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Abstract
Carbonic anhydrase catalyzes the reversible hydration of carbon dioxide to bicarbonate

and maintains the balance of CO2/HCO3
- in the intracellular environment, specifically for

carboxylation/decarboxylation reactions. In Corynebacterium glutamicum, two putative

genes, namely the bca (cg2954) and gca (cg0155) genes, coding for β-type and γ-type car-

bonic anhydrase, respectively, have been identified. We here analyze the transcriptional

organization of these genes. The transcriptional start site (TSS) of the bca gene was shown

to be the first nucleotide “A” of its putative translational start codon (ATG) and thus, bca
codes for a leaderless transcript. The TSS of the gca gene was identified as an “A” residue

located at position -20 relative to the first nucleotide of the annotated translational start

codon of the cg0154 gene, which is located immediately upstream of gca. Comparative

expression analysis revealed carbon source-dependent regulation of the bca gene, with
1.5- to 2-fold lower promoter activity in cells grown on acetate as compared to glucose as

sole carbon source. Based on higher expression of bca in a mutant deficient of the regulator

of acetate metabolism RamA as compared to the wild-type of C. glutamicum and based on

the binding of His-tagged RamA protein to the bca promoter region, we here present evi-

dence that RamA negatively regulates expression of bca in C. glutamicum. Functional char-

acterization of a gca deletion mutant of C. glutamicum revealed the same growth

characteristics of C. glutamicum Δgca as that of wild-type C. glutamicum and no effect on

expression of the bca gene.

Introduction
Carbonic anhydrase (CA) (EC 4.2.1.1) catalyzes the reversible hydration of carbon dioxide
(CO2) to bicarbonate (HCO3

-) and plays an important role in various biochemical and physio-
logical processes in prokaryotic and eukaryotic organisms [1, 2]. CAs are ubiquitously found in
eukarya, bacteria and archaea domains of life [2, 3, 4] and five genetically distinct CA families
are known to date, namely the α-, β-, γ-, δ-, and z-CAs [5]. The α-class is predominant in
mammals whereas the δ- and z-classes have been found in marine diatoms [6]. The β and γ are
the ancient classes of CAs, predominantly found in prokaryotes and their presence in species
of archaea and bacteria indicate their fundamental role in prokaryotic biology [6, 7, 8]. The
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bacterial β-CAs are zinc metalloenzymes that maintain CO2/HCO3
- balance in the intracellular

environment [9, 10]. By keeping a given balance, the CAs also represent important “accessory
enzymes” for other enzymes that use CO2 or HCO3

- [10], such as ribulose-1,5-bisphosphate
carboxylase/oxygenase (RuBisCO) in chloroplasts, carbamate hydro-lyase (cyanase) in Escheri-
chia coli [11], urease inHelicobacter pylori [12] and HCO3

--dependent carboxylases in a variety
of eukaryotes and prokaryotes [10, 13–17]. In several bacteria, CA has been shown to be essen-
tial during aerobic growth under normal atmospheric conditions [14–17] and Ueda et al. [18]
suggested that microorganisms that are lacking CA can persist in nature only by choosing
niches with higher CO2 concentrations.

Corynebacterium glutamicum is a Gram-positive, facultative anaerobic organism, able to
use a variety of sugars, alcohols, and organic acids as carbon and energy source [19–21]. The
organism has a long tradition in biotechnology and is used as an “industrial workhorse” for the
production of amino acids, mainly L-glutamate and L-lysine [22, 23]. In addition, the use of C.
glutamicum in the production of other amino acids [24–30], different organic acids [31–34],
vitamins [35], diamines [36–40], ethanol and higher alcohols [41–45], 2-ketoacids [46–49],
lycopene [50], and polymers [51, 52] has further widened the industrial importance of C. gluta-
micum. Besides, C. glutamicum is also regarded as a model organism for the Corynebacteri-
neae, such as the genusMycobacterium [53].

