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Abstract

Artificial neural networks (ANNs) have been employed to solve a broad variety of tasks. The

selection of an ANN model with appropriate weights is important in achieving accurate

results. This paper presents an optimization strategy for ANN model selection based on the

cuckoo search (CS) algorithm, which is rooted in the obligate brood parasitic actions of

some cuckoo species. In order to enhance the convergence ability of basic CS, some modi-

fications are proposed. The fraction Pa of the n nests replaced by new nests is a fixed

parameter in basic CS. As the selection of Pa is a challenging issue and has a direct effect

on exploration and therefore on convergence ability, in this work the Pa is set to a maximum

value at initialization to achieve more exploration in early iterations and it is decreased dur-

ing the search to achieve more exploitation in later iterations until it reaches the minimum

value in the final iteration. In addition, a novel master-leader-slave multi-population strategy

is used where the slaves employ the best fitness function among all slaves, which is

selected by the leader under a certain condition. This fitness function is used for subsequent

Lévy flights. In each iteration a copy of the best solution of each slave is migrated to the mas-

ter and then the best solution is found by the master. The method is tested on benchmark

classification and time series prediction problems and the statistical analysis proves the abil-

ity of the method. This method is also applied to a real-world water quality prediction prob-

lem with promising results.

Introduction

Computational intelligence is defined as a set of nature-inspired computational approaches to

deal with complex real-world problems. This intelligence is directly linked to computing con-

cepts such as fuzzy logic, decision making, artificial neural networks (ANNs), and metaheuris-

tic algorithms as optimization techniques. Artificial neural networks are a family of learning
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models that are inspired by biological neural networks and are employed to estimate functions

that are generally unknown. A number of researchers have used optimization algorithms to

train neural network models [1–8]. The multi-layer self-organizing ANN has been studied in

the literature and metaheuristic algorithms have been used to optimize the structure of the

ANN [9–12]. A few methods have been used to attempt to optimize both the weights and the

structure of ANNs [8, 13–15]. Other proposals include the use of an adaptive merging and

growing algorithm in the design of ANNs [16] and the adoption of a Taguchi-based parameter

for the genetic algorithm used in ANN training [17]. [4]used a pruned probabilistic neural net-

work with a genetic algorithm to optimize the structure of an ANN, while [6] applied particle

swarm optimization (PSO) to optimize an ANN. Other PSO based approaches can be found in

[18, 19]. In another research study [20], the authors used a combination of self-organizing net-

works and an artificial immune system to minimize the neurons in an ANN.

Finding the global optimum solution is the major and common aim of optimization algo-

rithms. Good communication between diverse exploration and intensive exploitation results

in good convergence in any algorithm. There is no set method for achieving a balance between

exploration and exploitation. Different methods have been proposed for different algorithms

to achieve this trade-off. Based on a review of the relevant literature, the obvious solution is

that more efforts should focus on improving the diverse exploration phase in early iterations

and on enhancing intensive exploitation in later iterations so that discovery of the global opti-

mum will most likely be achieved.

Many research studies have found that the use of a multi-population in the algorithm

results in more exploration and enables the algorithm to move toward the global optimum.

For instance, the authors in [21] proposed a multi-population cooperative method for PSO,

called CPSO-S, in which the solution vector is split into smaller sub-vectors. Each of these sub-

vectors is optimized using a separate swarm. A complete solution vector is built by using the

best solution found by each swarm. Another study in [22] proposed a master-slave multi-pop-

ulation for PSO. Other works based on PSO include [23–26]. Other works based on PSO

include Yen and Daneshyari [23], Zhan and Zhang [24], Zhang, Cui and Zou [25], and El-Abd

and Kamel [26]. A multi-population cooperative method for bee swarm optimization has also

been studied [27]. [28] proposeda multi-population cultural algorithm, in which the competi-

tive multi-population genetic algorithm is embedded into the population of the cultural algo-

rithm. Recently, a multi-population cooperative bat-inspired algorithm for optimization of the

ANN model has also been proposed [29].

In this paper, we propose an optimization methodology based on the cuckoo search (CS)

algorithm. Cuckoo search is rooted in the obligate brood parasitic actions of some cuckoo spe-

cies. The key advantage of the CS algorithm is its simplicity. Unlike other population-based

algorithms there is only one parameter, Pa, in CS, which makes it easy to implement. A further

advantage of CS is that its search uses Lévy flights instead of standard random walks; Lévy

flights include infinite mean and variance so can explore the search space more efficiently

compared to random walks. The CS algorithm was first proposed by [30] and its superior abil-

ity was quickly established in many areas of optimization [31–37].

