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ABSTRACT
Background: The importance of gut microbes in mediating the benefits of lifestyle intervention is 
increasingly recognized. However, compared to the bacterial microbiome, the role of intestinal 
fungi in exercise remains elusive. With our established randomized controlled trial of exercise 
intervention in Chinese males with prediabetes (n = 39, ClinicalTrials.gov:NCT03240978), we inves
tigated the dynamics of human gut mycobiome and further interrogated their associations with 
exercise-elicited outcomes using multi-omics approaches.
Methods: Clinical variations and biological samples were collected before and after training. 
Fecal fungal composition was analyzed using the internal transcribed spacer 2 (ITS2) sequen
cing and integrated with paired shotgun metagenomics, untargeted metabolomics, and Olink 
proteomics.
Results: Twelve weeks of exercise training profoundly promoted fungal ecological diversity 
and intrakingdom connection. We further identified exercise-responsive genera with potential 
metabolic benefits, including Verticillium, Sarocladium, and Ceratocystis. Using multi-omics 
approaches, we elucidated comprehensive associations between changes in gut mycobiome 
and exercise-shaped metabolic phenotypes, bacterial microbiome, and circulating metabolo
mics and proteomics profiles. Furthermore, a machine-learning algorithm built using baseline 
microbial signatures and clinical characteristics predicted exercise responsiveness in improve
ments of insulin sensitivity, with an area under the receiver operating characteristic (AUROC) 
of 0.91 (95% CI: 0.85–0.97) in the discovery cohort and of 0.79 (95% CI: 0.74–0.86) in the 
independent validation cohort (n = 30).
Conclusions: Our findings suggest that intense exercise training significantly remodels the human 
fungal microbiome composition. Changes in gut fungal composition are associated with the 
metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of 
exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes 
prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in 
tailoring personalized training for diabetes prevention.
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Introduction

Intestinal microbes are pivotal in orchestrating host 
immunologic and metabolic homeostasis.1 Alongside 
bacterial microbiomes, fungal communities (myco
biome) also colonize the human gastrointestinal 
tract.2 Though it only constitutes 0.1% of the entire 
gut ecosystem,3 emerging evidence demonstrated its 
importance in host health. Gut fungal dysbiosis is 
associated with the onset or progression of various 
bowel diseases and colorectal cancer.4 In metabolic 
contexts, human gut mycobiome composition is 
related to the progress of nonalcoholic fatty liver 
disease.5 Mucor genus and Candida spp. are predo
minated in obese subjects and diabetic patients com
pared to their healthy counterparts, respectively.6,7 

Moreover, Candida parapsilosis and Candida albicans 
transplantation evoked metabolism syndromes in 
mice models.8,9

Physical exercise is an effective non- 
pharmacological approach to diabetes manage
ment with pleiotropic benefits.10 A previous 
study has demonstrated distinct patterns of 
commensal bacteria between athletes and indi
viduals with sedentary lifestyles.11 Furthermore, 
the fermentation and composition of the bacter
ial microbiome are dramatically remodeled by 
exercise and determine differential exercise 
responsiveness in overweight individuals with 
prediabetes.10 Yet, compared to gut bacteria,

the impact of exercise on the gut mycobiome 
and the potential contribution of intestinal fungi 
in exercise physiology remain obscure.

Accumulating evidence has shown that the gut 
mycobiome is resilient to habitual lifestyles. For 
example, fecal Candida abundance positively 
correlates with dietary carbohydrate consump
tion in humans.12 Likewise, low-calorie diet 
intervention could effectively restore the Mucor 
abundance in obese patients.13 Murine studies 
showed that the gut mycobiome was predomi
nated by Fusarium and Alternaria with 
a standard chow diet, whereas C. albicans was 
the most abundant fungi upon treatment with an 
obesogenic diet.14 Thus, we reasoned whether 
exercise remodels enteric fungal profiles, which 
in turn contributes to the metabolic benefits 
conferred by exercise.

Herein, we investigated the dynamics of the 
human gut mycobiome in a well-designed rando
mized controlled exercise trial on medication-naive 
overweight males.10 We further interrogated the 
relationship of exercise-shaped gut mycobiome 
with bacteriome, metabolome, and proteome in 
modulating the metabolic benefits of exercise. 
Moreover, we developed a machine-learning algo
rithm integrating baseline fungal signatures which 
can predict the individual responsiveness to exer
cise intervention in diabetes prevention.
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Materials and methods

Study design

The study was approved by the ethics committees of 
the Hospital Authority Hong Kong West Cluster 
(UW15–370) and registered on ClinicalTrials.gov 
(NCT03240978). Thirty-nine overweight males 
with prediabetes were enrolled for a randomized 
clinical trial (RCT) of 12-week supervised exercise 
training as described.10 In brief, overweight (body 
mass index (BMI) > 25 kg/m2) Chinese males aged 
20 to 60 years old with prediabetes (defined as 
impaired fasting glucose [5.6 mmol/L to 
6.9 mmol/L] and/or impaired glucose tolerance 
[2-h blood glucose level of oral glucose tolerance 
test (OGTT): 7.8 mmol/L to 11.0 mmol/L after 
a 75-g oral glucose challenge]). Moreover, all volun
teers are on medication-naïve and in the absence of 
any chronic diseases or mental illness and lack reg
ular exercise training. Eligible subjects who signed 
written informed consent were randomly assigned 
to exercise (n = 20) or sedentary groups (n = 19) to 
undergo supervised high-intensity interval exercise 
training (3 sessions/week, for 12 weeks) 
(Supplementary Table S9) which was designed 
referred to prior study.15,16 This exercise protocol 
combined both aerobic and strength training, which 
has been recognized for its effectiveness in improving 
insulin sensitivity.17 The details of our training regi
men were elaborated in our previous publication.10 

Briefly, volunteers received a warm-up exercise 
(10 min), a high-intensity interval training (about 
50 min with 80–95% of the maximal heart rate), 
together with a stretching and cool-down training. 
At least 85% attendance of exercise was required for 
data analysis. Exercise responsiveness was evaluated 
accordingly to interpersonal variability in terms of 
improvement in the insulin resistance index (HOMA- 
IR). Exercise non-responders were determined as sub
jects who failed to ameliorate HOMA-IR greater than 
the 2-fold technical error and vice versa according to 
previous publications.10,18 Another 30 subjects were 
recruited as a validation cohort with the same inclu
sion criteria and exercise training regimen.