The PEP (phosphoenolpyruvate)-pyruvate-oxaloacetate node in C. glutamicum (Fig 1) has
attracted specific attention due to its importance in carbon flux distribution within the central
metabolism and in particular for supply of precursors required for the production of various
amino acids (reviewed in [54, 4]), especially those of the aspartate and glutamate amino acid
families. C. glutamicum possesses two C3-carboxylating anaplerotic enzymes, namely the PEP
carboxylase and pyruvate carboxylase, converting phosphoenolpyruvate (PEP) and pyruvate to
oxaloacetate, respectively [54]. Apart from these C3-carboxylating enzymes, C. glutamicum
possesses three C4-decarboxylating enzymes, i.e., PEP carboxykinase, converting oxaloacetate
to PEP, and oxaloacetate decarboxylase and malic enzyme, converting oxaloacetate and malate,
respectively, to pyruvate (reviewed in [54]) (Fig 1). Whereas these decarboxylating enzymes
[and also those of the tricarboxylic acid (TCA) cycle] liberate CO2, the carboxylating PEP and
pyruvate carboxylases require HCO3

- as substrate [4, 17] which highlights the importance of
intracellular CO2/HCO3

- balance for the central metabolism, especially the reactions at meta-
bolic switch-points of carbon flux distribution. As HCO3

- is needed as substrate of metabolism,
its significant source is the hydration of CO2. Due to the low tension of CO2 in the environ-
ment and its diffusion out of the cell, the spontaneously formed HCO3

- obviously is not suffi-
cient to meet metabolic demands of the cell and thus, enzymatic hydration of CO2 might be
necessary, especially under conditions when the intracellular CO2 generation is low [15, 17].

In C. glutamicum, two genes putatively coding for beta-type CA (β-CA) and gamma-type
CA (γ-CA) have been identified and designated as bca (locus-tag cg2954) and gca (cg0155),
respectively [17]. The bca gene is located betweenmutY, encoding an adenine glycosylase, and
cg2953, encoding putatively a benzaldehyde dehydrogenase. The gca gene is directly preceeded
by cg0154, encoding also a so far unknown protein and followed by cysR, encoding the dual
transcriptional regulator CysR, which is involved in control of sulfur metabolism in C. glutami-
cum [55]. Though, a gca-deficient mutant of C. glutamicum did not show any phenotype under
all conditions tested, a bca-deletion mutant showed no growth under normal atmospheric con-
ditions (0.04% CO2) and this phenotype could be restored by increasing the CO2 concentration
to 5% or by introducing a heterologous CA gene [17]. These results indicate that bca is func-
tional as CA in C. glutamicum, that the bca gene product is essential and that the gca gene
product is dispensable for growth of this organism under “normal” atmospheric conditions.
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In this report, we analyzed the transcriptional organization of the bca and gca genes and
investigated the transcriptional regulation of bca expression in glucose- or acetate-grown cells
of C. glutamicum. We also constructed a gca deletion mutant of C. glutamicum and investigated
the effect on growth and on expression of the bca gene.

Materials and Methods

Bacterial strains, plasmids, oligonucleotides and culture conditions
All bacterial strains and plasmids used in this study and their relevant characteristics and
sources are given in Table 1, for oligonucleotides, their nucleotide sequence and purpose see
S1 Table in the supplementary material.

E. coli was grown aerobically on 2×TY or TB complex medium [62] at 37°C as 5 ml-cultures
in 15 ml-tubes or as 50 ml-cultures in 500 ml-baffled Erlenmeyer flasks on a rotary shaker at
120 rpm. Precultures of C. glutamicum were grown under the same conditions in 2×TY
medium at 30°C. For preparation of solid plates, agar (18 g/l) was added to the medium. For
the main cultures, cells of a C. glutamicum preculture were washed twice with 0.9% NaCl and
added to freshly prepared minimal medium [63], containing 1% (w/v), 2% (w/v), 4% (w/v) glu-
cose and/or 1% (w/v) acetate as carbon source(s). The cultures then were grown aerobically at
30°C as 50 ml-cultures in 500 ml baffled Erlenmeyer flasks on a rotary shaker at 120 rpm until