To enhance the performance of the CS algorithm and its convergence ability, we perform

the following modifications. First, the fraction Pa of the n nests replaced by new nests is a

parameter that is fixed in basic CS. As the selection of Pa has a direct effect on exploration in

the search space, in the proposed method Pa is set to a maximum value at initialization to

achieve more exploration or diversification in early iterations and it is decreased during the

search to achieve more exploitation or intensification in later iterations until it reaches the

minimum value in the final iteration. This first modification gives the algorithm fewer parame-

ters to work with and also makes it a self-adaptive algorithm. Furthermore, the modification
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enhances the algorithm’s convergence ability by improving the balance between exploration

and exploitation. The second modification involves the application of a novel master-leader-

slave multi-population strategy, where the slaves employ the best fitness function among all

slaves which is selected by the leader unit for the next Lévy flight if, after a certain number of

iterations, there is no improvement in the quality of the best solution. In each iteration a copy

of the best solution of each slave is migrated to the master and then the best solution among

these is found by applying CS to the master sub-population. In this strategy, exploration is pro-

vided by the slaves and exploitation is achieved by the master.

The rest of this paper is organized as follows: this paper firstly provides a brief description

of cuckoo behavior and then introduces the mechanism of the CS algorithm and Lévy flights,

followed by the explanation on the proposed modifications of the basic CS algorithm. After

that, the experimental results of applying the proposed approach on benchmark datasets and

on real-world water quality data are given. The conclusion of this work is provided in last

section.

Reproductive Behaviour of Cuckoos

Some cuckoo species lay their eggs in the nest of another bird species alongside the host bird’s

eggs, while others remove the host eggs and then lay their own in the nest to increase the

hatching probability of their own eggs [30]. Female parasitic cuckoos are specialized in mim-

icking the pattern and color of the eggs of a few selected host species. This decreases the likeli-

hood of the eggs being abandoned and so improves the reproductive outcome for the cuckoo.

However, if a host bird discovers that the eggs are not its own, then it either throws them away

or just abandons its nest and makes a new nest elsewhere. The parasitic cuckoo often selects a

nest anywhere the host bird has just laid its eggs. Generally, the cuckoo eggs hatch a little

before the host bird’s eggs. When the first cuckoo chick is hatched, its first natural action is to

throw out the host eggs by blindly pushing the eggs out of the nest. This behavior has the effect

of increasing the cuckoo chicks’ share of the food provided by the host bird. A cuckoo chick

can also mimic the call of the host chicks to increase its chances of being fed.

Cuckoo Search Algorithm

The first version of the CS algorithm was introduced by [30]. The authors made three idealized

assumptions to ensure the simplicity of the CS algorithm. In this simplified form:

• Each cuckoo lays one egg at a time in a random nest;

• The best nests containing high-quality eggs are kept for the next iteration;

• The number of on-hand host nests is fixed and the probability of the egg laid by the cuckoo

being discovered by the host bird is considered as Pa � [0, 1]. If the cuckoo egg is found, the

host bird can either discard the egg or leave the nest and build a new nest in a new place.

This assumption is simulated by a fraction of Pa of n nests being replaced by new nests (hav-

ing new random solutions).

In this simple form of CS each egg in a nest stands for one solution, and a cuckoo egg corre-

sponds to a new solution. In this algorithm the aim is to replace a poor-quality solution in the

nest with new and possibly better solutions.

In the CS algorithm a new solution is generated by using Lévy flights. ALévy flight is a kind

of random walk in which the random step lengths have a probability distribution. The reason

for using Lévy flights in basic CS is that it is more efficient for exploration of the search space

compared to random walk. This efficiency is due to the longer step length in Lévy flights. In
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the CS algorithm the Lévy flights are performed as shown by Eq 1:

xðtþ1Þ

i ¼ xðtÞi þ b� L�evyðlÞ ð1Þ

where β> 0 is denoted as the step size. The step size depends on the scale of the problem. For

most problems the value of β can be set to 1 [30]. The symbol� denotes entrywise multiplica-

tion. The Lévy flights provide a random walk with a random step length, which is derived from

a Lévy distribution that contains infinite variance with infinite mean, as expressed by Eq 2:

L�evy � u ¼ t� l; 1 < l � 3 ð2Þ

The idea of using Lévy flights originated in the cuckoo’s reproductive behavior; if a cuckoo’s

egg appears similar to a host’s eggs, the probability of the cuckoo’s egg being discovered by the

host bird is less. Therefore, in the simulation of the CS algorithm, the differentiation of the

solutions using Lévy flights is used in generating new solutions for the CS algorithm.

Similar to other population-based algorithms, the CS starts with an initial random popula-

tion. In the main loop of this algorithm, when the stopping criterion is not met the algorithm

will get a cuckoo (new solution) by Lévy flights, and if its fitness is better than a random solu-

tion in the population then the random solution is replaced by the new solution. The worst

solutions are abandoned and new random solutions are replaced under the condition of a

fraction of Pa. In the final step of each iteration the solutions are ranked and the best one is

updated. The pseudocode to maximize the result of the basic CS taken from [30] is shown in

Fig 1.