Sample collection and clinical data measurement

All participants were subjected to monthly speci
men collection throughout the 12-week exercise

training program. After overnight fasting (about 
10–12 hours), blood samples were collected, ali
quoted, and stored at −80°C for further analysis. 
Serum glucose level and lipids profiles, in terms of 
triglycerides (TG), total cholesterol (TC), high- 
density lipoprotein (HDL) cholesterol, and low- 
density lipoprotein (LDL) cholesterol, were mea
sured by laboratory biochemistry analyzer (Hitachi 
717, Roche Diagnostics, Germany) following 
instruction. Insulin level was assayed by commer
cial ELISA kits (Immunodiagnostics, Hong Kong 
SAR). HOMA-IR was calculated as fasting insu
lin × fasting glucose/22.5, whereas the Matsuda 
index was calculated using the result of OGTT as 
1000/[fasting glucose × fasting insulin × mean glu
cose (during OGTT) × mean insulin levels (during 
OGTT)]1/2. Body composition and exercise perfor
mance including strength, flexibility, and maximal 
oxygen consumption were determined before and 
after exercise following standardized protocols as 
described.

Circulating proteomics and targeted metabolomics 
signatures

Circulating proteomics was detected by Olink 
Proteomics (Uppsala, Sweden) with Olink Explore 
cardiometabolic and inflammation panels.19 

Specifically, protein biomarkers were identified 
using the Olink Explore 384 panels for cardiometa
bolic and inflammation. In brief, the proximity 
extension assay (PEA) technique employs DNA 
oligonucleotide-tagged antibody pairs to bind to 
target proteins. When two compatible antibodies 
attach to the target protein, the oligonucleotide 
pairs combine and are lengthened by DNA poly
merase, forming a distinct DNA barcode that is 
later analyzed using next-generation sequencing. 
Due to the requirement of properly matched 
DNA string pairs for the generation of detectable 
and quantifiable signals, the PEA technique 
demonstrated high specificity and outstanding 
sensitivity.20 The values were shown as normalized 
protein expression (NPX) units on a log2 scale. 
Targeted metabolomics profiling of human plasma 
samples was determined using gas or liquid chro
matography coupled to mass spectrometers by 
Metabo-Profile (Shanghai, China).10
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Fecal DNA extraction and sequencing

We extracted fecal DNA from freezing stool sam
ples using PowerFecal Pro DNA Kit (QIAamp, 
QIAGEN, Germany). Internal transcribed spacer 
2 (primers: sense 5’-GCATCGATGAAGAAC 
GCAGC-3’ and antisense 5’-TCC 
TCCGCTTATTGATATGC-3’) sequencing was 
conducted using NovaSeq PE250 with a data 
depth of 100K tags per sample (Novogene, 
Tianjin, China). Matched metagenomics data 
were used in our published dataset (NCBI 
Sequencing Read Archive under BioProject ID 
PRJNA454826) and re-analyzed by Metaphlan 3.0 
and HUMAnN 3.0.21,22

ITS2 and metagenomics analysis

Human reads contamination, PCR adapter, low- 
quality reads, and duplicated reads of raw metage
nomic shotgun sequencing were removed with 
a described pipeline.23 Quality control of raw ITS2 
sequencing reads was performed by filtering and 
trimming the adapter sequences, primers, and 
poly-A tails with cutadapt.24 The relative abundance 
of the microbial community from the metagenome 
was calculated with MetaPhlAn3 at different taxo
nomic levels. PIPITS pipeline was used for ITS data 
with default settings including further quality filter
ing, read-pair merging, ITS2 filtering, and chimera 
removal.25 The remaining reads were further binned 
based on 97% similarity as an operational taxonomic 
unit (OTU) and aligned to the UNITE fungal data
base (Version 9.0) with the Mothur classifier.26

Fungal and bacterial abundance

The abundance of fungi from ITS sequencing 
data annotated by PIPITS was further normal
ized by the relative abundance. The relative 
abundance of bacteria from metagenomic data 
was retrieved from MetaPhlAn3 at each taxo
nomic level as previously described. The taxo
nomic variation of fungus or bacteria at each 
level before and after exercise was retrieved 
from the fold change of fungal relative abun
dance of individuals. HUMAnN3 was used with 
metagenomic reads to estimate gene family 
abundances. Reads per kilobase (RPK) values

for gene family abundances were copies 
per million (CPM) normalized. KEGG pathways 
were further annotated.

Diversity analysis

The alpha diversities in Simpson, Shannon, and 
Chao1 indexes of the bacterial and fungal commu
nities were calculated using the vegan package.27 The 
Bray-Curtis dissimilarity of the fungal species among 
individuals was performed by the Phyloseq 
package.28

Differential analysis

To identify the significantly different fungus 
within subjects before and after exercise, 
MaAsLin229 was implemented with the paired 
compound Poisson linear model (CPLM) by 
normalizing the fungal relative abundance in 
three different ways: TSS, TMM, and CSS. The 
fungus with an adjusted p-value of <0.25 in at 
least two of the three normalizations was 
regarded as the significant result. The relative 
abundance of bacteria was compared within sub
jects between the two time points with the 
Wilcoxon signed-rank test for paired data and 
adjusted with Benjamini–Hochberg correction 
for multiple comparisons. Moreover, to evaluate 
the potential impact of the bacterial shift on 
shaping fungal abundance, MaAsLin2 was 
further used for testing the difference of identi
fied significant fungal genera with the adjust
ment for all significantly changed bacteria 
genera (Supplementary Table S10).