Fig 1. The phosphoenolpyruvate (PEP)-pyruvate-oxaloacetate node inC. glutamicum. Abbreviations: AK, acetate kinase; PTA,
phosphotransacetylase; CA, carbonic anhydrase; CS, citrate synthase; ACN, aconitase; ICD, isocitrate dehydrogenase; OGDHC, oxoglutarate
dehydrogenase complex; ICL, isocitrate lyase; MS, malate synthase; MalE, malic enzyme; ODx, oxaloacetate decarboxylase; PDHC, pyruvate
dehydrogenase complex; PCx, pyruvate carboxylase; PEPCx, phosphoenolpyruvate carboxylase; PEPCk, phosphoenolpyruvate carboxykinase.

doi:10.1371/journal.pone.0154382.g001
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the desired cell density was obtained. Plasmid-carrying strains were cultivated in the presence
of kanamycin (50 μg/ml) or ampicillin (100 μg/ml). In fermentation experiments, the amino
acid concentrations were determined by reversed-phase high-pressure liquid chromatography
(RP-HPLC) as described before [26]. Growth of the E. coli and C. glutamicum cultures was fol-
lowed by measuring the optical density at 600 nm (OD600).

DNA preparation, manipulation and transformation
Restriction enzymes, T4 DNA ligase, Fast APTM thermosensitive alkaline phosphatase, DNase
I, Maxima reverse transcriptase, terminal deoxynucleotidyl transferase and the CloneJetTM

PCR Cloning Kit were obtained from Thermo Scientific (Darmstadt, Germany), Phusion1

DNA polymerase from New England Biolabs (Ipswitch, MA, USA), Taq DNA polymerase
from Genaxxon Biosciences (Ulm, Germany), and used as instructed by the manufacturer. The
RNeasy Mini Kit and the HotStar polymerase kit was obtained from Qiagen (Hilden,
Germany).

Table 1. Strains and plasmids used in this study and their relevant characteristics.

Strain/plasmid Relevant characteristic(s) Source/ reference

Strains

E. coli DH5α supE44, hsdR17, recA1, endA1, gyrA96, thi-1, relA1 [56]

E. coli BL21 (DE3) ompT hsdSB (rB–mB–) gal dcm (DE3) [57]

E. coli DH5α (pET2-Pbca) E. coli DH5α carrying plasmid pET2-Pbca This work

E. coli DH5α (pET2-Pgca) E. coli DH5α carrying plasmid pET2-Pgca This work

E. coli BL21 (DE3) (pET28-ramA) E. coli BL21 (DE3) carrying plasmid pET28-ramA [58]

C. glutamicum WT Wild-type strain ATCC 13032 American Type Culture Collection

C. glutamicum (pET2-Pbca) C. glutamicum carrying plasmid pET2-Pbca This work

C. glutamicum DM1729 ΔilvB L-lysine-producer C. glutamicum DM1729 ΔilvB [59]

C. glutamicum DM1729 ΔilvB
(pET2-Pbca)

C. glutamicum DM1729 ΔilvB carrying plasmid pET2-Pbca This work

C. glutamicum (pET2-Pgca) C. glutamicum carrying plasmid pET2-Pgca This work

C. glutamicum ΔatlR (pET2-p4) C. glutamicum ΔatlR carrying plasmid pET2-p4 C. Gabris, personal gift

C. glutamicum (pET2) C. glutamicum carrying plasmid pET2 This work

C. glutamicum Δgca C. glutamicum with deleted gca gene in the genome This work

C. glutamicum ΔramA C. glutamicum with deleted ramA gene in the genome [58]

C. glutamicum ΔramA (pET2-Pbca) C. glutamicum ΔramA carrying plasmid pET2-Pbca This work

Plasmids

pET2 Promoter probe vector, carrying the promoter-less cat reporter gene,
Kmr

[60]

pET2-Pbca pET2 carrying the bca promoter fragment cloned upstream of the cat
reporter gene

This work

pET2-Pgca pET2 carrying the gca promoter fragment cloned upstream of the cat
reporter gene

This work

pJET1.2/blunt Linearized cloning vector, Ampr CloneJET PCR Cloning kit (Thermo
Scientific)

pJET1.2-bca-RACE bca 5'-RACE product ligated into pJET1.2/blunt vector This work

pJET1.2-gca-RACE gca 5'-RACE product ligated into pJET1.2/blunt vector This work

pET28-ramA pET28 over-expression vector, carrying the ramA gene [58]

pK19mobsacB vector Kmr, vector for integration of insert into the genome of the C.
glutamicum

