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ABSTRACT ARTICLE HISTORY
Background: The importance of gut microbes in mediating the benefits of lifestyle intervention is Received 22 July 2024
increasingly recognized. However, compared to the bacterial microbiome, the role of intestinal Revised 5 October 2024
fungi in exercise remains elusive. With our established randomized controlled trial of exercise Accepted 10 October 2024
intervention in Chinese males with prediabetes (n = 39, ClinicalTrials.gov:NCT03240978), we inves- KEYWORDS

tigated the dynamics of human gut mycobiome and further interrogated their associations with Gut mycobiome; fungal
exercise-elicited outcomes using multi-omics approaches. microbiome; exercise
Methods: Clinical variations and biological samples were collected before and after training. training; diabetes

Fecal fungal composition was analyzed using the internal transcribed spacer 2 (ITS2) sequen- prevention; multi-omics;
cing and integrated with paired shotgun metagenomics, untargeted metabolomics, and Olink ~ randomized controlled trial;
proteomics. intervention responsiveness

Results: Twelve weeks of exercise training profoundly promoted fungal ecological diversity
and intrakingdom connection. We further identified exercise-responsive genera with potential
metabolic benefits, including Verticillium, Sarocladium, and Ceratocystis. Using multi-omics
approaches, we elucidated comprehensive associations between changes in gut mycobiome
and exercise-shaped metabolic phenotypes, bacterial microbiome, and circulating metabolo-
mics and proteomics profiles. Furthermore, a machine-learning algorithm built using baseline
microbial signatures and clinical characteristics predicted exercise responsiveness in improve-
ments of insulin sensitivity, with an area under the receiver operating characteristic (AUROC)
of 0.91 (95% Cl: 0.85-0.97) in the discovery cohort and of 0.79 (95% Cl: 0.74-0.86) in the
independent validation cohort (n=30).

Conclusions: Our findings suggest that intense exercise training significantly remodels the human
fungal microbiome composition. Changes in gut fungal composition are associated with the
metabolic benefits of exercise, indicating gut mycobiome is a possible molecular transducer of
exercise. Moreover, baseline gut fungal signatures predict exercise responsiveness for diabetes
prevention, highlighting that targeting the gut mycobiome emerges as a prospective strategy in
tailoring personalized training for diabetes prevention.
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Introduction

Intestinal microbes are pivotal in orchestrating host
immunologic and metabolic homeostasis." Alongside
bacterial microbiomes, fungal communities (myco-
biome) also colonize the human gastrointestinal
tract.” Though it only constitutes 0.1% of the entire
gut ecosystem,” emerging evidence demonstrated its
importance in host health. Gut fungal dysbiosis is
associated with the onset or progression of various
bowel diseases and colorectal cancer.* In metabolic
contexts, human gut mycobiome composition is
related to the progress of nonalcoholic fatty liver
disease.” Mucor genus and Candida spp. are predo-
minated in obese subjects and diabetic patients com-
pared to their healthy counterparts, respectively.®’
Moreover, Candida parapsilosis and Candida albicans
transplantation evoked metabolism syndromes in
mice models.>’

Physical exercise is an effective non-
pharmacological approach to diabetes manage-
ment with pleiotropic benefits.'” A previous
study has demonstrated distinct patterns of
commensal bacteria between athletes and indi-
viduals with sedentary lifestyles.'' Furthermore,
the fermentation and composition of the bacter-
ial microbiome are dramatically remodeled by
exercise and determine differential exercise
responsiveness in overweight individuals with
prediabetes.'® Yet, compared to gut bacteria,
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the impact of exercise on the gut mycobiome
and the potential contribution of intestinal fungi
in exercise physiology remain obscure.

Accumulating evidence has shown that the gut
mycobiome is resilient to habitual lifestyles. For
example, fecal Candida abundance positively
correlates with dietary carbohydrate consump-
tion in humans.'” Likewise, low-calorie diet
intervention could effectively restore the Mucor
abundance in obese patients.'> Murine studies
showed that the gut mycobiome was predomi-
nated by Fusarium and Alternaria with
a standard chow diet, whereas C. albicans was
the most abundant fungi upon treatment with an
obesogenic diet.'* Thus, we reasoned whether
exercise remodels enteric fungal profiles, which
in turn contributes to the metabolic benefits
conferred by exercise.

Herein, we investigated the dynamics of the
human gut mycobiome in a well-designed rando-
mized controlled exercise trial on medication-naive
overweight males.'” We further interrogated the
relationship of exercise-shaped gut mycobiome
with bacteriome, metabolome, and proteome in
modulating the metabolic benefits of exercise.
Moreover, we developed a machine-learning algo-
rithm integrating baseline fungal signatures which
can predict the individual responsiveness to exer-
cise intervention in diabetes prevention.