Metabolic pathway enrichment analysis

KEGG Pathway enrichment analysis with signifi
cantly different metabolites was performed with 
MetaboAnalyst.30 KEGG Pathway enrichment ana
lysis with significantly different OLINK proteomic 
biomarkers was conducted with the clusterProfiler 
package.31

Machine learning model construction

Baseline fungal abundance at phylum, family, and 
genus level, the clinical parameters, and the
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bacterial abundance were compared between 
responders and non-responders with the 
Wilcoxon rank-sum test, and differentially abun
dant features with p < 0.1 were selected for con
structing the machine learning models. Random 
forest models for classifying responders and non- 
responders were constructed in three ways: base
line mycobiome and clinical parameters, baseline 
microbiome and clinical parameters, and the com
bination of the three profiles with the Caret 
R package.32 The model was trained with ranger 
function in our discovery cohort, using 10-repeated 
10-fold cross-validation (repeatedcv) as 
a resampling method and ROSE sampling strategy 
to account for the imbalance in the two classes.33 

The constructed model was further tested in an 
independent validation cohort as previously 
described.10 To perform a robust and generalizable 
analysis, the machine learning algorithm was iter
ated 100 times in both discovery and validation 
cohorts. Model performance was assessed using 
the evalm function from the Mleval R package, 
which included the sensitivity, specificity, the 
Matthews correlation coefficient (MCC), and net 
present value (NPV).

The area under the curve (AUC) of the receiver 
operating characteristic curve (ROC) curve was 
calculated by evalm function and further visualized 
with the pROC R package. The AUCs of each 
model were used as the main indicator of model 
performance and were further compared with 
DeLong’s test, using the roc.test function from the 
pROC R package. Results with a P-value of <0.05 
were considered statistically significant.

Mediation analysis

To investigate whether the presence of important 
fungal species at baseline may affect the change of 
phenotypes via the baseline level of OLINK, meta
bolites, and microbial pathway, we implemented 
bi-directional mediation analysis using the mediate 
package in R. In detail, we estimated the total effect 
from the presence (represented in 0 or 1) of fungal 
at baseline to the fold change of phenotypes after 
exercise, the effect on the baseline abundance of the 
potential mediators, and the effect of the baseline 
abundance of the mediators to the fold change of 
phenotypes after exercise. We further performed

the causal mediation analysis among the three 
models. We then selected the significant results of 
all the effects among the three models as well as the 
indirect effect. Lastly, we filtered the significant 
results of the direct effect to generate the final 
result.

Data visualization

All the box plots, bar charts, and dot plots were 
constructed with ggplot2 unless otherwise stated.34 

Sankey plots were built with the NetworkD3 
package.35 Networks were visualized with 
Cytoscape.36 Heatmaps were constructed with the 
ComplexHeatmap package.37 The phylogenetic 
tree was visualized with ggtree package.38 The 
AUROC plot was built with the PROC package.39

Statistical analysis

All statistical analyses were performed in 
R software. The group comparison of alpha diver
sity and fungal abundance between samples before 
and after exercise was conducted with the 
Wilcoxon signed-rank test. Adaptive false discov
ery rate (FDR) correction was applied for multiple 
comparisons of the differential abundance analysis. 
Principal components analysis (PCA) of the fold 
change of fungal species was performed with the 
vegan package. Multivariate analysis 
PERMANOVA was performed using vegan for 
1000 permutations. The envfit function of vegan 
package was used to analyze the relationship 
between relative changes in the clinical parameters 
and their overall fungal composition with 1 × 104 

permutations. The group dispersion between exer
cise and control was calculated by vegan and was 
further evaluated with ANOVA. The co-abundance 
network analysis using pairwise Spearman correla
tions between fungi before and after exercise. The 
Spearman correlation was performed between the 
fold change of fungal abundances and multi-omics 
including clinical parameters, metabolomics, and 
proteomics. Benjamini–Hochberg procedure with 
the cutoffs of 0.25 and 0.05 was applied to all the 
results. Bi-directional mediation analysis was per
formed with the mediation package, which was 
constructed with the presence/absence of fungi at 
baseline, the baseline abundance of metabolites and
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proteomics, and the fold change of host pheno
types. Machine learning built by a random forest 
model was implemented with the caret package.

Results

Exercise training remodels gut mycobiome 
composition

To illustrate the impact of exercise training on gut 
mycobiome composition, fecal samples from exer
cise intervention and sedentary control groups 
were collected for ITS2 sequencing. We annotated 
9 phyla, 187 families, 258 genera, and 253 species 
with >10% prevalence among all fecal samples 
(Supplemental Table S1). The Ascomycota phylum 
predominated 85.73% of the gut mycobiome, while 
Saccharomyces was the most enriched genus with 
a mean relative abundance of 39.08% 
(Supplemental Figure S1). As a major confounding 
factor, the dietary intake was evaluated, and no 
significant difference in nutrition was found 
between the two groups (Supplemental Figure S2).

