
INTRODUCTION

One of the major mechanisms for controlling blood circu-
lation is the regulation of vascular resistance through the change
in vascular tone. Vascular tone is affected by the changes in
extracellular and intracellular pH (pHo and pHi) and it influ-
ences blood flow. It is well known that vascular response dur-
ing acidosis causes significant alteration in blood circulation.
Tian et al. (1) reported that hypercapnic acidosis induced vasodi-
lation. And it has been known about role of pHo in vascular
function; extracellular acidosis ([acidosis]o) induces relaxation
and extracellular alkalosis ([alkalosis]o) develops vice versa. Since
cerebral arterial relaxation by [acidosis]o was maintained when
the level of pHi was kept constant (1-3), pHo is also very impor-
tant for the regulation of vascular function.

pH has been shown to modulate calcium influx and to reg-
ulate intracellular calcium concentration (4-6). As known well,
the change in the intracellular Ca2+ concentration ([Ca2+]i) is
responsible for smooth muscle contraction, and H+ also is an
important regulator of contractility. In addition, both ions
are connected to and changed by each other. Physiologically
the alteration of these ions, due to hypoxia or other stimuli,
can also affect the distribution of blood and the maintenance
of blood pressure. Therefore, the regulation of [Ca2+]i by pH
is very important in vascular smooth muscle. In smooth mus-
cle, changes in [Ca2+]i are critical factors for contraction or

relaxation and the initiation of other cellular responses. Changes
in [Ca2+]i reflect an influx of Ca2+ via the sarcolemmal chan-
nels and/or a release from cytosolic Ca2+ stores (sarcoplasmic
reticulum, SR) through the processes of Ca2+-induced Ca2+

release (CICR) or through the inositol 1,4,5-trisphosphate
(InsP3)-mediated Ca2+ release (7). Among them, Ca2+ influx
pathway through voltage-dependent Ca2+ channel (VDCC)
in arterial smooth muscle is important for the contractile re-
sponse, including the maintenance of the basal tone (8, 9). In
basilar arteries of rabbit, two types of Ca2+ channels (T and
L-type) were reported (12-16). Among them, L-type Ca2+

channel largely contributes to the Ca2+ influx in vascular smooth
muscle. Although we could not find T-type Ca2+ channel or
test the effects of pHo on that channel in this study, L-type
Ca2+ channel is also known to be more sensitively affected by
H+ ions in cerebrovascular artery than T-type Ca2+ channel
(16, 17, 23). Conclusively, Ca2+ channel especially L-type Ca2+

channel regulations by pH could clearly account for the changes
in [Ca2+]i and also in tone of vascular smooth muscle (10-12).
In vascular smooth muscle, the regulation of VDCC by pH
was reported in pial and porcine coronary arteries (4, 5), includ-
ing basilar arteries of guinea pigs (16).

Although the effects of pHo on Ca2+ channel of vascular
smooth muscle were reported in several cases, the more study
about the regulation of Ca2+ channel and contraction by pHo

in rabbits basilar arteries is still needed. In addition, some
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Effects of pH on Vascular Tone in Rabbit Basilar Arteries

Effects of pH on vascular tone and L-type Ca2+ channels were investigated using
Mulvany myograph and voltage-clamp technique in rabbit basilar arteries. In rabbit
basilar arteries, high K+ produced tonic contractions by 11±0.6 mN (mean±S.E.,
n=19). When extracellular pH (pHo) was changed from control 7.4 to 7.9 ([alkalosis]o),
K+-induced contraction was increased to 128±2.1% of the control (n=13). However,
K+-induced contraction was decreased to 73±1.3% of the control at pHo 6.8 ([aci-
dosis]o, n=4). Histamine (10 M) also produced tonic contraction by 11±0.6 mN
(n=17), which was blocked by post-application of nicardipine (1 M). [alkalosis]o and
[acidosis]o increased or decreased histamine-induced contraction to 134±5.7% and
27±7.6% of the control (n=4, 6). Since high K+- and histamine-induced tonic con-
tractions were affected by nicardipine and pHo, the effect of pHo on voltage-depen-
dent L-type Ca2+ channel (VDCCL) was studied. VDCCL was modulated by pHo: the
peak value of Ca2+ channel current (IBa) at a holding of 0 mV decreased in [acidosis]o

by 41±8.8%, whereas that increased in [alkalosis]o by 35±2.1% (n=3). These results
suggested that the external pH regulates vascular tone partly via the modulation of
VDCC in rabbit basilar arteries.