[61]

pK19mobsacB-Δgca pK19mobsacB vector carrying Δgca insert This work

doi:10.1371/journal.pone.0154382.t001
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Plasmids from E. coli and C. glutamicum cells were isolated using the E.Z.N.A plasmid
DNAMini Kit (Omega Bio-tec Inc., Norcross, USA) or the method described in Green and
Sambrook [62], respectively, and purified using the NucleoSpin Gel and PCR Clean-up Kit
(Macherey-Nagel, Düren, Germany), according to the manufacturer’s instructions. Chromo-
somal DNA was isolated from C. glutamicum [64] and purified with phenol-chloroform purifi-
cation method [62].

PCR experiments were performed in a Thermocycler (Biometra, Göttingen, Germany)
using Phusion1 DNA or Taq DNA polymerase with oligonucleotides designed using the
Clone Manager v.7 software and obtained from biomers.net (Ulm, Germany). All other
reagents used for the PCR mix were obtained from Thermo Scientific. PCR products were puri-
fied using the NucleoSpin Gel and PCR Clean-up Kit from Macherey-Nagel.

Plasmid transfer into C. glutamicum was carried out by electroporation with an Electropora-
tor 2510 (Eppendorf, Hamburg, Germany), and the recombinant strains were selected on
2xTY medium [62] agar plates containing kanamycin (50 or 15 μg/ml), as described by van der
Rest et al. [65]. Electroporation of E. coli was carried out with competent cells according to the
method of Dower et al. [66]. The success of the transformation was verified by plasmid prepa-
ration and/or other analyses indicated below.

Cloning of the bca and gca promoter fragments
The promoter regions of the bca gene (position -500 to +20 with respect to the putative transla-
tional start site of bca) and of the gca gene (position -262 to +258 with respect to the putative
translational start site of the upstream cg0154 gene) were amplified with primer pairs bca-pro-
moter-fw/ -rev and gca-promoter-fw/ -rev, respectively. The two PCR products (i.e., the bca
and gca promoter fragments) were separately ligated into the multiple cloning site of the pro-
moter-probe vector pET2, upstream of the promoter-less cat reporter gene, encoding chloram-
phenicol acetyltransferase (CAT). The resulting plasmids pET2-Pbca and pET2-Pgca were
transformed into E. coliDH5α cells, transformants were selected on 2xTY agar plates contain-
ing kanamycin. The success of the transformation was verified by plasmid preparation, restric-
tion analysis, and sequence analysis (GATC Biotech, Konstanz, Germany) of the insert(s) in
the isolated and purified plasmids, using vector-specific primers namely cm4 and pET-rev.
Subsequently, the pET2-Pbca and pET2-Pgca plasmids were transformed into C. glutamicum by
electroporation.

RNA isolation and determination of the transcriptional start site
Total RNA was isolated from C. glutamicum carrying pET2-Pbca or pET2-Pgca plasmids, the
transcriptional start sites (TSSs) were determined by cDNA synthesis and 5’ “rapid amplifica-
tion of cDNA-ends” (5’-RACE) with PCR [67].

The C. glutamicum strains were grown in minimal medium with glucose 1% (w/v) as carbon
source and harvested at the mid-exponential growth phase (OD600 of about 5) by centrifuga-
tion (4500 rpm for 10 minutes at 4°C). The total RNA was isolated as described by Auchter
et al. [64] and after DNase I treatment purified using the RNeasy Mini Kit (Qiagen) according
to the manufacturer’s instructions.

The cDNAs for the bca and gca genes were synthesized from purified total RNA by reverse
transcription with pET2-specific primer cm5, using maxima reverse transcriptase according to
the manufacturer’s instructions. Using terminal deoxynucleotidyl transferase, the cDNAs were
subsequently tailed with poly-(A) at their 3ˊ-end with dATP. The poly-(A) tailed cDNAs then
were amplified with primers oligo-(dT) and cm5, using the HotStar polymerase kit for PCR.
The amplified PCR products were subsequently purified using the NucleoSpin Gel and PCR
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Clean-up Kit and ligated into the pJET1.2/blunt vector of the CloneJetTM PCR Cloning Kit
with blunt end ligation according to the manufacturer’s instructions, resulting in plasmids
pJET1.2-bca-RACE and pJET1.2-gca-RACE. For both the bca and gca promoters, plasmids of
three independent clones were sequenced using pJET1.2 vector-specific primers (pJET-fw and
pJET-rev), sequence analysis was performed using the NCBI database and Clone Manager v.7
software.