Modified Cuckoo Search Algorithm

We propose two modifications of CS to improve the performance of the basic CS. The first

modification aims to enhance the overall performance of CS by controlling the Pa parameter.

Controlling this parameter improves the balance between exploration and exploitation of the

search space and can therefore increase the likelihood of fast convergence to the global opti-

mum. The second modification involves maintaining the diversity of the solutions and

directing the search process toward the best solution by using a novel master-leader-slave

multi-population strategy. The details of these modifications are discussed in the following

subsections.

Pa parameter control

The main idea of the CS is based on decreasing the probability of the cuckoo’s eggs being

detected by the host bird so the cuckoo’s eggs have more opportunity to survive and become

Fig 1. Pseudocode of basic CS algorithm.

doi:10.1371/journal.pone.0170372.g001

Master-Leader-Slave Cuckoo Search for ANN Optimization and Water Quality Prediction

PLOS ONE | DOI:10.1371/journal.pone.0170372 January 26, 2017 4 / 19



mature cuckoos. Therefore, in this algorithm if more eggs survive it means that the algorithm

is going to optimize and converge toward the best solution. The Pa parameter is a very impor-

tant parameter in adjusting the convergence rate of the algorithm. In the basic CS algorithm,

the fixed value of the Pa parameter is set in the initialization step and cannot be altered during

the search process. The main challenge encountered in the basic CS algorithm is how to tune

this parameter to find the global optimum solution. If the value of Pa is small the probability of

the host bird detecting the cuckoo’s egg is low. In this case there is an insufficient diversity of

solutions and therefore there is not enough exploration of the search space. Inadequate explo-

ration might decrease the performance and result in finding a poor solution. If the value of Pa

is large the probability of the host bird detecting the cuckoo’s egg is high. So there is high

exploration but there is not enough exploitation to converge the algorithm toward the opti-

mum solution.

We propose a simple yet effective way to fine-tune the Pa parameter to overcome this chal-

lenging issue. In order to improve the performance of the algorithm, the value of Pa must be

big enough in the early iterations to force the algorithm to maintain the diversity of the solu-

tions and increase exploration of the search space. However, the value of Pa should be

decreased in later iterations to speed up the convergence of the algorithm. In the proposed

modified CS algorithm, the value of the Pa parameter is changed dynamically with the number

of iterations. Since Pa � [0, 1] in basic CS, the maximum value in this range, which is equal to

1, is considered for Pa in the initial setting and then it is decreased in each iteration at a rate

that is calculated by Eq 3 until it reaches the minimum value of 0 in the range of [0, 1]:

DRPa
i ¼ 1 �

iterationi

numOfIte
ð3Þ

where the decreasing rate of Pa in the ith iteration is denoted as DRPa
i , the number of the cur-

rent iteration is indicated as iterationi, and numOfIte stands for the total number of iterations.

This parameter control strategy reduces the parameters as the Pa parameter is automatically

changed during the search process based on the number of the current iteration and the total

number of iterations. The schematic flowchart of the modified CS algorithm with Pa control is

illustrated in Fig 2.

Master-leader-slave multi-population

In multi-population cooperative PSO [38], a master-slave approach is used that employs one

master swarm and a number of slave swarms. The slave swarms apply the PSO algorithm in

parallel and then each transfers its best solution to the master. Then the master updates the

best solution from among all the slaves’ best solutions. A modified master-slave multi-popula-

tion, which is a combination of the ring and master-slave for the bat algorithm was proposed

in our earlier work [29]. In that work the slaves exchange information on their best solutions

in a ring-like manner if, after a certain number of iterations, there is no improvement on the

best solution. Further cooperation is achieved by sending the best solution of each slave to the

master in each iteration. The master involves the application of an optimization algorithm on

the population of best solutions collected from all the slaves. The advantage of this work lies in

its ability to maintain the diversity of the solutions, where exploration of the population is con-

ducted by the slaves and exploitation is performed by the master.

We take this approach one step further to propose a novel multi-population cooperative

strategy called master-leader-slave for CS, which is based on the master-slave strategy with the

addition of another unit called the leader. The leader unit does not involve the use of any opti-

mization procedure but it receives the best solutions found by the slaves if, after a certain
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Fig 2. Flowchart of CS algorithm showing Pa parameter control.

doi:10.1371/journal.pone.0170372.g002
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number of iterations, there is no improvement in the quality of the best solution. After receiv-

ing the best solutions from the slaves the leader selects the best solution from among all the

best solutions from the slaves. Then, the leader sends the information on the selected solution

to all the slaves to guide them to follow this selected solution in the next Lévy flight. The master

receives a copy of the best solutions found by the slaves in each iteration and applies the CS

optimization algorithm to the population of best solutions from the slaves. Then the overall

best solution is updated and the master is zeroized. The cooperation between slaves, leader

and master is shown schematically in Fig 3.