Key Words : Rabbit; Basilar Artery; Extracellular Fluid; Vascular Tone; Calcium Channels; Voltage-depen-
dent Ca2+ Channel
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reports suggested that the regulatory effect of Ca2+ channels
by pHo was observed, but there was no significant effect on
contractile responses (4, 5, 18). For these reasons, this study
was designed to verify the role of pHo in the relation between
the contractile response and Ca2+ channel in basilar arteries
of rabbits.

MATERIALS AND METHODS

Cell Isolation

Single smooth muscle cells were enzymatically isolated
from the rabbit basilar arteries. Rabbits (white rabbits from
NewZealand, 1.5-2 kg) were anesthetized with sodium pen-
tobarbital (40 mg/kg, i.v.) and exsanguinated. The brain was
rapidly removed and placed in phosphate-buffered cold Tyrode’s
solution containing (in mM): NaCl 145, KCl 5, MgCl2 2,
CaCl2 2, glucose 10, NaH2PO4 0.42, Na2HPO4 1.81, HEPES
10, pH 7.4. Then the segment of basilar artery was gently
dissected from the surface of the brain stem and was placed in
a Ca2+-free phosphate-buffered Tyrode’s solution (CaCl2 was
omitted from the above compositions). Tunica adventitia, sur-
rounding connective tissue, and side branches were removed
gently under a stereomicroscope. The artery was longitudinally
dissected and rinsed to remove the residual blood in vessel.
The artery was first moved to a nominally Ca2+-free Tyrode’s
solution containing (in mM): NaCl 145, KCl 5, MgCl2 2,
glucose 10, HEPES 10 (pH 7.4 with Tris). It was then cut into
small pieces and the segments were stored at 4℃ for 15 min.
Collagenase (1.5-1.8 mg; Wako pure chemicals) and dithio-
erythreitol (0.5 mg; Sigma Chem. Co., St. Louis, MO, U.S.A.),
bovine serum albumin (2 mg; Sigma), and trypsin inhibitor
(1 mg; Sigma) were dissolved into 1 mL of Ca2+-free Tyrode’s
solution. Then the arterial segments were incubated in this
enzyme cocktail at 35℃ for 20-25 min. After collagenase treat-
ment, segments were transferred to modified K-B solution (see
the composition in solution and drug subsection below) and
single cells were dispersed by gentle agitation with glass pipette.
Isolated single cells were stored at 4℃ until use.

Electrophysiological Recording

An aliquot of single basilar arterial smooth muscle cells in
suspension was added to the recording chamber (0.1 mL) mo-
unted on an inverted microscope (Olympus, IMT-2, Japan).
Solutions were superfused through the chamber by gravity at
the rate of 2-3 mL/min. Experiments were performed at room
temperature. Single cells were voltage-clamped, and membrane
currents were measured using the conventional and perforat-
ed whole-cell configurations of patch-clamp technique with
a patch-clamp amplifier (Axon Instruments, Axopatch-1D,
U.S.A.; 19, 20). Patch pipettes were made from borosilicate
glass capllaries (inner diameter: 1.5 mm), pulled on a two-step

vertical puller (Narishige, PP-83, Japan), and fire-polished
with a microforge (Narishige, MF-83); the pipettes had resis-
tances of 3-5 MΩ. To measure whole-cell currents after gigaseal
formation, access to the cell interior was obtained by ruptur-
ing the membrane at the tip of the pipette with additional
negative pressure. Series resistance was not compensated.

Membrane currents were monitored on oscilloscope (Philips,
PM 3350, Japan), and data were digitized on-line with an ana-
log-to-digital interface (Axon Instruments, Labmaster TL-1
DMA interface, U.S.A.). Data that were digitized on-line were
stored in an IBM-compatible computer. Whole-cell currents
were filtered at 5.0 kHz and digitized. All data were analyzed
with pClamp 5.5.1 software (Axon Instruments). Leakage
current subtraction was performed on data, if necessary.