Notably, the exercise resulted in a significantly 
increased fungal α-diversity, which was unchanged 
in the control group (p = 0.38) (Figure 1(a, b)). 
Consistently, the microbial change within subjects 
measured by the Bray-Curtis distance in the exer
cise group was significantly higher than in the 
sedentary group at genus levels (Figure 1(c)). 
Moreover, the exercise effectively remodeled both 
the centroid and dispersion of the fungal commu
nity compared to their baseline (FDR < 0.05), 
whereas no obvious change was found within the 
control subjects (Figure 1(d), Supplemental Table 
S2). The majority of fungal genera (82.52%) 
remained stable during exercise without significant 
alternation. By contrast, 17.02% of them showed 
increased abundance levels and only 2.13% 
decreased (FDR < 0.05). (Supplemental Figure S3 
and Supplemental Table S3). Despite the persona
lized dynamics in responding to exercise training at 
the genus level (Figure 1(e) and Supplemental 
Figure S4), a group of exercise-responsive fungal 
genera was identified (Figure 1(f) and 
Supplemental Figure S5). The relative abundance 
of Verticillium exhibited a 1.5-fold increase from 
baseline after training, distinguished from seden
tary groups. Relative abundances of other genera,

including Chloridium, Iodophanus, Monosporascus, 
Beauveria, Ceratocystis, and Bipolaris, were aug
mented by over 30% after training and were sig
nificantly different compared to sedentary controls 
(Figure 1(f)). Interestingly, the abundance of 
Verticillium was notably decreased in children 
with clinical type-1 diabetes, and Ceratocystis level 
was higher in healthy subjects and associated with 
euglycemia status.13,40 Therefore, the shifts in fun
gal abundance observed following exercise in our 
study align with previous clinical studies regarding 
their association with host glucose metabolism.

Physical exercise has been shown to modulate 
the gut microbiome, with one of the effects being 
the enhancement of bacterial community 
interactions.10 Similar responses in gut fungi were 
found by co-abundance analysis (Figure 1(g)). At 
baseline, only 37 correlations within the fungal 
ecosystem were identified, whereas the interactions 
drastically surged to 80 after training. Importantly, 
the nexus is centralized around exercise-responsive 
fungi, like Verticillium, Iodophanus, 
Monosporascus, Bipolaris, and Conocybe. Our data 
implied that exercise-promoted fungi could be 
instrumental in enhancing fungal ecosystem com
munication. These findings collectively demon
strated exercise as a potent intervention in 
shaping gut mycobiome composition.

Alterations in gut mycobiome composition are 
associated with exercise-improved clinical 
parameters

Next, we performed a Spearman correlation ana
lysis to determine the relationships between shifts 
in fungal abundances and improvements in meta
bolic phenotypes after exercise. The influence of 
host factors on fungal compositional alterations 
was assessed as measured by the Bray-Curtis dis
tance. Multiple regressions of clinical parameters 
with permutation test revealed that fasting glu
cose level was associated with overall gut myco
biome variations with significant power 
(R2 = 0.35; p < 0.05) (Figure 2(a) and 
Supplementary Table S5), which was consistent 
with prior reports about the bidirectional influ
ences between the gut microbiome and host glu
cose metabolism.41
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Figure 1. Physical exercise training reshapes gut fungal composition. Exercise training significantly remodeled overall fungal 
compositions at the genus level as evidenced in (a) alpha-diversity in the exercise group (Exercise, n = 20) and sedentary control 
group (CTRL, n = 19) measured by Shannon index; (b) changes of alpha-diversity within each subject, and (c) within-subject beta- 
diversity (measured by Bray-Curtis dissimilarity) between 0-week and 12-week in two groups. (d) NMDS plot of log2 fold change of 
genus abundance within subjects during exercise. The confidence ellipses (level = 0.95) were constructed in the exercise group at 
baseline (blue), after training (purple); and the control group at baseline (red) and after 12 weeks of exercise intervention (green). 
(e) The relative abundance of fungal phyla in individuals before and after exercise training. (f) The mean value of the fold change of 
significantly altered fungal genus composition (log10 transformed) in both exercise and control subjects. The fold change was 
divided by fungal relative abundance at 12 weeks to 0 weeks for each individual. (g) Exercise intervention promoted fungal 
communication as showed by co-abundance network analysis. The edges indicate statistically significant (p < 0.05) Spearman 
correlations between species present in at least 50% of subjects. The nodes are colored based on their affiliated phyla. Dashed and 
solid lines represent correlations before and after exercise, respectively. Lines in orange and blue represent positive and negative 
correlations.
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Figure 2. The taxonomic alterations of gut mycobiome are tightly associated with exercise-induced improvement in metabolic health. 
(a) The influence of host factors on human gut mycobiome at the Bray-Curtis distance was evaluated by permutational multivariate 
analysis of variance (PERMANOVA, permutation = 999). The bars were colored according to metadata categories. (b) Spearman 
correlation between the fold changes in significant fungal genus and fold changes in metabolic health after exercise training (n = 20). 
Significant results (FDR < 0.25) were marked with a plus symbol. *FDR < 0.05, +FDR <0.25.
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The increases in fungal abundance, including 
Verticillium, Gliomastix, Conocybe (FDR < 0.25), 
Bipolaris, and Sarocladium (FDR < 0.05) after exer
cise were positively associated with improvements 
in host insulin sensitivity, as indicated by fasting 
insulin level and HOMA-IR. In terms of lipids 
profiles, reductions in LDL and cholesterol con
tents were concomitant with the augment of 
Verticillium and Sarocladium after exercise (FDR
< 0.25) (Figure 2(b)). By contrast, no correlations 
were detected between the mycobiome and HDL or 
triglyceride levels. Notably, increases in 
Verticillium were parallelly associated with the 
gain of leg and back strength, suggesting that 
changes in Verticillium abundance may be related 
to exercise performance (Figure 2(b)). In addition, 
its elevation was also positively associated with the 
reduction in fat mass percentage (Fat%). We
further observed improvements in diastolic blood 
pressure (DBP) were remarkably linked with shifts 
in the gut fungal genera, with Bipolaris, Gliomastix, 
Conocybe, Iodophanus, and Sarocladium enclosed 
(Figure 2(b)). Collectively, our results suggested 
fluctuations in the gut mycobiome are tightly asso
ciated with exercise-elicited metabolically benefi
cial effects.