In Fig 3, the arrows labeled Solbest show that a copy of the best solution is transferred to the

master. While the arrows labeled f(best) denote that the information (quality) about the best

solution is sent to the leader. The arrows labeled f(b) illustrate that the information on the best

solution among all the best solutions from the slaves is sent to the slaves. The cooperation

between slaves and leader gives the algorithm a powerful exploration capability and provides a

high diversity of solutions in the population, while the support given by the master to the slaves

improves the ability of algorithm to achieve fast convergence. This proposed multi-population

Fig 3. Schematic of master-leader-slave strategy.

doi:10.1371/journal.pone.0170372.g003
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cooperative strategy is applied to improve the performance of the basic CS algorithm. The

pseudocode of the proposed algorithm with modifications is shown in Fig 4.

Experimental Results

For the ANN used in this present study, two hidden layers with two nodes for each hidden

layer were selected as this format is commonly used and is the most accurate [8, 29]. The acti-

vation function used in this experiment was the hyperbolic tangent as it has better presentation

[39] than other activation functions. A one-dimensional vector was used for the solution

representation, where the weights and biases of the ANN are located in each cell of this vector.

The length of the vector is equivalent to the number of weights plus the number of biases of

the ANN.

Benchmark classification and time series prediction problems

In this section, we examine the performance of the basic CS algorithm (CS), the proposed

modified CS algorithm with Pa control (PaCtrl-CS) and the proposed modified CS algorithm

with parameter control and multi-population (Multipop-PaCtrl-CS) by applying them to six

classification and two standard time series prediction problems. The classification problems

are Iris, Diabetes diagnoses, Thyroid dysfunction, Breast cancer, Credit card, and Glass identi-

fication. The time series prediction problems are Mackey-Glass and Gas Furnace; the former is

a univariate dataset, whereas the latter is a multivariate dataset. The classification problems are

taken from the UCI machine learning repository [40]. The Gas Furnace dataset is available

from http://datasets.connectmv.com/datasets, while Mackey-Glass was produced from equa-

tion in the literature [29]. The characteristics of the datasets are: Iris dataset with 150 examples,

four features and three classes; Diabetes dataset with 768 examples, eight features and two

Fig 4. Pseudocode of CS algorithm with Pa parameter control and multi-population.

doi:10.1371/journal.pone.0170372.g004
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classes; Thyroid dataset with 7200 examples, 21 features and three classes; Cancer dataset with

699 examples, 10 features and two classes; Card dataset with 690 examples, 15 features and two

classes; Glass dataset with 214 examples, 10 features and six classes as classification datasets

and Mackey-Glass dataset with 1000 examples and one feature along with Gas Furnace dataset

with 296 examples and two features as time series prediction datasets.

The initial parameters are shown in Table 1. The values of α and Pa in the basic CS algo-

rithm are adopted from [30], while the value of Pa in the modified CS algorithms is changed

within the range of [0, 1]. This range is based on the suggestion in [30]. The ANN consists of

two hidden layers with two nodes for each hidden layer as this structure has been used in pre-

vious related research [8, 29]. The activation function for this experiment is the hyperbolic tan-

gent as it has superior performance compared to other activation functions [39]. The solutions

are represented as a one-dimensional vector, where the weights and biases of the ANN are

placed in each cell of this vector. The length of the vector is equal to the number of weights

plus the number of biases of the ANN.

We considered the output of x(t+6) with the input variables of x(t), x(t-6), x(t-12) and

x(t-18) for the Mackey-Glass dataset. For the Gas Furnace problem, the input variables were

u(t-3), u(t-2), u(t-1), y(t-3), y(t-2), y(t-1) and the output variable was y(t), as used in earlier

works. We used 30 twofold iterations [8] to evaluate the performance of the model. The data

were randomly separated into two parts for each run. One half was used for the training set

and the other half was employed as the testing set to test the model. The examples in the data-

sets were normalized into the range of [–1, 1]. We compare the results in the following two

subsections. The first investigates the performance of the proposed algorithms in comparison

with each other and the second presents a comparison of the best proposed method with the

approaches in the literature.

Results of comparison of proposed methods. In this section, we evaluate the perfor-

mance of the basic CS and the two proposed methods based on the percentage of the error. A

summary of the results obtained by the three versions of the algorithm is shown in Table 2. In

the case of the classification datasets (the first six datasets in the table) the training and testing

errors are represented by the classification error. In the case of the Mackey-Glass time series

dataset the training and testing error is represented by the root mean squared error (RMSE),

whereas for the Gas Furnace time series dataset it is denoted by the mean square error (MSE).

From Table 2 it can be seen that Multipop-PaCtrl-CS has fairly superior performance com-

pared to the other methods. To confirm the above finding we carried out an average ranking

test to discover the first-ranked algorithm. The results are shown in Table 3, from which it can

be seen that Multipop-PaCtrl-CS is ranked first in two cases for training error and testing

error and PaCtrl-CS and CS are ranked second and third, respectively.