For the perforated mode patch clamp, amphotericin was
dissolved in dimethyl sulfoxide (DMSO) as a stock solution
(0.15 mg/2 mL) and added to the back-filling pipette solu-
tion (0.15 mg/mL).

Measurement of Mechanical Activity

Isolated basilar artery was placed in the HEPES-buffered
Tyrode’s solution, and the vessel ring was prepared (1.5 mm
in width). The endothelium of the artery was not removed.
Each ring was mounted vertically in organ bath containing
0.5 mL of Ca2+ physiological salt solution (PSS) containing
(in mM): NaCl 135, KCl 5, CaCl2 1.8, MgCl2 1, glucose 10,
and HEPES (N-[2-hydroxyethyl] piperazine-N′-[2-ethanesul-
phonic acid]) 10 which was adjusted to pH 7.4 with NaOH.
For the 50 mM of K+ Ca2+ PSS solution, equimolar concen-
tration of NaCl was replaced by KCl. The Ca2+ PSS solution
was maintained at 37℃ and was continuously aerated with
100% O2. The isometric tension was measured with a force-
transducer (Harvard, U.S.A.). Each ring was stretched passive-
ly to a resting tension of 300 mg. After equilibration for more
than 90 min, contractile response of the strip to the solution
containing 50 mM K+ was repeated two or three times until
the responses were reproducible.

For the studies of mechanical contractions under various
levels of pH, each solution was titrated at 37℃ to various
levels of pHs. Then these solutions were pre-incubated with
continuous aeration by 100% O2 in water bath (37℃) until
the application to the myograph.

Solutions and Drugs

Ca2+ PSS containing (in mM) NaCl 135, KCl 5, CaCl2 1.8,
MgCl2 1, glucose 10, and HEPES 10, was adjusted to pH 7.4
with NaOH. Modified KB solution (21) containing (in mM)
L-glutamate 50, KCl 50, taurine 20, KH2PO4 20, MgCl2 3,
glucose 10, HEPES 10, and ethyleneglycol bis-( -aminoethyl
ether- N,N,N′,N′-tetraacetic acid (EGTA) 0.5, was adjusted
to pH 7.4 with KOH. For conventional whole-cell recording,
the following intracellular solution containing (in mM): CsCl
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110, TEA 20, EGTA 10, HEPES 10, Na2ATP 3, and MgCl2

3.5, was adjusted to pH 7.3 with TRIZMA or CsOH. For
perforated patch experiments, electrodes were filled with solu-
tion containing (in mM): CsCl 110, TEA-Cl 20, EGTA 10 and
HEPES 10 was adjusted to pH 7.3 with TRIZMA or CsOH.
All drugs used in this study were purchased from Sigma.

Statistics

All data were expressed as means±SEM. Statistical sig-
nificance was evaluated by using Student t-test for unpaired
observations. The difference between two groups was con-
sidered to be significant when p<0.01.

RESULTS

Effects of External pH (pHo) on High K+ (50 mM)-induced
Contraction in Rabbit Basilar Arteries

To exclude the effects of nitric oxide (NO) released from
endothelial cells, nitro-L-arginine (L-NNA), an inhibitor of
NO synthase, was used. In all experiments, 100 M L-NNA