Materials and methods
Study design

The study was approved by the ethics committees of
the Hospital Authority Hong Kong West Cluster
(UW15-370) and registered on ClinicalTrials.gov
(NCT03240978). Thirty-nine overweight males
with prediabetes were enrolled for a randomized
clinical trial (RCT) of 12-week supervised exercise
training as described.'’ In brief, overweight (body
mass index (BMI) > 25 kg/mz) Chinese males aged
20 to 60years old with prediabetes (defined as
impaired fasting glucose [5.6 mmol/L to
6.9 mmol/L] and/or impaired glucose tolerance
[2-h blood glucose level of oral glucose tolerance
test (OGTT): 7.8 mmol/L to 11.0 mmol/L after
a 75-g oral glucose challenge]). Moreover, all volun-
teers are on medication-naive and in the absence of
any chronic diseases or mental illness and lack reg-
ular exercise training. Eligible subjects who signed
written informed consent were randomly assigned
to exercise (n =20) or sedentary groups (n=19) to
undergo supervised high-intensity interval exercise
training (3  sessions/week, for 12 weeks)
(Supplementary Table S9) which was designed
referred to prior study.'>'® This exercise protocol
combined both aerobic and strength training, which
has been recognized for its effectiveness in improving
insulin sensitivity."” The details of our training regi-
men were elaborated in our previous publication.'’
Briefly, volunteers received a warm-up exercise
(10 min), a high-intensity interval training (about
50 min with 80-95% of the maximal heart rate),
together with a stretching and cool-down training.
At least 85% attendance of exercise was required for
data analysis. Exercise responsiveness was evaluated
accordingly to interpersonal variability in terms of
improvement in the insulin resistance index (HOMA-
IR). Exercise non-responders were determined as sub-
jects who failed to ameliorate HOMA-IR greater than
the 2-fold technical error and vice versa according to
previous publications.'®'® Another 30 subjects were
recruited as a validation cohort with the same inclu-
sion criteria and exercise training regimen.

Sample collection and clinical data measurement

All participants were subjected to monthly speci-
men collection throughout the 12-week exercise
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training program. After overnight fasting (about
10-12 hours), blood samples were collected, ali-
quoted, and stored at —80°C for further analysis.
Serum glucose level and lipids profiles, in terms of
triglycerides (TG), total cholesterol (TC), high-
density lipoprotein (HDL) cholesterol, and low-
density lipoprotein (LDL) cholesterol, were mea-
sured by laboratory biochemistry analyzer (Hitachi
717, Roche Diagnostics, Germany) following
instruction. Insulin level was assayed by commer-
cial ELISA kits (Immunodiagnostics, Hong Kong
SAR). HOMA-IR was calculated as fasting insu-
lin x fasting glucose/22.5, whereas the Matsuda
index was calculated using the result of OGTT as
1000/[fasting glucose x fasting insulin x mean glu-
cose (during OGTT) x mean insulin levels (during
OGTT)]". Body composition and exercise perfor-
mance including strength, flexibility, and maximal
oxygen consumption were determined before and

after exercise following standardized protocols as
described.

Circulating proteomics and targeted metabolomics
signatures

Circulating proteomics was detected by Olink
Proteomics (Uppsala, Sweden) with Olink Explore
cardiometabolic and inflammation panels."’
Specifically, protein biomarkers were identified
using the Olink Explore 384 panels for cardiometa-
bolic and inflammation. In brief, the proximity
extension assay (PEA) technique employs DNA
oligonucleotide-tagged antibody pairs to bind to
target proteins. When two compatible antibodies
attach to the target protein, the oligonucleotide
pairs combine and are lengthened by DNA poly-
merase, forming a distinct DNA barcode that is
later analyzed using next-generation sequencing.
Due to the requirement of properly matched
DNA string pairs for the generation of detectable
and quantifiable signals, the PEA technique
demonstrated high specificity and outstanding
sensitivity.”” The values were shown as normalized
protein expression (NPX) units on a log2 scale.
Targeted metabolomics profiling of human plasma
samples was determined using gas or liquid chro-
matography coupled to mass spectrometers by
Metabo-Profile (Shanghai, China)."°
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Fecal DNA extraction and sequencing

We extracted fecal DNA from freezing stool sam-
ples using PowerFecal Pro DNA Kit (QIAamp,
QIAGEN, Germany). Internal transcribed spacer
2 (primers: sense 5-GCATCGATGAAGAAC
GCAGC-3 and antisense 5-TCC
TCCGCTTATTGATATGC-3’) sequencing was
conducted using NovaSeq PE250 with a data
depth of 100K tags per sample (Novogene,
Tianjin, China). Matched metagenomics data
were used in our published dataset (NCBI
Sequencing Read Archive under BioProject ID
PRJNA454826) and re-analyzed by Metaphlan 3.0
and HUMAnN 3.0."%

ITS2 and metagenomics analysis

Human reads contamination, PCR adapter, low-
quality reads, and duplicated reads of raw metage-
nomic shotgun sequencing were removed with
a described pipeline.”* Quality control of raw ITS2
sequencing reads was performed by filtering and
trimming the adapter sequences, primers, and
poly-A tails with cutadapt.** The relative abundance
of the microbial community from the metagenome
was calculated with MetaPhlAn3 at different taxo-
nomic levels. PIPITS pipeline was used for ITS data
with default settings including further quality filter-
ing, read-pair merging, ITS2 filtering, and chimera
removal.”> The remaining reads were further binned
based on 97% similarity as an operational taxonomic
unit (OTU) and aligned to the UNITE fungal data-
base (Version 9.0) with the Mothur classifier.?®

Fungal and bacterial abundance

The abundance of fungi from ITS sequencing
data annotated by PIPITS was further normal-
ized by the relative abundance. The relative
abundance of bacteria from metagenomic data
was retrieved from MetaPhlAn3 at each taxo-
nomic level as previously described. The taxo-
nomic variation of fungus or bacteria at each
level before and after exercise was retrieved
from the fold change of fungal relative abun-
dance of individuals. HUMAnN3 was used with
metagenomic reads to estimate gene family
abundances. Reads per kilobase (RPK) values

for gene family abundances were copies
per million (CPM) normalized. KEGG pathways
were further annotated.