In order to further investigate the performance of proposed methods, a comparison of the

optimization progress of CS, PaCtrl-CS and Multipop-PaCtrl-CS was conducted, the results of

which are provided in Fig 5. This figure shows the optimization progress of the proposed

methods in 100 iterations for all tested datasets. In all cases Multipop-PaCtrl-CS starts with a

Table 1. Configuration of parameters.

Parameter Definition Value

popSize Size of population 100

numOfIte Maximum number of iterations 100

Α Step size 1

Pa (in basic CS) The fraction of the nests replaced by new nests 0.25

Pa (in modified CSs) The fraction of the nests replaced by new nests [0, 1]

doi:10.1371/journal.pone.0170372.t001
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better solution and also converges to a better solution compared to CS and PaCtrl-CS. This is

because the multi-population has superior exploration and guides the search toward the global

optimum by using the leader and master actions of the master-leader-slave strategy. From Fig

5 it is also evident that PaCtrl-CS performs better than CS in most cases. This is because the

method is designed to control the Pa parameter during the search process to improve explora-

tion in early iterations and to achieve more exploitation in later iterations until final conver-

gence is reached.

Table 2. Results for the three versions of the CS algorithm.

Dataset Criteria CS PaCtrl-CS Multipop-PaCtrl-CS

Iris Training error % 2.4213 1.8522 1.5311

Std. Dev. 0.0645 0.0789 0.0213

Testing error% 2.6072 2.0756 1.6906

Std. Dev. 0.0456 0.0460 0.0122

Diabetes Training error % 16.8243 16.5118 13.9689

Std. Dev. 0.0435 0.0585 0.0345

Testing error% 21.8243 20.1785 15.6356

Std. Dev. 0.0579 0.0042 0.0294

Thyroid Training error % 6.5545 4.2117 4.477

Std. Dev. 0.0041 0.0041 0.0041

Testing error% 7.2545 6.7117 5.1104

Std. Dev. 0.0456 0.0786 0.0159

Cancer Training error % 2.7280 2.5682 2.3596

Std. Dev. 0.0045 0.0022 0.0056

Testing error% 3.1614 2.8349 2.4596

Std. Dev. 0.0517 0.0325 0.0480

Card Training error % 13.5381 12.9943 12.5747

Std. Dev. 0.0459 0.0284 0.0739

Testing error% 14.4715 13.7343 12.5831

Std. Dev. 0.0027 0.0083 0.0064

Glass Training error % 34.7632 25.7255 26.0586

Std. Dev. 0.0043 0.0065 0.0328

Testing error% 41.4299 38.7255 28.0919

Std. Dev. 0.0836 0.0111 0.0566

Mackey-Glass Training error % 2.6E-03 2.5E-03 1.4E-03

Std. Dev. 0.0001 0.0001 0.0001

Testing error% 2.9E-03 2.9E-03 1.4E-03

Std. Dev. 4.6E-06 0.0001 0.0001

Gas Furnace Training error % 0.3909 0.4085 0.1837

Std. Dev. 5.0E-06 3.0E-06 4.0E-06

Testing error% 0.4343 0.4618 0.1903

Std. Dev. 0.0072 0.0067 0.0023

doi:10.1371/journal.pone.0170372.t002

Table 3. Average rankings for the three versions of the CS algorithm.

Training error Testing error

Algorithm Rank Algorithm Rank

Multipop-PaCtrl-CS 1.1111 Multipop-PaCtrl-CS 1. 25

PaCtrl-CS 2 PaCtrl-CS 2

CS 2.7778 CS 2.75

doi:10.1371/journal.pone.0170372.t003
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To measure whether Multipop-PaCtrl-CS is statistically different from the other proposed

methods, we computed the p-values of the three algorithms for all datasets, where the critical

value α is equal to 0.05. Critical values for a test of hypothesis depend upon a test statistic,

which is specific to the type of test, and the significance level, α, which defines the sensitivity of

the test. A value of α = 0.05 implies that the null hypothesis is rejected 5% of the time when it is

in fact true. The most commonly used significance level is α = 0.05.

This evaluation was carried out for the training error and testing error. The results are

shown in Table 4. Values lower than the critical level (highlighted in bold) confirm the supe-

rior ability of Multipop-PaCtrl-CS. Only in the case of four training errors where we compare

PaCtrl-CS andMultipop-PaCtrl-CS is the p-value higher than the critical value. This proves the

superior performance of Multipop-PaCtrl-CS compared to PaCtrl-CS and CS.

Fig 5. Comparison of optimization progress of CS, PaCtrl-CS and Multipop-PaCtrl-CS: (a) Iris dataset,

(b) Diabetes dataset, (c) Thyroid dataset, (d) Breast cancer dataset, (e) Credit card dataset, (f) Glass

dataset, (g) Mackey- Glass dataset, and (h) Gas Furnace dataset.

doi:10.1371/journal.pone.0170372.g005
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Results of comparison of the best proposed method with other methods in the litera-

ture. There are plentiful studies on the ANN, particularly in relation to its application to clas-

sification problems. Therefore, we compared Multipop-PaCtrl-CS as the best method among

those examined in the previous section with the most recent methods in the literature that are

mainly related to our proposed method and that employed the same datasets. Comparisons of

the testing errors for classification and time series prediction are reported in Tables 5 and 6,

respectively. The best results in these tables are shown in bold.