was pretreated before the application of high K+ solution or
the agonist. The pretreatment with L-NNA increased basal
tone slightly by 1.1±0.2 mN (n=6, p>0.05, Fig. 1A). When
high K+ solution was applied at the normal pHo, the arteri-
al tone was greatly enhanced by 11.4±0.6 mN (n=19) and
maintained at a sustained level (Fig. 1, 2). These tonic con-
tractions was almost completely blocked by nicardipine (1 M)
to 7±3.9% (n=7) of the control (Fig. 5A). To elucidate the
effects of pHo on K+-induced contraction, pHo was changed
from 7.4 to 7.9 [alkalosis]o or to 6.8 [acidosis]o. When the pH
of the bath solution was changed from 7.4 to 7.9, the high
K+-induced contraction was enhanced reversibly to 128±
2.1% (n=13, p<0.01, Fig. 1A, D). However, K+-induced con-
traction decreased to 87±1.0% and to 73±1.3% of the con-
trol at pHo 7.0 and 6.8 in a reversible manner, respectively
(n=4, Fig. 1B-D). The effects of [alkalosis]o or [acidosis]o on
the K+-induced contraction were also observed in the same
tissue. As shown in Fig. 2A, B, enhancing and suppressing
effects of pHo on high K+-induced tonic contractions were
observed in the same tissue. The enhancing effects of [alkalo-
sis]o on high K+-induced tonic contraction were also observed
under the pre-application of pHo 7.9 (Fig. 2C).
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Fig. 1. Effects of the alteration of the extracellular pH (pHo) on high K+-induced contraction in basilar arteries of rabbits. Mulvany myograph
was used for recording isometric tension of rabbit basilar artery. All contractile experiments in this study were done in the presence of nitro-
L-arginine (L-NNA, 100 M). (A) Superfusion of 50 mM of high K+ solution to the bath provoked tonic contraction. This contraction was en-
hanced by pHo 7.9 in a reversible manner. (B, C) Under acidic condition such as pHo 7.0 or 6.8 tonic contraction was suppressed in a re-
versible manner. (D) Bar graphs show mean relative K+-induced contraction by alteration of pHo. Asterisks indicate the data which were
considered to be significantly different from control data (**p<0.01).
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Effects of pHo on histamine-induced Contraction in
Rabbit Basilar Arteries

As shown in Fig. 3A, histamine (1-20 M) produced a con-
traction in a concentration-dependent manner, and maximal
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Fig. 2. Effects of the repetitive alteration of pHo on high K+-induced
contraction in rabbit basilar artery. Modulatory effects on high K+-
induced contraction by the alteration of pHo was monitored by re-
petitive changes of pHo in rabbit basilar artery. (A) 50 mM of high
K+-induced tonic contraction was repeatedly increased by pHo 7.9.
(B) Acidotic and alkalotic conditions were induced to 50 mM of
high K+-induced tonic contraction. Each condition of pHo 6.8 and
7.9 in a same tissue decreased and increased tonic contraction,
respectively, in a reversible manner. (C) In the presence of L-NNA,
enhancing effects of alkalotic condition on high K+-induced tonic
contraction was studied by pre-application of pHo 7.9. Tonic con-
traction induced by application of 50 mM of high K+ solution (pHo

7.9) was decreased by post application of normal pH (pH 7.4).
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Fig. 3. Histamine-induced contraction in rabbit basilar artery. (A)
Histamine (1-20 M) produced contractions in a concentration-
dependent manner. Approximately, 10 M of histamine produced
maximal contraction. (B) In some cases, application of histamine
evoked regular small oscillatory phasic contractions. (C) Histamine-
induced tonic contraction was suppressed by post-application of
nicardipine (1 M).



46 Y.C. Kim, S.J. Lee, K.W. Kim

contraction was observed approximately at 10 M of histamine
(22). In a few cases, oscillatory small phasic contractions were
observed after the application of histamine (Fig. 3B). Histamine
(10 M) developed a tonic contraction with the amplitude
of 11±0.6 mN (n=17, Fig. 4), which was blocked by post-
application of nicardipine (1 M), known as a blocker of Ca2+

channel (L-type) (Fig. 3C). From the 14 tested tissues, his-
tamine-induced sustained contractions were suppressed by
nicardipine (1 M) to 21±7.3% of the control (Fig. 5B).
These results suggest that Ca2+ influx through Ca2+ channel
(L-type) might be important in the histamine-induced tonic
contraction. Histamine-induced contractions were enhanced
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Fig. 4. Effects of alteration of pHo on the histamine-induced con-
traction in basilar arteries of rabbits. 10 M of histamine produced
tonic contractions in rabbit basilar artery. (A, B) Histamine-induced
contraction was decreased or increased by pHo 6.8 or pHo 7.9 in
a reversible manner. (C) Bar graphs show mean relative histamine-
induced contraction by alteration of pHo. Asterisks indicate the data
which were considered to be significantly different from control
data (**p<0.01).
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Fig. 5. Effects of pHo in the presence of nicardipine on High K+- and histamine-induced Contraction in Rabbit Basilar Arteries. In A, B, effects
of nicardipine and [alkalosis]o in the presence of nicardipine on high K+- and histamine-induced contractions were summarized. Pannel A
shows nicardipine completely suppressed high K+-induced sustained contraction and these effect was not reversed by [alkalosis]o signif-
icantly. In pannel B, nicardipine suppressed histamine-induced sustained contraction and it was not reversed by [alkalosis]o significantly.
Asterisks indicate the data which were considered to be significantly different from control data (**p<0.01).