Diversity analysis

The alpha diversities in Simpson, Shannon, and
Chaol indexes of the bacterial and fungal commu-
nities were calculated using the vegan package.”” The
Bray-Curtis dissimilarity of the fungal species among
individuals was performed by the Phyloseq
package.”®

Differential analysis

To identify the significantly different fungus
within subjects before and after exercise,
MaAsLin2*® was implemented with the paired
compound Poisson linear model (CPLM) by
normalizing the fungal relative abundance in
three different ways: TSS, TMM, and CSS. The
fungus with an adjusted p-value of <0.25 in at
least two of the three normalizations was
regarded as the significant result. The relative
abundance of bacteria was compared within sub-
jects between the two time points with the
Wilcoxon signed-rank test for paired data and
adjusted with Benjamini-Hochberg correction
for multiple comparisons. Moreover, to evaluate
the potential impact of the bacterial shift on
shaping fungal abundance, MaAsLin2 was
further used for testing the difference of identi-
fied significant fungal genera with the adjust-
ment for all significantly changed bacteria
genera (Supplementary Table S10).

Metabolic pathway enrichment analysis

KEGG Pathway enrichment analysis with signifi-
cantly different metabolites was performed with
MetaboAnalyst.”® KEGG Pathway enrichment ana-
lysis with significantly different OLINK proteomic
biomarkers was conducted with the clusterProfiler
package.”!

Machine learning model construction

Baseline fungal abundance at phylum, family, and
genus level, the clinical parameters, and the



bacterial abundance were compared between
responders and non-responders with the
Wilcoxon rank-sum test, and differentially abun-
dant features with p <0.1 were selected for con-
structing the machine learning models. Random
forest models for classifying responders and non-
responders were constructed in three ways: base-
line mycobiome and clinical parameters, baseline
microbiome and clinical parameters, and the com-
bination of the three profiles with the Caret
R package.”” The model was trained with ranger
function in our discovery cohort, using 10-repeated
10-fold  cross-validation  (repeatedcv)  as
a resampling method and ROSE sampling strategy
to account for the imbalance in the two classes.”
The constructed model was further tested in an
independent validation cohort as previously
described.'’ To perform a robust and generalizable
analysis, the machine learning algorithm was iter-
ated 100 times in both discovery and validation
cohorts. Model performance was assessed using
the evalm function from the Mleval R package,
which included the sensitivity, specificity, the
Matthews correlation coefficient (MCC), and net
present value (NPV).

The area under the curve (AUC) of the receiver
operating characteristic curve (ROC) curve was
calculated by evalm function and further visualized
with the pROC R package. The AUCs of each
model were used as the main indicator of model
performance and were further compared with
DeLong’s test, using the roc.test function from the
pROC R package. Results with a P-value of <0.05
were considered statistically significant.

Mediation analysis

To investigate whether the presence of important
fungal species at baseline may affect the change of
phenotypes via the baseline level of OLINK, meta-
bolites, and microbial pathway, we implemented
bi-directional mediation analysis using the mediate
package in R. In detail, we estimated the total effect
from the presence (represented in 0 or 1) of fungal
at baseline to the fold change of phenotypes after
exercise, the effect on the baseline abundance of the
potential mediators, and the effect of the baseline
abundance of the mediators to the fold change of
phenotypes after exercise. We further performed
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the causal mediation analysis among the three
models. We then selected the significant results of
all the effects among the three models as well as the
indirect effect. Lastly, we filtered the significant
results of the direct effect to generate the final
result.

Data visualization

All the box plots, bar charts, and dot plots were
constructed with ggplot2 unless otherwise stated.*
Sankey plots were built with the NetworkD3
package.”” Networks were visualized with
Cytoscape.’® Heatmaps were constructed with the
ComplexHeatmap package.”” The phylogenetic
tree was visualized with ggtree package.’® The
AUROC plot was built with the PROC package.*

Statistical analysis

All statistical analyses were performed in
R software. The group comparison of alpha diver-
sity and fungal abundance between samples before
and after exercise was conducted with the
Wilcoxon signed-rank test. Adaptive false discov-
ery rate (FDR) correction was applied for multiple
comparisons of the differential abundance analysis.
Principal components analysis (PCA) of the fold
change of fungal species was performed with the
vegan package. Multivariate analysis
PERMANOVA was performed using vegan for
1000 permutations. The envfit function of vegan
package was used to analyze the relationship
between relative changes in the clinical parameters
and their overall fungal composition with 1 x 10*
permutations. The group dispersion between exer-
cise and control was calculated by vegan and was
further evaluated with ANOVA. The co-abundance
network analysis using pairwise Spearman correla-
tions between fungi before and after exercise. The
Spearman correlation was performed between the
fold change of fungal abundances and multi-omics
including clinical parameters, metabolomics, and
proteomics. Benjamini-Hochberg procedure with
the cutoffs of 0.25 and 0.05 was applied to all the
results. Bi-directional mediation analysis was per-
formed with the mediation package, which was
constructed with the presence/absence of fungi at
baseline, the baseline abundance of metabolites and
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proteomics, and the fold change of host pheno-
types. Machine learning built by a random forest
model was implemented with the caret package.