Table 5 illustrates the results of a comparison of Multipop-PaCtrl-CSwithseven methods,

namely, the multi-population of the bat algorithm (BatRM-S) [29], simulated annealing (SA),

tabu search (TS), genetic algorithm (GA), combination of TS and SA (TSa), and integration of

TS, SA and GA and backpropagation (GaTSa+BP) [8] and standard particle swarm optimiza-

tion (PSO) which was re-implemented to be compared with proposed method for the classifi-

cation problem. Table 5 shows that Multipop-PaCtrl-CS exhibits higher performance than the

other methods in the literature. The Multipop-PaCtrl-CS algorithm outperforms these meth-

ods in four out of the six tested methods.

Table 4. Pairwise comparison of p-values of Multipop-PaCtrl-CSwith those of CS and PaCtrl-CS.

Dataset CS PaCtrl-CS

Training error Testing error Training error Testing error

Iris 6.2E-06 0.0005 0.0003 0.0017

Diabetes 0.0258 6.9E-08 0.0368 5.4E-05

Thyroid 0.0015 8.1E-06 0.3879 0.0002

Cancer 0.0360 0.0002 0.1381 0.0070

Card 0.0026 2.7E-10 0.0541 6.1E-05

Glass 0.0026 7.5E-07 0.4500 1.2E-05

Mackey-Glass 1.7E-05 5.2E-06 1.4E-05 3.0E-06

Gas Furnace 4.1E-07 1.7–09 9.5E-08 1.2E-10

doi:10.1371/journal.pone.0170372.t004

Table 5. Comparison of Multipop-PaCtrl-CS and other methods for the classification problem.

Dataset Multipop-PaCtrl-CS BatRM-S SA TS GA TSa GaTSa+BP PSO

Iris 1.6906 1.5309 12.649 12.478 2.5641 4.6154 5.2564 3.8341

Diabetes 15.6356 19.3021 27.156 27.404 25.994 25.876 27.061 22.742

Thyroid 5.1104 6.2435 7.3813 7.3406 7.2850 7.3322 7.1509 5.4328

Cancer 2.4596 2.9928 7.1729 7.2779 7.4220 6.2846 7.1920 1.9582

Card 12.5831 13.4163 23.469 18.042 31.724 21.269 15.242 13.239

Glass 28.0919 36.4251 58.381 56.412 58.031 57.777 55.142 27.823

doi:10.1371/journal.pone.0170372.t005

Table 6. Comparison of Multipop-PaCtrl-CS and other methods for the time series prediction problem.

Dataset Multipop-

PaCtrl-CS

BatRM-S gHFSNN

(triangular)

gHFSPNN

(Gaussian)

gFSPNNT*
(triangular)

gFSPNNT*
(Gaussian)

gFSPNNT

(triangular)

gFSPNNT

(Gaussian)

gFPNN

(Triangular)

gFPNN

(Gaussian)

PSO

Mackey-

Glass

0.0014 0.0017 0.0315 0.0262 0.0441 0.0289 0.1180 0.0441 - - 0.0016

Gas

Furnace

0.1903 0.3408 11.520 10.250 - - 11.200 10.300 10.300 10.000 0.2739

Note: The percentage of error has been calculated for the results in the literature.

“*” is a part of method’s name as presented in the original paper.

doi:10.1371/journal.pone.0170372.t006
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Table 6 provides the results of a comparison of Multipop-PaCtrl-CSwith several algorithms

investigated in [10, 11, 29]and re-implemented PSOfor the time series prediction problem. For

both the Mackay-Glass and Gas Furnace time series datasets Multipop-PaCtrl-CS achieved the

best results compared to the other approaches in the literature. The superiority of Multipop-

PaCtrl-CS is due to its ability to control the Pa parameter to provide better exploration and

enhanced exploitation during the search process as well as to its use of master-leader-slave

multi-population strategy.

In order to further validate the results, we carried out a Friedman test and a Nemenyi test

on Multipop-PaCtrl-CS. These tests were used to determine whether there are significant dif-

ferences between the achievement of the method and the other methods in the literature in

terms of classification error and prediction error.

In the case of classification problems, the Friedman test result was 28.1625, which is greater

than 13.45 (critical value) for the testing error of classification problems. The critical value

13.45 was found in table of critical values for the Chi-Square test where the degree of freedom

is equal to K-1. K is the number of methods, which in our experiment is equal to eight. Since

the value of the Friedman test was greater than the critical value, the null hypothesis was

rejected. This evaluation showed that there is a significant difference in performance between

the algorithms in terms of classification error.