Effects of External pH on Vascular Tone 47

or suppressed under the condition of [alkalosis]o or [acidosis]o

to 134±5.7% and to 27±7.6% of the control in a reversible
manner (Fig. 4; n=5, 6, p<0.01), respectively.

Effects of pHo in the presence of nicardipine on High K+-
and histamine-induced Contraction in Rabbit Basilar
Arteries

Since high K+- and histamine-induced sustained contrac-
tions were affected by nicardipine and pH, we also studied
about the possibility whether the regulatory effects of pHo on
high K+- and histamine-induced contractions are associated
with Ca2+ channel regulation (Fig. 5). As shown in Fig. 5A,
high K+-induced contraction is absolutely nicardipine-sen-
sitive and it is not significantly reversed by [alkalosis]o (9±
5.8% of the control, n=7, p>0.05). And also nicardipine-sen-
sitive portion of histamine-induced contraction was not sig-
nificantly reversed by [alkalosis]o in Fig. 5B (28±10.2% of
the control, n=13, p>0.05). These results might imply appar-
ent involvement of Ca2+ channel regulation by pH in high
K+- and histamine-induced sustained contractions. Therefore,

we studied Ca2+ channel regulation by pH using basilar arte-
rial single myocytes in next step.

Effects of pHo on Ca2+ Channel Current (IBa) in Basilar
Arterial Myocytes of Rabbits

Ca2+ current (ICa) was recorded at the physiological calcium
concentration of 2 mM under conventional whole-cell con-
figuration (Fig. 6A, B). From a holding potential of -80 mV,
depolarization above -30 mV produced an inward current show-
ing a peak current at 0-10 mV, and a reversal around 50 mV
(Fig. 6B, open circle). The effects of 1 M nicardipine on ICa

were shown in Fig. 6A, B. In current/voltage (I/V) relation,
the peak current of ICa was markedly suppressed at the whole
test potential range after the application of nicardipine (1 M)
(Fig. 6B; 6.9±8.4% of the control at 10 mV, n=4). Since the
calcium channel current recorded in replacing 2 mM Ca2+ with
10 mM Ba2+ (IBa) is much larger in amplitude, direct effect of
pHo on IBa was studied under perforated-patch clamp configura-
tion. From our unpublished data, currents recorded under per-
forated mode are not different from those under conventional
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Fig. 6. Effects of alteration of pHo on Ca2+ channel current (IBa) in rabbit basilar artery. The membrane potential was held at -80 mV and 2 mM
Ca2+ was used as a charge carrier. Step 10 mV depolarizing pulses from -50 to +60 mV were applied for 500 msec. (A) Depolarizing puls-
es above -30 mV elicited inward currents (ICa) and nicardipine (1 M) almost completely blocked ICa. (B) Current/voltage (I/V) relationships
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whole-cell mode. The membrane potential was held at -80 mV,
and step 0 mV depolarizing pulse was applied for 500 msec
every 15 sec. When the peak amplitude of IBa reached a steady-
state level, the effects of [alkalosis]o and [acidosis]o on IBa were
observed. As shown in Fig. 6C, D, the peak amplitude of IBa

increased or decreased under the condition of [alkalosis]o or
[acidosis]o. When [alkalosis]o was developed in bath solution,
the peak current increased by 35±2.1% (n=3); however,
[acidosis]o decreased the peak current by 41±8.8% at 0 mV
(n=3).