Enzyme Assays
For determination of specific CAT enzyme activities in cell extracts, C. glutamicum carrying
pET2-Pbca or pET2-Pgca plasmid was grown in minimal medium containing glucose 1%, 2%
(w/v) and/or acetate 1% (w/v) as carbon source, to the mid-exponential growth phase (OD600

of about 5) and cultures were harvested by centrifugation (4500 rpm, 4°C, 10 minutes). For
preparation of cell extracts, the cell pellets were dissolved in 1 ml of washing buffer (200 mM
Tris/ HCl pH 7.8), added to screw cap tubes containing 250 μl of glass-beads (diameter 0.1
mm) (Sigma Aldrich) and cell disruption was carried out in a Precellys 24 at speed 6.5 for 30
seconds three times with cooling on ice for 5 minutes each time. The glass-beads and cell debris
were removed by centrifugation (14000 rpm for 30 minutes at 4°C). Protein quantification was
performed using the Pierce BCA Protein Assay Kit (Thermo Scientific) in 96 well PS-Micro-
plates, according to the manufacturer’s instructions. The specific CAT enzyme activities in the
extracts were determined by the method described by Gerstmeir et al. [68].

Over-production and purification of His6-RamA protein
The His6-RamA fusion protein was over-produced in E. coli BL21 (DE3) carrying pET28-
ramA plasmid [58]. The culture was grown in 500 ml of TB medium in a 2 L Erlenmeyer flask
and over-production of His6-RamA fusion protein was induced by addition of Isopropyl-β-D-
thiogalactopyranoside (IPTG; 1 mM final concentration) after the culture reached an OD600 of
0.6 and was grown further for 4 hours to an OD600 of about 5. The over-produced His-tagged
RamA fusion protein was purified on an ÄKTATM purifier (Amersham Biosciences, Freiburg,
Germany) with a HisTrapTM HP column (GE Healthcare, Uppsala, Sweden) using loading
buffer (NNIG-20: 50 mMNaH2PO4, 300 mMNaCl, 20 mM imidazole, 5% glycerol (v/v), pH
8) and elution buffer (NNIG-500: 50 mMNaH2PO4, 300 mMNaCl, 500 mM imidazole, 5%
glycerol (v/v), pH 7.8).

For identification and verification of the purified His6-RamA, the protein sample was sepa-
rated on a SDS-PAGE gel [69], the protein bands of interest were cut out of the gel (approxi-
mately 5 x 1.5 x 1 mm in size), and MALDI-TOF (Matrix Assisted Laser Desorption/
Ionization—Time Of Flight) analysis was performed as described by Gerstmeir et al. [68]. The
MALDI-TOF analysis was done at the Forschungszentrum Jülich (Germany), the data
obtained were analyzed using Mascot (PMF) Peptide mass fingerprint (http://www.
matrixscience.com).

Promoter binding assays with His-tagged RamA protein
The binding of purified His-tagged RamA protein with the bca promoter fragment Pbca and its
sub-fragments PF1, PF2 and PF3 was tested using an electrophoretic mobility shift assay
(EMSA). The fragment 1b (described in [58]) was used as negative control and an aceA-aceB
intergenic fragment with known binding affinity for RamA [58] as positive control. Bovine
serum albumin (BSA) was used as a negative protein control. The respective fragments were
amplified by PCR with primers bca-promoter-fw and -rev, PF1-fw, PF2-fw, PF3-fw and bca-
promoter-rev, 1b-fw and 1b-rev, and aceA-aceB intergenic-fw and aceA-aceB intergenic-rev,
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respectively. The products were purified using the NucleoSpin Gel and PCR Clean-up Kit. In
the binding assays, about 70 ng of the fragments (each) were incubated for 20 minutes at room
temperature with varying concentrations (0 to 2 μg) of His-tagged RamA protein in a total of
20 μl reaction mixture containing 10 mM Tris, 1 mM dithioerythritol, 1 mM EDTA, 1 μg Poly
[d (I-C)] in 10% (v/v) glycerol. Afterwards, the mixture was separated on a 2% agarose gel in
1x TAE buffer (200 mM Tris-HCl, 100 mM acetate, 5 mM EDTA, pH 7.5) at 70 volts and
stained with ethidium bromide.