The Nemenyi test was also carried out as a post-hoc test to discover the group of methods

that are differ from the other methods. The standard error (SE) was calculated and its posterior

computing the minimum significant difference (MSD) was computed. The value of the MSD

is calculated to see where any differences in averages were higher than the MSD. The MSD in

our experiment was equal to 7.579328. The result of the Nemenyi test is highlighted in bold in

Table 7. This table shows that Multipop-PaCtrl-CS has a statistically significant difference in

six cases.

The Friedman test result for the time series prediction was equal to 9.3374. This value is

larger than the critical level (9.143), so we rejected the null hypothesis. We also performed a

Nemenyi post-hoc test for time series prediction and the results are shown in Table 8. The

MSD is equal to 4.209448 and from the highlighted values in Table 8 it can be seen that Multi-

pop-PaCtrl-CS performed better in four cases.

Real-world application of proposed methods to water quality prediction

In the last part of our study, the proposed methods were applied to real-world water quality

data. The data were collected from a weather station near Kajang in the Selangor area of

Malaysia. The data comprises monthly water quality data records from the years 2004 through

2013. They are multivariate time series and have been used as a prediction problem. The data

Table 7. Nemenyi test results for classification error.

Multipop-PaCtrl-CS BatRM-S SA TS GA TSa GaTSa+BP PSO

mean 10.92853 13.31845 22.70153 21.49242 22.17002 20.5257 19.50738 12.50485

Multipop-PaCtrl-CS 10.92853 - 2.389917 11.77300 10.56388 11.24148 9.597167 8.578850 9.232193

BatRM-S 13.31845 - - 9.383083 8.173967 8.851567 7.20725 4.739600 8.827967

SA 22.70153 - - - 1.209117 0.531517 2.175833 17.96193 7.483735

TS 21.49242 - - - - 0.677600 0.966717 3.530483 6.368425

GA 22.17002 - - - - - 1.644317 18.63953 11.72492

TSa 20.5257 - - - - - - 1.886167 3.349553

GaTSa+BP 19.50738 - - - - - - - 7.137142

PSO 12.50485 - - - - - - - -

doi:10.1371/journal.pone.0170372.t007
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contain 13 features: SFLOW, TEMP (Degrees C), TUR (NTU), DS (mg/l), TS (mg/l), NO3

(mg/l), PO4 (mg/l), DO (mg/l), BOD (mg/l), COD (mg/l), SS (mg/l), pH (unit), NH3-NL

(mg/l).

All the features were employed as input for the ANN and the last six features were consid-

ered as output of the ANN as they are the most critical features for water quality prediction.

The data were divided into two parts; 70% of the data was used as a training set and 30% was

used as a testing set. The data were normalized into the range of (0, 1) using the Min-Max nor-

malization technique. A 10-fold cross-validation was used to validate the results. One step

ahead prediction was performed. The averages of 30 runs for the prediction are shown in

Table 9. For ease of reference and assessment, the average ranking of the training and testing

errors of the proposed algorithm are provided in Table 10. As shown in this table, Multipop-

PaCtrl-CS is ranked first for both training and testing errors.

Table 8. Nemenyi test results for prediction error of time series prediction.

Algorithm Multipop-PaCtrl-

CS

BatRM-S gHFSPNN

(triangular)

gHFSPNN

(Gaussian)

gFSPNN T

(triangular)

gFSPNN T

(Gaussian)

PSO

Mean 0.09585 0.17125 5.77575 5.1381 5.659 5.17205 0.2755

Multipop-PaCtrl-CS 0.09585 - 0.07540 5.67990 5.04225 5.56315 5.07620 4.24335

BatRM-S 0.17125 - - 5.60450 4.96685 5.48775 5.00080 5.27349

gHFSPNN

(triangular)

5.77575 - - - 0.63765 0.11675 0.60370 0.34834

gHFSPNN

(Gaussian)

5.1381 - - - - 0.52090 0.03395 0.23846

gFSPNNT

(triangular)

5.659 - - - - - 0.48695 0.83932

gFSPNN T

(Gaussian)

5.17205 - - - - - - 0.98478

PSO 0.2755 - - - - - - -

doi:10.1371/journal.pone.0170372.t008

Table 9. Prediction results of Multipop-PaCtrl-CS for real-world water quality data.