Results

Exercise training remodels gut mycobiome
composition

To illustrate the impact of exercise training on gut
mycobiome composition, fecal samples from exer-
cise intervention and sedentary control groups
were collected for ITS2 sequencing. We annotated
9 phyla, 187 families, 258 genera, and 253 species
with >10% prevalence among all fecal samples
(Supplemental Table S1). The Ascomycota phylum
predominated 85.73% of the gut mycobiome, while
Saccharomyces was the most enriched genus with
a mean relative abundance of 39.08%
(Supplemental Figure S1). As a major confounding
factor, the dietary intake was evaluated, and no
significant difference in nutrition was found
between the two groups (Supplemental Figure S2).

Notably, the exercise resulted in a significantly
increased fungal a-diversity, which was unchanged
in the control group (p=0.38) (Figure 1(a, b)).
Consistently, the microbial change within subjects
measured by the Bray-Curtis distance in the exer-
cise group was significantly higher than in the
sedentary group at genus levels (Figure 1(c)).
Moreover, the exercise effectively remodeled both
the centroid and dispersion of the fungal commu-
nity compared to their baseline (FDR < 0.05),
whereas no obvious change was found within the
control subjects (Figure 1(d), Supplemental Table
§2). The majority of fungal genera (82.52%)
remained stable during exercise without significant
alternation. By contrast, 17.02% of them showed
increased abundance levels and only 2.13%
decreased (FDR < 0.05). (Supplemental Figure S3
and Supplemental Table S3). Despite the persona-
lized dynamics in responding to exercise training at
the genus level (Figure 1(e) and Supplemental
Figure S4), a group of exercise-responsive fungal
genera was identified (Figure 1(f) and
Supplemental Figure S5). The relative abundance
of Verticillium exhibited a 1.5-fold increase from
baseline after training, distinguished from seden-
tary groups. Relative abundances of other genera,

including Chloridium, Iodophanus, Monosporascus,
Beauveria, Ceratocystis, and Bipolaris, were aug-
mented by over 30% after training and were sig-
nificantly different compared to sedentary controls
(Figure 1(f)). Interestingly, the abundance of
Verticillium was notably decreased in children
with clinical type-1 diabetes, and Ceratocystis level
was higher in healthy subjects and associated with
euglycemia status.'>** Therefore, the shifts in fun-
gal abundance observed following exercise in our
study align with previous clinical studies regarding
their association with host glucose metabolism.

Physical exercise has been shown to modulate
the gut microbiome, with one of the effects being
the enhancement of bacterial community
interactions.'® Similar responses in gut fungi were
found by co-abundance analysis (Figure 1(g)). At
baseline, only 37 correlations within the fungal
ecosystem were identified, whereas the interactions
drastically surged to 80 after training. Importantly,
the nexus is centralized around exercise-responsive
fungi, like Verticillium, Iodophanus,
Monosporascus, Bipolaris, and Conocybe. Our data
implied that exercise-promoted fungi could be
instrumental in enhancing fungal ecosystem com-
munication. These findings collectively demon-
strated exercise as a potent intervention in
shaping gut mycobiome composition.

Alterations in gut mycobiome composition are
associated with exercise-improved clinical
parameters

Next, we performed a Spearman correlation ana-
lysis to determine the relationships between shifts
in fungal abundances and improvements in meta-
bolic phenotypes after exercise. The influence of
host factors on fungal compositional alterations
was assessed as measured by the Bray-Curtis dis-
tance. Multiple regressions of clinical parameters
with permutation test revealed that fasting glu-
cose level was associated with overall gut myco-
biome variations with significant power
(R*=0.35 p<0.05) (Figure 2(a) and
Supplementary Table S5), which was consistent
with prior reports about the bidirectional influ-
ences between the gut microbiome and host glu-
cose metabolism.*'
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The increases in fungal abundance, including
Verticillium, Gliomastix, Conocybe (FDR < 0.25),
Bipolaris, and Sarocladium (FDR < 0.05) after exer-
cise were positively associated with improvements
in host insulin sensitivity, as indicated by fasting
insulin level and HOMA-IR. In terms of lipids
profiles, reductions in LDL and cholesterol con-
tents were concomitant with the augment of
Verticillium and Sarocladium after exercise (FDR
< 0.25) (Figure 2(b)). By contrast, no correlations
were detected between the mycobiome and HDL or
triglyceride levels. Notably, increases in
Verticillium were parallelly associated with the
gain of leg and back strength, suggesting that
changes in Verticillium abundance may be related
to exercise performance (Figure 2(b)). In addition,
its elevation was also positively associated with the
reduction in fat mass percentage (Fat%). We
further observed improvements in diastolic blood
pressure (DBP) were remarkably linked with shifts
in the gut fungal genera, with Bipolaris, Gliomastix,
Conocybe, Iodophanus, and Sarocladium enclosed
(Figure 2(b)). Collectively, our results suggested
fluctuations in the gut mycobiome are tightly asso-
ciated with exercise-elicited metabolically benefi-
cial effects.