Construction of the gca deletion mutant in C. glutamicum
To construct a gca deletion mutant of C. glutamicum, the upper and lower regions (each 423
bp) of gca were generated by PCR using primer pairs Del-gca-upper-fw / -rev and Del-gca-
lower-fw /–rev, respectively. The two products were purified using NucleoSpin Gel and PCR
Clean-up Kit and subsequently combined in a cross-over PCR [70], using primer pair Del-gca-
upper-fw / Del-gca-lower-rev, resulting in a truncated version of the gca gene with an intra-
genic deletion of 422 bp. The truncated gca gene then was ligated into the vector pK19mobsacB,
resulting in plasmid pK19mobsacB-Δgca. This plasmid was subsequently transformed into C.
glutamicum. The replacement of the native gca (wild-type) gene with the truncated version in
the genome of C. glutamicum was performed by homologous recombination (double cross-
over) according to the protocol described by Schäfer et al. [61]. The deletion/truncation of the
chromosomal gca gene in the resulting C. glutamicum strain Δgca was confirmed by colony
PCR using primers gca-promoter-fw and Del-gca-lower-rev.

Results

Transcriptional start sites of the bca and gca genes in C. glutamicum
The transcriptional start sites (TSSs) of the bca and gca genes were determined using 5'-RACE
analysis. For this purpose, the promoter regions of both genes were amplified, ligated into pro-
moter-probe vector pET2 in front of the cat reporter gene, and the resulting promoter-reporter
fusion plasmids pET2-Pbca and pET2-Pgca, were transformed into C. glutamicum. The transfor-
mants were grown in minimal medium containing 1% (w/v) glucose and total RNA was iso-
lated from cells harvested at the mid-exponential growth phase. cDNAs for the bca-cat and the
gca-cat transcriptional fusions were synthesized, tailed with poly-(A), amplified and cloned
into the pJET1.2/blunt cloning vector. For exact localization of the bca and gca TSSs, the ampli-
fied products were sequenced and analyzed.

As indicated in Fig 2A, the bca TSS was found to be the first nucleotide “A” of the putative
translational start codon (ATG), indicating that the bca gene codes for a leader-less transcript
and thus, lacks a 5'-untranslated region. Centered 10 bp upstream of the TSS, an AATAAT
motif was observed, which is very similar to the -10 consensus sequence for C. glutamicum
[71].

The TSS for gca was identified to be an “A” residue at position—20 relative to the first
nucleotide of the putative translational start codon (ATG) of cg0154, the gene located
upstream of the gca (Fig 2B). In accordance, it has previously been shown that cg0154 and
gca genes are co-transcribed [72]. Centered 10 bp upstream of the cg0154-gca TSS, the motif
TAGGCT was observed, which shows reasonable similarity to the -10 consensus [TA(C/T)
AAT] sequence for C. glutamicum [71]. Six bp upstream of the putative cg0154 translational
start, we observed an AGGAG motif, which represents an ideal ribosomal binding site for C.
glutamicum [72].
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Expression of the bca gene is subject to carbon source-dependent
regulation
Using the C. glutamicum strains carrying plasmids pET2, pET2-Pbca and pET2-Pgca, we per-
formed a comparative expression analysis of the bca and gca genes in cells grown in minimal
medium with 1% (w/v) glucose or 1% (w/v) acetate with initial pH values at 6.8 and 6.3. Cultures
were harvested at the mid-exponential phase of growth (OD600 of about 5) and after cell disrup-
tion, the promoter activities were determined in the cell extracts by measuring the specific CAT
activities. While the extracts from cells carrying the empty promoter-probe vector pET2 did not
show any detectable CAT activity (< 0.01 U/mg protein), the extracts of the strains carrying the
bca and gca promoters within pET2 showed activity and expression of bca also showed carbon
source-dependent regulation (Table 2). The bca promoter activities were observed to be about
1.5- to 2-fold higher in extracts of glucose-grown cells as compared to that in extracts of acetate-
grown cells. However, the gca promoter activities were very low, i.e., about 20-fold lower than