Trans-kingdom crosstalk between gut fungal and 
bacterial microbiome during exercise

Microbial synergism between the intestinal fungal 
and bacterial microbiome profoundly remodels the 
gut environment and holistic immunity.42 We then 
probed into potential gut fungi-bacteria crosstalk 
during the exercise intervention.

There was a significant association in the shifts of 
α-diversity between fungi and bacteria at genus levels 
(R2 = 0.33, p = 0.04), indicating a possible coordinated 
response of these two communities adapting to exer
cise (Figure 3(a)). We next assessed the changes in 
their interkingdom communication after training. 
Among those linkages, changes in Verticillium and 
Sarocladium showed prominent associations with 
exercise-shifted bacterial species (Figure 3(b)). 
Interestingly, Veillonella is an exercise-responsive bac
terium enriched in elite marathon athletes, which 
metabolizes lactic acid into propionate to improve 
exercise performance.43 Decreases in V. infantium 

were negatively associated with changes in exercise- 
promoted fungal species, especially with Verticillium, 
Sarocladium, and Monocillium (FDR < 0.25). Other 
bacteria typically enriched in non-obese or non- 
diabetic healthy controls, such as Haemophilus para
influenzae and Bifidobacterium dentium,44,45 also dis
played negative correlations with the gain of 
Monocillium and Gliomastix (FDR < 0.25). In con
trast, bacteria linked to metabolic syndrome, includ
ing Clostridium symbiosum (enriched in T2D), 
Fusicatenibacter saccharivorans (enriched in fatty 
liver disease), and Dorea formicigenerans (enriched 
in obesity),45–47 showed opposite trends with prolif
erations in exercise-induced fungi. Hence, our results 
indicated a possible interaction between gut fungi and 
bacteria in response to exercise.

Further, by examining the correlation between gut 
fungi and bacterial function retrieved from the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) ortho
logues (KOs), we observed that Kluyveromyces exhib
ited over 100 interactions with bacterial functions 
(Figure 3(c)). Of interest, Kluyveromyces was signifi
cantly elevated by 12.9% after training (Figure 1(e)). 
Lines of evidence also suggest that Kluyveromyces is 
a probiotic candidate with multiple metabolic 
benefits.48 Mapping the fungi-related KOs into the 
KEGG Module level revealed that changes in the gut 
mycobiome had significant associations with histidine 
biosynthesis (Figure 3(d)), a potential mediator that 
bridges gut fungi with host cholesterol metabolism 
and the development of nonalcoholic fatty liver 
disease.49,50 Interestingly, this finding was further sub
stantiated by our metabolomics profiles that circulat
ing histidine concentration was significantly increased 
after exercise training (supplemental Figure S6). 
Moreover, annotating the significant KOs at pathway 
levels highlighted that fungi were most related to 
metabolic pathways followed by the biosynthesis of 
secondary metabolites and cofactors (Figure 3(e)). In 
summary, we showed that exercise-induced gut fungi 
perturbations were accompanied by both composi
tional and functional transitions of gut bacteria.

Exercise-shaped changes in gut fungal composition 
correlate closely with alterations of host circulating 
metabolites and proteins

Fungi-produced metabolites potently impact host 
metabolism and immunity.51 Pathway enrichment 
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analysis was performed within the circulating 
metabolites significantly correlated with the fungal 
community (Figure 4(a)). As shown, exercise- 

shaped fungi mainly affected amino acid metabo
lism pathways, including branched-chain amino 
acids (BCAA) biosynthesis, alanine, aspartate, and 
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Figure 3. Inter-kingdom linkages between enteric fungi and bacteria in response to exercise intervention. (a) Significant correlation 
between gut fungal and bacterial α-diversity in Shannon indices at genus levels. Linear trends with a 95% confidence interval were 
shown. (b) Spearman correlation between the fold change of significant gut fungi and bacteria after exercise (n = 20). Significant 
correlations were marked with a plus symbol. The cells in red and blue represent positive and negative correlations. Significant 
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glutamate metabolism, and arginine biosynthesis 
(FDR < 0.25). We further found exercise- 
promoted fungi associated with short-chain fatty 
acid (SCFA) metabolism with propanoate and 
butanoate enclosed. An intriguing observation 
was the positive association between butyric acid 
changes and Ceratocystis (FDR <0.05) (Figure 4(b), 
supplemental Figure S7). Considering the benefits
of SCFA on host metabolism,10 our data indicate 
that the growth of Ceratocystis may implicate in the 
benefits of exercise by promoting SCFA biosynth
esis. Moreover, indoleacetic acid (3-IAA) is 
a microbial-derived tryptophan metabolite with 
anti-oxidation and autophagy effects.52 We found 
that a significantly increased 3-IAA level was posi
tively associated with exercise-altered Verticillium 
and Chloridium (FDR < 0.25) (Figure 4(b)). 
Altogether, we presented profound correlations 
between exercise-shaped gut fungal composition 
and alterations in circulating metabolites in serum.