Trans-kingdom crosstalk between gut fungal and
bacterial microbiome during exercise

Microbial synergism between the intestinal fungal
and bacterial microbiome profoundly remodels the
gut environment and holistic immunity.** We then
probed into potential gut fungi-bacteria crosstalk
during the exercise intervention.

There was a significant association in the shifts of
a-diversity between fungi and bacteria at genus levels
(R*=0.33, p = 0.04), indicating a possible coordinated
response of these two communities adapting to exer-
cise (Figure 3(a)). We next assessed the changes in
their interkingdom communication after training.
Among those linkages, changes in Verticillium and
Sarocladium showed prominent associations with
exercise-shifted bacterial species (Figure 3(b)).
Interestingly, Veillonella is an exercise-responsive bac-
terium enriched in elite marathon athletes, which
metabolizes lactic acid into propionate to improve
exercise performance.”> Decreases in V. infantium
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were negatively associated with changes in exercise-
promoted fungal species, especially with Verticillium,
Sarocladium, and Monocillium (FDR < 0.25). Other
bacteria typically enriched in non-obese or non-
diabetic healthy controls, such as Haemophilus para-
influenzae and Bifidobacterium dentium,*** also dis-
played negative correlations with the gain of
Monocillium and Gliomastix (FDR < 0.25). In con-
trast, bacteria linked to metabolic syndrome, includ-
ing Clostridium symbiosum (enriched in T2D),
Fusicatenibacter saccharivorans (enriched in fatty
liver disease), and Dorea formicigenerans (enriched
in obesity),*”*” showed opposite trends with prolif-
erations in exercise-induced fungi. Hence, our results
indicated a possible interaction between gut fungi and
bacteria in response to exercise.

Further, by examining the correlation between gut
fungi and bacterial function retrieved from the Kyoto
Encyclopedia of Genes and Genomes (KEGG) ortho-
logues (KOs), we observed that Kluyveromyces exhib-
ited over 100 interactions with bacterial functions
(Figure 3(c)). Of interest, Kluyveromyces was signifi-
cantly elevated by 12.9% after training (Figure 1(e)).
Lines of evidence also suggest that Kluyveromyces is
a probiotic candidate with multiple metabolic
benefits.*® Mapping the fungi-related KOs into the
KEGG Module level revealed that changes in the gut
mycobiome had significant associations with histidine
biosynthesis (Figure 3(d)), a potential mediator that
bridges gut fungi with host cholesterol metabolism
and the development of nonalcoholic fatty liver
disease.”>”° Interestingly, this finding was further sub-
stantiated by our metabolomics profiles that circulat-
ing histidine concentration was significantly increased
after exercise training (supplemental Figure S6).
Moreover, annotating the significant KOs at pathway
levels highlighted that fungi were most related to
metabolic pathways followed by the biosynthesis of
secondary metabolites and cofactors (Figure 3(e)). In
summary, we showed that exercise-induced gut fungi
perturbations were accompanied by both composi-
tional and functional transitions of gut bacteria.

Exercise-shaped changes in gut fungal composition
correlate closely with alterations of host circulating
metabolites and proteins

Fungi-produced metabolites potently impact host
metabolism and immunity.”’ Pathway enrichment
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analysis was performed within the circulating
metabolites significantly correlated with the fungal
community (Figure 4(a)). As shown, exercise-

shaped fungi mainly affected amino acid metabo-
lism pathways, including branched-chain amino
acids (BCAA) biosynthesis, alanine, aspartate, and
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glutamate metabolism, and arginine biosynthesis
(FDR < 0.25). We further found exercise-
promoted fungi associated with short-chain fatty
acid (SCFA) metabolism with propanoate and
butanoate enclosed. An intriguing observation
was the positive association between butyric acid
changes and Ceratocystis (FDR <0.05) (Figure 4(b),
supplemental Figure S7). Considering the benefits
of SCFA on host metabolism,'® our data indicate
that the growth of Ceratocystis may implicate in the
benefits of exercise by promoting SCFA biosynth-
esis. Moreover, indoleacetic acid (3-IAA) is
a microbial-derived tryptophan metabolite with
anti-oxidation and autophagy effects.”> We found
that a significantly increased 3-IAA level was posi-
tively associated with exercise-altered Verticillium
and Chloridium (FDR < 0.25) (Figure 4(b)).
Altogether, we presented profound correlations
between exercise-shaped gut fungal composition
and alterations in circulating metabolites in serum.