DISCUSSION

The results obtained from this experiment suggested that
enhancing or suppressing effects of pHo change on the vas-
cular tone are associated with the modulation of VDCC in
rabbit basilar arteries. To elucidate the involvement of Ca2+

channel activity in the regulation of high K+- and histamine-
induced tonic contraction by pHo, we studied the effects of
[alkalosis]o on those contractions in the presence of nicardip-
ine (1 M). As shown in Fig. 5A, B, nicardipine-sensitive tonic
contractions of high K+ and histamine was not significantly
recovered by [alkalosis]o. That strongly means that VDCCL

is a major target for the regulation of high K+-induced tonic
contraction by [alkalosis]o. This experimental procedure enabled
us to find the possible mechanism of Ca2+ channel modulation
of those contractions by pH.

As a potent modulator of cerebrovascular tone, histamine
causes a cerebral vasoconstriction and dilation (8, 9). To date,
histamine in vascular smooth muscles has been known to pro-
voke following representative changes in the cytosolic level.
Firstly, it can induce IP3 production in smooth muscle, there-
by resulting in IP3-induced mobilization of Ca2+ from SR (8).
Secondly, it depolarizes vascular smooth muscle cells through
the activation of nonselective cation channels (NSCC), there-
by increasing Ca2+ influx through VDCC resulting in tonic
contraction (8, 9, 24, 29, 30). Thirdly, it can also directly in-
crease Ca2+ current in some smooth muscles (31, 32). Among
them, regulation of Ca2+ current is very important since Ca2+

current is associated with tonic contraction. These tonic con-
traction is simultaneously linked to depolarization and a pri-
mary physiological role of agonist-induced depolarization is
an activation of VDCC with subsequent influx of Ca2+ and
then stimulation of contraction (24-27). In cerebral artery, it
was reported that histamine and high K+ produced a sustained
tonic contraction that was blocked by 1 M of nicardipine.
Gokina and Bevan (8, 9) reported that Ca2+ influx through
VDCC might be responsible for over the 80% of histamine-
induced sustained contraction (26). The same result was also
reported in human cerebral arteries (33) and observed in this
study (Fig. 3C, 4, 5B). These results suggests that the main-
tenance of histamine-induced sustained tonic contraction mi-
ght also be responsible for the activation of Ca2+ channel (L-

type) through depolarization. Meanwhile, high K+ is also well
known to produce depolarization and associated dihydropyri-
dine-sensitive tonic contractions (Fig. 5A) (8). These obser-
vations suggest the possibility that the regulation of those tonic
contraction through modulation of Ca2+ channel.

Although we suggested the functional role of Ca2+ channel
regulation by pHo, some differences in the extent of the effects
of pHo between pHo effect on the actions on the Ca2+ chan-
nel (L-type) current and that on the K+-induced contraction
were also observed. [acidosis]o decreased the peak current of
IBa by 41% of the control but reduced K+-induced contraction
by 27% of the control (Fig. 1D, 6D). Meanwhile, [alkalosis]o

increased the peak amplitude of IBa by 35% of the control,
but enhanced K+-induced contraction to 23% of the control
(Fig. 1D, 6C). A greater difference was observed in the effects
of [acidosis]o on histamine-induced contraction. When [aci-
dosis]o was applied to the histamine-induced contraction, his-
tamine-induced contraction was reduced to 27% of the con-
trol (Fig. 3). Eventually, these differences might be originated
from the different extent of the activation of VDCC between
the tissue and a single cell. According to the other report, high
K+ solution (35-66 mM) produced membrane depolarization
around -30~-20 mV (8). Under the 50 mM of high K+ solu-
tion for the K+-induced contraction, membrane potential in
rabbit basilar arteries is expected to be depolarized between
-30~-20 mV. Ca2+ channel (L-type) can be activated at these
membrane potentials but very small portion of current (approxi-
mately 15% of the peak current at 0 mV) will be activated in
I/V relation (Fig. 6B). In addition, there might be another
possibility that the changes of pHo can affect different ionic
conductances such as K+ channels and then lessens the effects
of the pHo on Ca2+ channel (L-type). In 1998, the effects of
acidosis on Ca2+-activated K+ channel (KCa channel) and
ATP-sensitive K+ channel (KATP channel) in coronary artery
were reported (7, 34). Although the data were not shown, we
observed the effects of TEA and glibenclamide, which are kn-
own to be the blockers of KCa channel and KATP channel. Gli-
benclamide (10 M) did not show any significant effects on
acidosis-induced relaxation of histamine-induced contractions
(n=2). However, TEA partially reversed acidosis-induced relax-
ation of histamine-induced contraction. Therefore, co-involve-
ment of KCa channel activation is suggested with the modu-
lation of Ca2+ channels by [acidosis]o in histamine-induced
contraction. Although above several possible ionic conductances
which might be involved in the regulation of histamine-in-
duced contraction by the change in pHo were discussed, direct
modulatory effect of pHo on histamine-induced contraction
should also be considered. To date, in fact, most regulatory
effects of pH in the regulation of vascular tone have been stud-
ied to determine the interaction between pH, [Ca2+]i and ionic
conductances. From these reasons, the interpretation of the
effect of pH on vascular tone should be careful until direct effect
of pH is established.