Beyond metabolites, exercise also produces hor
mones and cytokines to systematically alleviate 
inflammation and restore metabolism.19 We 
found that exercise-shaped gut mycobiome may 
affect host metabolism via regulating hormones 
and cytokines production (Figure 4(b) and 
Supplemental Figure S8). For instance, cathepsin 
D (CTSD) is a lysosomal protease upregulated in 
obesity,53 its decline was aligned with the gain of 
Gibellulopsis, Metapochonia, Verticillium, and 
Sarocladium after training (FDR < 0.25). 
Moreover, the reduction trend of peptidase M20 
domain containing 1 (PM20D1), a glucose meta
bolism-regulating enzyme increased in obese sub
jects and correlated with metabolic syndrome,54 

positively paralleled with increases in Verticillium 
and Monosporascus (FDR < 0.25). Similarly, exer
cise-increased Gliomastix and Iodophanus were 
positively aligned with reduced glutaredoxin-1 
(GLRX) (FDR < 0.25), an activator of NF-κB sig
naling to accelerate adipogenesis.55 Elevations in 
other metabolic syndromes-related factors, includ
ing serum insulin-like growth factor binding pro
tein 7 (IGFBP7)56 and leukocyte immunoglobulin- 
like receptor B5 (LILRB5),57 were inversely accom
panied by the proliferation of Iodophanus, 
Monosporascus, and Conocybe. In addition, inter
leukin 17 receptor B (IL-17RB) and IL-2 receptor 
B (IL2RB) are obesogenic genes in mice.58,59 Their 

elevations were conversely related to higher 
Sarocladium abundance after exercise. By contrast, 
increased Conocybe, Gliomastix, and Chloridium
were negatively linked to lower Ras-related protein 
37 (RAB37, essential for glucose-stimulated insulin 
secretion60 and Peroxiredoxin 3 (PRDX3, against 
glucose tolerance61 (FDR < 0.25), signifying that 
changes in gut mycobiome might protect essential 
metabolic regulators from degradation. 
Glycoprotein 2 (GP2) is an intestinal M cells- 
sourced protein mediating gut inflammation.62 It 
is also associated with exercise resistance in glyce
mic control.19 Strikingly, the changing trend of 
GP2 was negatively associated with the gain of 
Gliomastix and Monocillium, suggesting that exer
cise-shifted gut fungi might be conducive to GP2 
reduction. In conclusion, changes in the gut myco
biome are correlated with exercise-elicited metabo
lites and hormonal homeostasis status.

The potential impacts of baseline gut fungi on 
exercise outcomes revealed by integrative 
mediation analysis

With multi-omics approaches, we have elaborated 
strong associations between fungal alterations and 
exercise-induced benefits. To further clarify 
whether and how the initial mycobiome composi
tion might determine the effectiveness of exercise, 
we conducted a mediation analysis to unearth the 
potential interplay between the baseline fungal 
abundance and the exercise-ameliorated host 
phenotypes.

The presence of Ceratocystis at baseline exhib
ited significant effects on exercise-reduced lipids 
levels including total cholesterol (r= −1.1, 
p < 0.01) and LDL (r=-0.91, p < 0.01) (Figure 5(a- 
c)). It was positively associated with linoleic acid (r  
= 0.23, p < 0.01, Figure 5(a)), which exhibits plasma 
cholesterol-lowering effects and is associated with 
a lower risk of heart disease in humans.63 

Interestingly, the initial Ceratocystis abundance 
was also inversely connected with PM20D1 
(r=-0.38, p < 0.01, Figure 5(b, c)). This result was 
in line with our observation that changes in 
PM20D1 were parallel to the gain of Verticillium 
and Monosporascus post-training (Figure 4(b)),
further underscoring that PM20D1 was a putative 
protein mediating gut mycobiome-host crosstalk. 
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Sarocladium emerged as another fungus of interest, 
with potential benefits for host insulin sensitivity 
regarding fasting insulin (r= −0.61, p = 0.02) and 
HOMA-IR (r= −0.67, p = 0.02) (Figure 5(d, e)). 
This data was supported by our prior finding that 
alternations in Sarocladium were associated with 
improvements in insulin sensitivity (Figure 2(a)).
Our results indicated the insulin-sensitizing effects 
of Sarocladium potentially via modulating 
Regulators of G-protein Signaling 8 (RGS8), key 
downstream elements of G protein-coupled recep
tors (GPCRs) regulating insulin secretion and glu
cose homeostasis.64 Of note, besides their impact at 
baseline, Ceratocystis and Sarocladium significantly 
increased post-exercise by 30.0% and 50.7%, 
respectively (Figure 1(f)), which further
potentiated the importance of gut mycobiome in 
exercise-induced benefits.

Applying baseline gut mycobiome features predicts 
exercise responsiveness in terms of insulin 
sensitivity

We have proved that gut bacterial microbiome pro
files determine personal exercise outcomes 

concerning insulin sensitivity and glycemic 
control.10 Hereby, we subsequently interrogate 
whether alternations in the gut mycobiome are 
associated with exercise responsiveness. Exercise 
responders (R) and non-responders (NR) were 
identified based on their improvement in home
ostasis model assessment of insulin resistance 
(HOMA-IR) after training as published.10 We iden
tified 36 R and 14 NR when pooling the discovery 
and validation cohort together. Though overall fun
gal diversity between R and NR was comparable 
(Supplementary Figure S9), a distinct pattern in 
the fungi components was observed in the two 
subgroups. Hanseniaspora is associated with hyper
glycemia in women with gestational diabetes,65 

which was exclusively increased in NR
(Figure 6(a)). Conversely, Cystobasidium, 
a predominated fungus in euglycemic subjects,66 

decreased significantly in NR after exercise training. 
In R, elevations in Paraphoma and Debaryomyces, 
two fungal genera enriched in healthy controls than 
in diabetes patients,66,67 were exclusively observed. 
Of note, alternations in Paraphoma were positively 
associated with changes in serum levels of histidine 
(Supplementary Figure S10), which corroborated 