Beyond metabolites, exercise also produces hor-
mones and cytokines to systematically alleviate
inflammation and restore metabolism."” We
found that exercise-shaped gut mycobiome may
affect host metabolism via regulating hormones
and cytokines production (Figure 4(b) and
Supplemental Figure S8). For instance, cathepsin
D (CTSD) is a lysosomal protease upregulated in
obesity,” its decline was aligned with the gain of
Gibellulopsis, Metapochonia, Verticillium, and
Sarocladium after training (FDR < 0.25).
Moreover, the reduction trend of peptidase M20
domain containing 1 (PM20D1), a glucose meta-
bolism-regulating enzyme increased in obese sub-
jects and correlated with metabolic syndrome,”*
positively paralleled with increases in Verticillium
and Monosporascus (FDR < 0.25). Similarly, exer-
cise-increased Gliomastix and Iodophanus were
positively aligned with reduced glutaredoxin-1
(GLRX) (FDR < 0.25), an activator of NF-kB sig-
naling to accelerate adipogenesis.” Elevations in
other metabolic syndromes-related factors, includ-
ing serum insulin-like growth factor binding pro-
tein 7 (IGFBP7)*® and leukocyte immunoglobulin-
like receptor B5 (LILRB5),”” were inversely accom-
panied by the proliferation of Iodophanus,
Monosporascus, and Conocybe. In addition, inter-
leukin 17 receptor B (IL-17RB) and IL-2 receptor
B (IL2RB) are obesogenic genes in mice.”®” Their

elevations were conversely related to higher
Sarocladium abundance after exercise. By contrast,
increased Conocybe, Gliomastix, and Chloridium
were negatively linked to lower Ras-related protein
37 (RAB37, essential for glucose-stimulated insulin
secretion® and Peroxiredoxin 3 (PRDX3, against
glucose tolerance® (FDR < 0.25), signifying that
changes in gut mycobiome might protect essential
metabolic  regulators  from  degradation.
Glycoprotein 2 (GP2) is an intestinal M cells-
sourced protein mediating gut inflammation.®* Tt
is also associated with exercise resistance in glyce-
mic control.'” Strikingly, the changing trend of
GP2 was negatively associated with the gain of
Gliomastix and Monocillium, suggesting that exer-
cise-shifted gut fungi might be conducive to GP2
reduction. In conclusion, changes in the gut myco-
biome are correlated with exercise-elicited metabo-
lites and hormonal homeostasis status.

The potential impacts of baseline gut fungi on
exercise outcomes revealed by integrative
mediation analysis

With multi-omics approaches, we have elaborated
strong associations between fungal alterations and
exercise-induced benefits. To further clarify
whether and how the initial mycobiome composi-
tion might determine the effectiveness of exercise,
we conducted a mediation analysis to unearth the
potential interplay between the baseline fungal
abundance and the exercise-ameliorated host
phenotypes.

The presence of Ceratocystis at baseline exhib-
ited significant effects on exercise-reduced lipids
levels including total cholesterol (r= -1.1,
p<0.01) and LDL (r=-0.91, p<0.01) (Figure 5(a-
c)). It was positively associated with linoleic acid (r
=0.23, p < 0.01, Figure 5(a)), which exhibits plasma
cholesterol-lowering effects and is associated with
a lower risk of heart disease in humans.®
Interestingly, the initial Ceratocystis abundance
was also inversely connected with PM20D1I
(r=-0.38, p < 0.01, Figure 5(b, c)). This result was
in line with our observation that changes in
PM20D1 were parallel to the gain of Verticillium
and Monosporascus post-training (Figure 4(b)),
further underscoring that PM20D1 was a putative
protein mediating gut mycobiome-host crosstalk.
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Sarocladium emerged as another fungus of interest,
with potential benefits for host insulin sensitivity
regarding fasting insulin (r= —-0.61, p =0.02) and
HOMA-IR (r= -0.67, p=0.02) (Figure 5(d, e)).
This data was supported by our prior finding that
alternations in Sarocladium were associated with
improvements in insulin sensitivity (Figure 2(a)).
Our results indicated the insulin-sensitizing effects
of Sarocladium potentially via modulating
Regulators of G-protein Signaling 8 (RGS8), key
downstream elements of G protein-coupled recep-
tors (GPCRs) regulating insulin secretion and glu-
cose homeostasis.”* Of note, besides their impact at
baseline, Ceratocystis and Sarocladium significantly
increased post-exercise by 30.0% and 50.7%,
respectively  (Figure 1(f)), which further
potentiated the importance of gut mycobiome in
exercise-induced benefits.

Applying baseline gut mycobiome features predicts
exercise responsiveness in terms of insulin
sensitivity

We have proved that gut bacterial microbiome pro-
files determine personal exercise outcomes

concerning insulin sensitivity and glycemic
control.'” Hereby, we subsequently interrogate
whether alternations in the gut mycobiome are
associated with exercise responsiveness. Exercise
responders (R) and non-responders (NR) were
identified based on their improvement in home-
ostasis model assessment of insulin resistance
(HOMA-IR) after training as published.10 Weiden-
tified 36 R and 14 NR when pooling the discovery
and validation cohort together. Though overall fun-
gal diversity between R and NR was comparable
(Supplementary Figure S9), a distinct pattern in
the fungi components was observed in the two
subgroups. Hanseniaspora is associated with hyper-
glycemia in women with gestational diabetes,”
which was exclusively increased in NR
(Figure 6(a)). Conversely, Cystobasidium,
a predominated fungus in euglycemic subjects,*
decreased significantly in NR after exercise training.
In R, elevations in Paraphoma and Debaryomyces,
two fungal genera enriched in healthy controls than
in diabetes patients,"*®” were exclusively observed.
Of note, alternations in Paraphoma were positively
associated with changes in serum levels of histidine
(Supplementary Figure S10), which corroborated
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our findings that histidine biosynthesis was the
most enriched pathway after exercise training.
Moreover, the enrichment of Kazachstania in
R was supported by previous findings that
Kazachstania was associated with normal body
weight and circulating HDL level.®® The intra-
kingdom linkages at the genus level in R and NR
were 14 and 4, respectively (Figure 6(b)), suggesting
R exhibited a more active crosstalk within the fun-
gal ecosystem than NR.