Feature Criteria CS PaCtrl-CS Multipop-PaCtrl-CS

NH3-NL Training error 0.5242 0.3185 0.2153

Testing error 0.5260 0.3207 0.2169

Predicted value 0.2436 0.3293 0.3823

PH Training error 0.3242 0.2185 0.1153

Testing error 0.3260 0.2207 0.1169

Predicted value 0.5258 0.6483 0.7267

SS Training error 0.4242 0.2685 0.1653

Testing error 0.4260 0.2707 0.1669

Predicted value 0.2457 0.2457 0.1878

COD Training error 0.4342 0.3385 0.3153

Testing error 0.4560 0.3407 0.3169

Predicted value 0.1348 0.2004 0.1772

BOD Training error 0.3342 0.3485 0.1153

Testing error 0.3560 0.1407 0.1169

Predicted value 0.3472 0.3391 0.2436

DO Training error 0.3842 0.2485 0.1453

Testing error 0.3860 0.2407 0.1569

Predicted value 0.2567 0.7618 0.5654

doi:10.1371/journal.pone.0170372.t009
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To determine whether there is significant difference between the results of Multipop-

PaCtrl-CS, PaCtrl-CS and basic CS, the p-values were calculated and compared. The results are

shown in Table 11. From the table it can be seen that all the p-values are much lower than the

critical level of 0.05, which proves the higher performance of Multipop-PaCtrl-CS compared to

PaCtrl-CS and CS.

A comparison of the actual value and predicted value in both the training and testing parts

of for CS, PaCtrl-CS, and Multipop-PaCtrl-CS when tested on real-world water quality data

are shown in Fig 6. The first column in this figure (Fig 6(a)) provides the results for CS, the sec-

ond column (Fig 6(b)) shows the results for PaCtrl-CS, and the last column (Fig 6(c)) illustrates

the results for Multipop-PaCtrl-CS. It is clear that, although the data have an irregular pattern

and high fluctuation, the ability of Multipop-PaCtrl-CS to predict the features is better than

the other two methods and all three are acceptable for application to real-world data prediction

problem.

The predicted parameters can be used for the Water Quality Index (WQI) calculation and

to find the degree of water quality. It means that the WQI can be derived using NH3-NL, PH,

SS, COD, BOD, and DO, which are predicted by the proposed method. These parameters rep-

resent significant chemical, physical and biological parameters of water quality conditions.

Using WQI, numerical face defining certain level of water quality can be presented. Therefore,

WQI summarizes water quality data into a simple concept (like a grade) such as excellent in

the range of (90, 100), good in (70, 89), medium in (50, 69), bad in (25, 49) and very bad in the

range of (0, 24) in a reliable way [41].

Conclusion

This paper examined the capability of the cuckoo search algorithm and its modifications to

contribute to a more accurate ANN model. To attain this important aim, first, the basic cuckoo

search algorithm was applied to optimize the ANN model and then two modifications (PaCtrl-

CS and Multipop-PaCtrl-CS) of the cuckoo search were proposed. These modifications were

designed to improve the exploration and exploitation of the algorithm and its ability to achieve

better convergence. Control of the Pa parameter in PaCtrl-CS was achieved by setting this

Table 10. Average of rankings of the three versions of the CS algorithm for real-world water quality

data.

Training error Testing error

Algorithm Rank Algorithm Rank

Multipop-PaCtrl-CS 1 Multipop-PaCtrl-CS 1

PaCtrl-CS 2.8333 PaCtrl-CS 2

CS 2.1666 CS 3

doi:10.1371/journal.pone.0170372.t010

Table 11. Pairwise comparison of p-values of Multipop-PaCtrl-CS with those of CS and PaCtrl-CSfor real-world water quality data.

Dataset CS PaCtrl-CS

Training error Testing error Training error Testing error

NH3-NL 3.19E-46 3.49E-41 3.67E-41 9.21E-37

PH 2.66E-41 2.82E-36 3.67E-41 3.67E-41

SS 5.32E-44 5.76E-39 3.67E-41 9.21E-37

COD 3.15E-34 3.55E-31 1.38E-22 1.20E-18

BOD 6.86E-42 5.87E-38 2.03E-51 1.20E-18

DO 5.46E-43 2.02E-37 3.67E-41 4.42E-34

doi:10.1371/journal.pone.0170372.t011
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parameter to a maximum value in the initial stage to gain more exploration and by decreasing

this parameter during the search process to gain more exploitation until the algorithm reached

final convergence with the minimum value of Pa. Furthermore, a master-leader-slave multi-

population strategy was embedded in Multipop-PaCtrl-CS to improve the convergence ability

of the algorithm. In this strategy, the slaves with aid of leader guidance provided good explora-

tion and the master had the role of providing the algorithm with more exploitation. Based on

extensive evaluations it is concluded that the Multipop-PaCtrl-CS algorithm has the ability to

outperform other recent algorithms in the literature in five out of six classification problems.

The algorithm also demonstrated better performance on two tested time series prediction

Fig 6. Comparison of actual value and model output for different features in: (a) CS,(b) PaCtrl-CS and

(c) Multipop-PaCtrl-CS.

doi:10.1371/journal.pone.0170372.g006
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problems. We believe that the superiority of the results is due to the fine balancing between

exploration and exploitation in Multipop-PaCtrl-CS provided by Pa control and the master-

leader-slave multi-population. Finally, the proposed methods were applied to real-world data

for water quality prediction. The promising results for both benchmark and real-world data

motivate us to improve this method in future work.
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