a

d e

b c

Figure 5. Basal gut fungal abundance is associated with exercise-improved outcomes via different mediators. The triangle plot 
showed the significant mediation effects from the fungal genus (left) to participants’ phenotypes (right) via different metabolites, and 
serum proteins (middle). The arrows showed the direction of the effect and the corresponding Spearman coefficient and p values were 
indicated.
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Figure 6. Baseline gut mycobiome predicts exercise responsiveness in the improvement of insulin sensitivity. (a) The significantly 
changed fungal genera between exercise responders (R, n = 36) and non-responders (NR, n = 14) after training. (b) The correlation 
networks among the fold changes in significantly changed genera in R and NR were constructed. Genera were colored according to 
their affiliated phyla. The correlations in R and NR were connected in solid and dashed edges, respectively. The edges colored from 
blue to red represented the coefficient value from − 1 to 1 for the significant correlations. (c) The informative feature plots show the 
importance of the selected mycobiome in the machine-learning model.(d) the pie chart shows the percentage of the importance of 
informative features used in the prediction model. The pie colors indicate the different catalogs, including fungi, bacteria, and clinical 
information. (e) The receiver operating characteristic curves and area under the curve (AUROC) of the mycobiome-based predictive 
models for discriminating R and NR in the discovery cohort (n = 20). (f) AUROC of mycobiome-based predictive models to identify NR 
in the validation cohort (n = 30).
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our findings that histidine biosynthesis was the 
most enriched pathway after exercise training. 
Moreover, the enrichment of Kazachstania in 
R was supported by previous findings that 
Kazachstania was associated with normal body 
weight and circulating HDL level.68 The intra- 
kingdom linkages at the genus level in R and NR 
were 14 and 4, respectively (Figure 6(b)), suggesting 
R exhibited a more active crosstalk within the fun
gal ecosystem than NR.

The gut microbial fingerprint is useful for pre
dicting the outcomes of various interventions, 
including diet, exercise, and medication.10,69,70 

We therefore investigated the predictive value of 
fungal signatures on individuals’ exercise respon
siveness. Eight fungal genera, 6 bacteria genera,
and fat mass at baseline were selected in the pre
diction models (Figure 6c and Supplemental Table- 
S8), where fungal information contributed over 
50% importance to this algorithm (Figure 6(d)). 
Among informative features, Herpotrichiellaceae 
and Didymellaceae were enriched in NR, while 
Hypocreaceae and Stachybotryaceae were enriched 
in R (Supplementary Figure S11). Using this model 
with machine learning methods, we achieved an 
area under the receiver operating characteristic 
(AUROC) of 0.91 (95% CI: 0.85 to 0.97) to discri
minate the R and NR within our discovery cohort 
(n = 20, Figure 6(e)). Further evaluation in the vali
dation cohort (n = 30) also resulted in an AUROC 
of 0.79 (95% CI: 0.74 to 0.86) (Figure 6(e)). 
Remarkably, this combined model significantly 
outperformed the validation cohort compared to 
algorithms based solely on either fungal or bacterial 
features with clinical data (p < 0.05) (Supplemental 
Figure S12), suggesting a potential synergistic 
interaction between gut-resident bacteria and 
fungi in determining exercise responsiveness. 
Therefore, our findings further emphasized the 
importance of targeting gut fungi to develop 
a personalized exercise regimen in diabetes 
prevention.

Discussion

In this clinical study, we uncover that exercise 
significantly shapes gut mycobiome composition, 
which extends our current understanding of exer
cise impacts beyond gut-resident bacteria to fungi. 

The dynamics of enteric fungi are closely associated 
with exercise-induced changes in the bacterial 
microbiome, metabolome, and proteome, indicat
ing that commensal fungi might be a possible con
tributor to exercise-induced metabolic benefits. 
Furthermore, we observed differential changes in 
the gut mycobiome between exercise responders 
and non-responders. We subsequently developed 
a machine-learning algorithm integrating baseline 
gut mycobiome profiles to predict exercise respon
siveness in glycemic control and insulin sensitivity. 
Our results highlight the potential to precisely tai
lor exercise by targeting gut fungal profiles.

The importance of the bacterial microbiome in 
exercise has been elucidated, whereas the contribu
tion of gut fungi remains under-investigated. We
demonstrated that exercise leads to effective improve
ments in gut fungal diversity and intra-kingdom 
communication as evidenced by higher α-diversity 
and enriched fungal co-abundance network. These 
findings corroborate previous works that both dietary 
intervention and Roux-en-Y gastric bypass surgery 
remarkably remodel the gut mycobiome 
taxonomy.13,71 Remarkably, unlike the bacterial 
microbiome, which retains compositional stability 
responding to exercise,10 our data indicates high plas
ticity and adaptability of the gut mycobiome to life
style modification. Nevertheless, there is still an 
absence of studies to directly compare the changes 
in these two microbial communities in response to an 
identical intervention. The stability and resilience of 
gut bacteria and fungi may vary across different con
ditions and warrant further investigation. 
Interestingly, we observe a linear correlation between 
fungal and bacterial diversity after training, indicating 
an interdependent response of commensal fungi and 
bacteria to exercise. Like intestine bacteria, which 
implicates exercise-promoted benefits through regu
lating microbial metabolites,10 the changes in fungal 
composition are also associated with SCFA and 
amino acid metabolism. These results collectively 
imply a synergic and coexisting interaction between 
gut-colonized bacteria and fungi during exercise. 
Given those extensive linkages we observed, our 
results further suggest that, apart from commensal 
bacteria, gut fungi also serve as a potential molecular 
transducer for physical exercise.