The gut microbial fingerprint is useful for pre-
dicting the outcomes of various interventions,
including diet, exercise, and medication.'®®>”°
We therefore investigated the predictive value of
fungal signatures on individuals’ exercise respon-
siveness. Eight fungal genera, 6 bacteria genera,
and fat mass at baseline were selected in the pre-
diction models (Figure 6c and Supplemental Table-
S8), where fungal information contributed over
50% importance to this algorithm (Figure 6(d)).
Among informative features, Herpotrichiellaceae
and Didymellaceae were enriched in NR, while
Hypocreaceae and Stachybotryaceae were enriched
in R (Supplementary Figure S11). Using this model
with machine learning methods, we achieved an
area under the receiver operating characteristic
(AUROC) of 0.91 (95% CI: 0.85 to 0.97) to discri-
minate the R and NR within our discovery cohort
(n =20, Figure 6(e)). Further evaluation in the vali-
dation cohort (n = 30) also resulted in an AUROC
of 0.79 (95% CI: 0.74 to 0.86) (Figure 6(e)).
Remarkably, this combined model significantly
outperformed the validation cohort compared to
algorithms based solely on either fungal or bacterial
teatures with clinical data (p < 0.05) (Supplemental
Figure S12), suggesting a potential synergistic
interaction between gut-resident bacteria and
fungi in determining exercise responsiveness.
Therefore, our findings further emphasized the
importance of targeting gut fungi to develop
a personalized exercise regimen in diabetes
prevention.

Discussion

In this clinical study, we uncover that exercise
significantly shapes gut mycobiome composition,
which extends our current understanding of exer-
cise impacts beyond gut-resident bacteria to fungi.
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The dynamics of enteric fungi are closely associated
with exercise-induced changes in the bacterial
microbiome, metabolome, and proteome, indicat-
ing that commensal fungi might be a possible con-
tributor to exercise-induced metabolic benefits.
Furthermore, we observed differential changes in
the gut mycobiome between exercise responders
and non-responders. We subsequently developed
a machine-learning algorithm integrating baseline
gut mycobiome profiles to predict exercise respon-
siveness in glycemic control and insulin sensitivity.
Our results highlight the potential to precisely tai-
lor exercise by targeting gut fungal profiles.

The importance of the bacterial microbiome in
exercise has been elucidated, whereas the contribu-
tion of gut fungi remains under-investigated. We
demonstrated that exercise leads to effective improve-
ments in gut fungal diversity and intra-kingdom
communication as evidenced by higher a-diversity
and enriched fungal co-abundance network. These
findings corroborate previous works that both dietary
intervention and Roux-en-Y gastric bypass surgery
remarkably remodel the gut mycobiome
taxonomy.'>”' Remarkably, unlike the bacterial
microbiome, which retains compositional stability
responding to exercise, "’ our data indicates high plas-
ticity and adaptability of the gut mycobiome to life-
style modification. Nevertheless, there is still an
absence of studies to directly compare the changes
in these two microbial communities in response to an
identical intervention. The stability and resilience of
gut bacteria and fungi may vary across different con-
ditions and warrant further investigation.
Interestingly, we observe a linear correlation between
fungal and bacterial diversity after training, indicating
an interdependent response of commensal fungi and
bacteria to exercise. Like intestine bacteria, which
implicates exercise-promoted benefits through regu-
lating microbial metabolites,'® the changes in fungal
composition are also associated with SCFA and
amino acid metabolism. These results collectively
imply a synergic and coexisting interaction between
gut-colonized bacteria and fungi during exercise.
Given those extensive linkages we observed, our
results further suggest that, apart from commensal
bacteria, gut fungi also serve as a potential molecular
transducer for physical exercise.

