S6: Inter‑patient variation plots for expression of 
12 LTR/ERV repeat subtypes in TCGA AML samples. Inter‑patient variation 
plots display normalized read counts of distinct LTR/ERV repeat transcripts 
that are above the expression cutoff (baseMean expression > 100 normal‑
ized reads). Y‑axis indicates the normalized count. Each dot represents one 
TCGA AML patient sample. The black horizontal line specifies the median 
expression of the repeat across the entire dataset including the M1 
(n=35), M2 (n=35) and M4 (n=28) TCGA AML patient samples, as shown 
in Figure 3A.

Additional file 7: Figure S7. Coverage and distribution of repeat tran‑
scripts in Uniklinik Freiburg samples and in the Blueprint and TCGA data 
sets. (A) Fraction of all repeat transcripts (blue segment) versus the fraction 
of all protein coding transcripts (green) and other non‑repeat transcripts 
in Uniklinik Freiburg control (n=5), Uniklinik Freiburg AML (n=8), Blueprint 
control (n=9), Blueprint AML (n=14) and TCGA AML (n=98) sequencing 
groups. (B) Fraction of transcripts for distinct repeat classes that can be 
detected within the repeat coverage (blue segments) shown in A. SINE/
ALU transcripts are shown in yellow, Satellite transcripts in red, ERV/LTR 
transcripts in blue and LINE transcripts in orange.

Additional file 8: Figure S8: Inter‑patient variation plots for expression of 
repeat element subclasses in ‘low‑repeat’, ‘mid‑repeat’ and ‘high‑repeat’ 
AML patient samples. Inter‑patient variation plots display normalized 
read counts in every sub‑stratified Low‑repeat (Low, n=15), Mid‑repeat 
(Mid, n=89) and High‑repeat (High, n=16) AML patient sample. The plots 
indicate that all repeat classes (Satellites, LTR/ERV, LINE and SINE/ALU 
elements) equally segregate with R/G ratios, as defined by the cut_interval 
function. Y‑axis indicates the normalized count. Each dot represents one 
AML patient sample. The black horizontal line specifies the median R/G 
ratio of the repeat across the entire dataset.

Additional file 9: Figure S9: Activation of Toll‑like receptor and interferon 
signaling in ‘high‑repeat’ and ‘low‑repeat’ AML patient samples. Ingenuity 
pathway analysis (IPA) performed in High‑repeat AML patient samples 
(n=16) vs. CD34+ Blueprint samples (n=9) and in Low‑repeat AML 
patient samples (n=15) vs. CD34+ Blueprint samples (n=9). As inputs for 
the IPA, the log2FoldChange values from the differential gene expression 
analysis were used, after filtering for a minimum expression (baseMean 
expression >100 normalized reads), fold‑change (absolute value of log‑
2FoldChange >1), and significance (adjusted p‑value <0.05). z‑score values 
are indicated by color code, where orange represents up‑regulation of a 
pathway. The numbers specify the number of genes that are upregulated 
in each of the different pathways.

Additional file 10: Figure S10. Correlation between recurring gene muta‑
tions and R/G ratios in TCGA AML patient samples. (A) Box plot show‑
ing the most frequent gene mutations (x axis) in the TCGA AML cohort 
(n=98), as they were identified using metadata available from the TCGA 
study. The y‑axis shows their corresponding R/G ratios. (B) Box plot corre‑
lating R/G ratios with specific gene mutations for DNMT3A (not significant, 
n=21), RUNX‑1 (p‑value 0.0048, n=8) and TP53 (p‑value 0.04, n=6).

Additional file 11: Table 1: Identifiers and cytogenetic markers of AML 
patients and healthy controls (Uniklinik Freiburg). The Table shows the 
patient ID, gender and age and the patient karyotype. In addition, it also 
lists the FAB (French‑American‑British) and ELN (European LeukemiaNet) 
classification of AML for each patient. Percentages of leukemic blast cells 
in bone marrow (BM) and peripheral blood (PB) for each AML patient are 
also indicated.

Additional file 12: Table 2: Listing of chromatin enzymes/factors that 
were interrogated for expression changes in AML patient samples display‑
ing different R/G ratios.
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