We further identified a subset of fungi that sig
nificantly increased after exercise training. For 
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instance, Verticillium shows the most pronounced 
response to exercise with a 1.5-fold augment. Its 
elevation correlates closely with the exercise- 
induced improvement in fasting glucose level, body 
composition, and strength performance. Our inte
grated omics analysis further suggests that 
Verticillium may exert benefits through multiple 
pathways. A noteworthy microbial interaction is 
between changes in Verticillium with Veillonella 
infantium, a lactic acid-producing bacterium asso
ciated with exercise performance,43 which indicated 
that growth in Verticillium might foster a conducive 
environment for the proliferation of bacterial strains 
with metabolic benefits. 3-IAA is a microbial meta
bolite that determines chemotherapy responsiveness 
in pancreatic cancer.52 The positive association
between increased circulating 3-IAA levels and exer
cise-induced fungi genus raised the possibility that 
IAA may serve as a transducer mediating 
Verticillium-derived benefits, which warrants 
further investigation in the future study. Besides, 
change in Verticillium may also contribute to 
PM20D1’s reduction, a known biomarker for 
human metabolic syndrome.54 In addition, abun
dance of Sarocladium was also 50% higher after 
exercise training and associated amelioration in 
insulin resistance. Our results also suggested 
Sarocladium as a potential regulator of host glucose 
metabolism by facilitating the gain of anti-obese gut 
bacteria, including V. infantium and 
Bifidobacterium dentium. In concordance that 
Ceratocystis level is inversely associated with glucose 
tolerance and insulin resistance,13 we found 30% 
increases in Ceratocystis in response to exercise 
intervention. Importantly, our mediation analysis 
indicates that the baseline abundance of 
Ceratocystis and Sarocladium may influence the out
come of exercise by modulation of metabolites and 
cytokines levels. However, whether these fungi are 
symbiotic residents or transient environmental spe
cies remains debatable.72 Nevertheless, our results 
revealed the potential links between exercise-altered 
fungi, gut bacteria, and serum immune factors. 
Further investigation into those exercise-shifted fun
gal genera through culturomics and mechanistic 
elucidation is needed to establish their capacity for 
colonization and adaptation within the human gas
trointestinal tract and their specific contributions to 

immune regulation, which are vital features to dis
tinguish the true symbiotic.72 Taken together, our 
integrative omics analysis uncovers the possible lin
kages between gut mycobiome and host metabolism 
from multiple dimensions.

Exercise resistance poses a major challenge in its 
clinical application for diabetes prevention and 
management.10,73 The difference in the gut bacterial 
microbiome has been implicated as a potential deter
minant of individual responsiveness to various 
interventions.10,69,70 A high abundance of commensal 
fungi Candida in human recipients is correlated with 
the therapeutic efficacy of fecal microbiome trans
plantation for colitis.74 Herein, we observed distinct 
changes in the gut mycobiome composition between 
exercise responders and non-responders. Notably,
a machine-learning algorithm mainly based on basal 
gut fungal signatures accurately predicts exercise 
responsiveness in improvements of glycemic control 
and insulin sensitivity with an AUC of 0.91, which 
also achieved an AUC of 0.79 in our validation 
cohort. Importantly, the fungal information contri
butes more than 50% importance in this model, sug
gesting that the gut mycobiome may serve as 
potential biomarkers for monitoring and predicting 
exercise outcomes. The predictive power of this new 
model is comparable with our previous model estab
lished by using features combining 15 circulating 
metabolites and 13 gut bacterial species,10 which 
requires both sophisticated liquid chromatography- 
mass spectrometry (LCMS)-based blood measure
ment of metabolites and fecal shotgun sequencing. 
On the other hand, our current algorithm is based 
only on fat mass and sequencing data from stool 
samples, which is relatively easier to implement and 
is more cost-effective than the previous prediction 
model. Although further validation and optimization 
of this fungi-based prediction model is required in 
large, independent cohorts and clinical implementa
tion remains distant, our findings provide advanced 
evidence for the close association between gut fungal 
composition and exercise responsiveness with respect 
to insulin sensitivity and glucose metabolism.

Our study has several limitations that warrant 
further discussion. First, due to the technical lim
itation of ITS2 sequencing, we only decipher the 
fungal taxonomy at genus levels. Further explora
tion of fungal species information and function 
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annotations is warranted using advanced sequen
cing techniques. Second, our association analysis 
only unveils conceivable mechanistic linkages 
between gut mycobiome and exercise-mediated 
metabolic improvement. The explore and correla
tional nature of our data precludes the establish
ment of causal relationships. Further mechanistic 
experiments are needed to establish their cause– 
effect relationship and the underlying biological 
pathway whereby altered fungal species modulate 
host metabolism. Ideally, mono-colonization of 
fungal species responsive to exercise intervention 
is required to elucidate their specific metabolic 
roles in vivo. However, the current technology for 
identifying, isolating, and culturing single fungal 
species is rather limited, thereby hindering further
detailed mechanistic studies. Additionally, our 
study is also limited by the small sample size, due 
to logistical difficulties in recruiting a larger num
ber of eligible medication-naïve overweight indivi
duals with prediabetes for performing supervised 
high-intensity exercise studies. As a result, the con
clusions drawn from this study should be inter
preted with caution. Another limitation is that 
our study population includes Chinese participants 
only. It remains unclear whether our prediction 
model for exercise responsiveness can be general
ized in different populations. Further studies with 
larger sample sizes and diverse ethnic groups are 
needed to consolidate our findings on the changes 
in gut mycobiome in response to exercise training.

Conclusion

In summary, this integrative multi-omics study 
elucidates that exercise profoundly shapes gut 
mycobiome composition, with its dynamics tightly 
associated with exercise-induced metabolic bene
fits. These findings suggest that gut mycobiome 
might be an important regulator of host metabo
lism and raise the possibility of targeting gut myco
biome as a novel approach for personalized lifestyle 
intervention for preventing diabetes and other 
metabolic disorders. While our results shed new 
light on the possible involvement of the gut myco
biome in exercise-shaped metabolism and insulin 

responsiveness, further larger-scale studies in inde
pendent cohorts and mechanistic investigations are 
warranted to validate our findings and to dissect 
the cause–effect relationship between gut myo
biome and exercise physiology.
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