We further identified a subset of fungi that sig-
nificantly increased after exercise training. For
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instance, Verticillium shows the most pronounced
response to exercise with a 1.5-fold augment. Its
elevation correlates closely with the exercise-
induced improvement in fasting glucose level, body
composition, and strength performance. Our inte-
grated omics analysis further suggests that
Verticillium may exert benefits through multiple
pathways. A noteworthy microbial interaction is
between changes in Verticillium with Veillonella
infantium, a lactic acid-producing bacterium asso-
ciated with exercise performance,*’ which indicated
that growth in Verticillium might foster a conducive
environment for the proliferation of bacterial strains
with metabolic benefits. 3-IAA is a microbial meta-
bolite that determines chemotherapy responsiveness
in pancreatic cancer.”® The positive association
between increased circulating 3-IAA levels and exer-
cise-induced fungi genus raised the possibility that
IAA may serve as a transducer mediating
Verticillium-derived benefits, which warrants
further investigation in the future study. Besides,
change in Verticillium may also contribute to
PM20D1’s reduction, a known biomarker for
human metabolic syndrome.>* In addition, abun-
dance of Sarocladium was also 50% higher after
exercise training and associated amelioration in
insulin resistance. Our results also suggested
Sarocladium as a potential regulator of host glucose
metabolism by facilitating the gain of anti-obese gut
bacteria, including V.  infantium  and
Bifidobacterium dentium. In concordance that
Ceratocystis level is inversely associated with glucose
tolerance and insulin resistance,”> we found 30%
increases in Ceratocystis in response to exercise
intervention. Importantly, our mediation analysis
indicates that the baseline abundance of
Ceratocystis and Sarocladium may influence the out-
come of exercise by modulation of metabolites and
cytokines levels. However, whether these fungi are
symbiotic residents or transient environmental spe-
cies remains debatable.”> Nevertheless, our results
revealed the potential links between exercise-altered
fungi, gut bacteria, and serum immune factors.
Further investigation into those exercise-shifted fun-
gal genera through culturomics and mechanistic
elucidation is needed to establish their capacity for
colonization and adaptation within the human gas-
trointestinal tract and their specific contributions to

immune regulation, which are vital features to dis-
tinguish the true symbiotic.”> Taken together, our
integrative omics analysis uncovers the possible lin-
kages between gut mycobiome and host metabolism
from multiple dimensions.

Exercise resistance poses a major challenge in its
clinical application for diabetes prevention and
management.'®” The difference in the gut bacterial
microbiome has been implicated as a potential deter-
minant of individual responsiveness to various
interventions.'**>”® A high abundance of commensal
fungi Candida in human recipients is correlated with
the therapeutic efficacy of fecal microbiome trans-
plantation for colitis.”* Herein, we observed distinct
changes in the gut mycobiome composition between
exercise responders and non-responders. Notably,
a machine-learning algorithm mainly based on basal
gut fungal signatures accurately predicts exercise
responsiveness in improvements of glycemic control
and insulin sensitivity with an AUC of 0.91, which
also achieved an AUC of 0.79 in our validation
cohort. Importantly, the fungal information contri-
butes more than 50% importance in this model, sug-
gesting that the gut mycobiome may serve as
potential biomarkers for monitoring and predicting
exercise outcomes. The predictive power of this new
model is comparable with our previous model estab-
lished by using features combining 15 circulating
metabolites and 13 gut bacterial species,'® which
requires both sophisticated liquid chromatography-
mass spectrometry (LCMS)-based blood measure-
ment of metabolites and fecal shotgun sequencing.
On the other hand, our current algorithm is based
only on fat mass and sequencing data from stool
samples, which is relatively easier to implement and
is more cost-effective than the previous prediction
model. Although further validation and optimization
of this fungi-based prediction model is required in
large, independent cohorts and clinical implementa-
tion remains distant, our findings provide advanced
evidence for the close association between gut fungal
composition and exercise responsiveness with respect
to insulin sensitivity and glucose metabolism.

Our study has several limitations that warrant
further discussion. First, due to the technical lim-
itation of ITS2 sequencing, we only decipher the
fungal taxonomy at genus levels. Further explora-
tion of fungal species information and function



annotations is warranted using advanced sequen-
cing techniques. Second, our association analysis
only unveils conceivable mechanistic linkages
between gut mycobiome and exercise-mediated
metabolic improvement. The explore and correla-
tional nature of our data precludes the establish-
ment of causal relationships. Further mechanistic
experiments are needed to establish their cause-
effect relationship and the underlying biological
pathway whereby altered fungal species modulate
host metabolism. Ideally, mono-colonization of
fungal species responsive to exercise intervention
is required to elucidate their specific metabolic
roles in vivo. However, the current technology for
identifying, isolating, and culturing single fungal
species is rather limited, thereby hindering further
detailed mechanistic studies. Additionally, our
study is also limited by the small sample size, due
to logistical difficulties in recruiting a larger num-
ber of eligible medication-naive overweight indivi-
duals with prediabetes for performing supervised
high-intensity exercise studies. As a result, the con-
clusions drawn from this study should be inter-
preted with caution. Another limitation is that
our study population includes Chinese participants
only. It remains unclear whether our prediction
model for exercise responsiveness can be general-
ized in different populations. Further studies with
larger sample sizes and diverse ethnic groups are
needed to consolidate our findings on the changes
in gut mycobiome in response to exercise training.

Conclusion

In summary, this integrative multi-omics study
elucidates that exercise profoundly shapes gut
mycobiome composition, with its dynamics tightly
associated with exercise-induced metabolic bene-
tits. These findings suggest that gut mycobiome
might be an important regulator of host metabo-
lism and raise the possibility of targeting gut myco-
biome as a novel approach for personalized lifestyle
intervention for preventing diabetes and other
metabolic disorders. While our results shed new
light on the possible involvement of the gut myco-
biome in exercise-shaped metabolism and insulin
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responsiveness, further larger-scale studies in inde-
pendent cohorts and mechanistic investigations are
warranted to validate our findings and to dissect
the cause-effect relationship between gut myo-
biome and exercise physiology.
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