As shown in Fig. 3A, histamine produced tonic contractions
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in a concentration-dependent manner. When various concen-
trations (1-20 M) of histamine were applied to bath solution,
significant contractions was recorded from 0.5 M of histamine
(Fig. 3B) and maximal contraction was observed at 10 M of
histamine. Histamine (0.5, 1, 3 M) produced 3±0.9, 42
±6.9, and 64±6.4% of the maximal contraction, respective-
ly (n=3, data not shown). Concentration-response relation of
histamine in rabbit basilar artery was already reported and our
observation is in good agreement to published data (22). In
Fig. 3B, some oscillatory vasomotions induced by histamine
were observed in rabbit basilar arteries. To date, the physio-
logical significance of active vasomotion in large arteries is not
yet clear. Most spontaneous contraction is observed in veins
but is rare in large arteries, and it may be induced by neural
transmitters including hormonal vasoactive substances (37).
However, oscillatory contractions are associated with oscilla-
tory change in [Ca2+]i in vessels (35, 36). In addition, agonist-
induced intracellular Ca2+ oscillations were already reported
in vascular smooth muscle (37). Such intracellular Ca2+ oscil-
lations may be responsible for the histamine-induced oscilla-
tory vasomotion. We observed the histamine-induced oscil-
latory contractions in a few cases, and it is known that arter-
ies often produce oscillatory contraction in pathophysiological
conditions. Therefore, further study on the oscillatory vaso-
motion is needed to verify the underlying mechanism of this
phenomenon.

In the present study, we tried to elucidate the involvement
of VDCC in the changes in pH-induced contraction of vas-
cular smooth muscle. However, the contribution of vascular
endothelium to the pH effects on intact vessels should be taken
into consideration (38). Two kinds of endothelium-derived
mediators have been proposed to account for endothelium-
dependent relaxation; one is nitric oxide, and the other an en-
dothelium-derived hyperpolarizing factor (EDHF) (39-41).
For these reasons, L-NNA was used to block possible addition-
al involvement of NO-induced inhibitory influences in pHo

effects on high K+- and histamine-induced contractions.
However, we did not exclude the possible involvement of
EDHF in the pHo regulation of contractions in this study. In
1992, Nagao and Vanhoutte suggested that NO-independent
relaxation was abolished by high K+ solutions in porcine coro-
nary artery (42). As shown in Fig. 1, [acidosis]o significantly
decreased high K+-induced contractions. This findings sug-
gest that inhibitory effects on contractions by [acidosis]o might
be EDHF independent relaxation in rabbit basilar arteries.
Further studies about the involvement of EDHF in inhibitory
effect of [acidosis]o on histamine-induced contraction are need-
ed. To date, regarding the modulation of pHo, most studies
on the effects of pH have been done by changing the concen-
tration of the NaHCO3 or PCO2 levels. However, in this study,
HEPES-buffered PSS solution was used for recording contrac-
tile responses. Since this experiment was designed to compare
the effects of pHo both Ca2+ channel current and contraction,
the same HEPES-buffered PSS solution (PSS-buffered solu-

tion) was used for the studies on contraction and IBa (18).
From these results, it could be concluded that the regulato-

ry effects of pHo on high K+- and histamine- induced tonic
contractions might be partly associated with the modulation
of L-type Ca2+ channel current in rabbit basilar arteries.
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