Fig 2. Transcriptional organization of the bca and gca genes in the genome ofC. glutamicum.Genomic loci, promoter fragments used and
transcriptional start sites (TSSs) of the bca (A) and gca (B) genes inC. glutamicum. The TSSs were identified by the 5'-RACEmethod. The putative -10
regions, the annotated translational start codon (TSC) of bca and of cg0154 and ribosome binding site (RBS) of cg0154 are indicated.

doi:10.1371/journal.pone.0154382.g002
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that of the bca promoter in glucose- and in acetate-grown cells, indicating that expression of the
gca gene in C. glutamicum is very low under the given conditions. Furthermore, it was observed
that activities of the bca promoter were nearly the same on either glucose as carbon source on
both pH values (6.3 and 6.8) or acetate as carbon source at both pH values (6.3 and 6.8)
(Table 2). These results indicate that expression of the bca gene on either carbon source as well as
carbon source-dependent regulation is independent of the initial pH 6.3 or 6.8.

We also tested the bca promoter activity in cell extracts of the L-lysine-producing strain C.
glutamicum DM1729 ΔilvB transformed with plasmid pET2-Pbca and grown in minimal
medium containing 2% glucose. As can be seen in Table 2, the specific CAT activity was in the
same range as in extracts of C. glutamicum wild-type. In accordance, L-lysine production by C.
glutamicum DM1729 ΔilvB (pET2-Pbca) was in the same range as previously reported [59] for
the parental strain C. glutamicum DM1729 ΔilvB, i.e., a final L-lysine concentration of about
32.3 mM after 24 h of incubation.

Global regulator RamA negatively regulates expression of the bca gene
Based on the results of carbon source-dependent expression control of the bca gene in C. glu-
tamicum with glucose and acetate (see above), we speculated the regulator of acetate metabo-
lism RamA [58] to be involved in this regulation. RamA is a LuxR-type global regulator,
essential for growth on acetate or ethanol and is involved in expression control of a variety of
genes in central carbon metabolism [73]. The involvement of RamA in bca expression was
tested by comparative bca promoter activity analysis with the wild-type and a RamA-defi-
cient derivative of C. glutamicum. For this purpose, plasmid pET2-Pbca was transformed into
C. glutamicum ΔramA and the specific CAT activities of the resulting transformant and of C.
glutamicum (pET2-Pbca) were determined in cell extracts after growth of the cells in minimal
medium with either glucose 1% (w/v) or glucose plus acetate (1% each, w/v) and harvested at
the mid-exponential growth phase (OD600 of about 5). As shown in Table 2, the specific CAT
activity and thus, the bca promoter activity in the ΔramAmutant was about 1.6-fold higher
in minimal medium with glucose and about four-fold higher with glucose plus acetate when

Table 2. Specific chloramphenicol acetyltransferase (CAT) activities of differentC. glutamicum
strains carrying plasmids pET2-Pbca or pET2-Pgca, cultured in minimal medium containing 1% or 2%
(w/v) glucose and/or 1% (w/v) acetate with initial pH values of 6.3 or 6.8.

Strain Minimal medium Specific CAT activity
[U/mg of protein]a

C. glutamicum (pET2-Pbca) + glucose (pH 6.8) 1.60 ± 0.16

C. glutamicum (pET2-Pbca) + acetate (pH 6.8) 0.71 ± 0.32

C. glutamicum (pET2-Pbca) + glucose (pH 6.3) 1.60 ± 0.18

C. glutamicum (pET2-Pbca) + acetate (pH 6.3) 1.08 ± 0.10

C. glutamicum (pET2-Pgca) + glucose (pH 6.8) 0.09 ± 0.01

C. glutamicum (pET2-Pgca) + acetate (pH 6.3) 0.05 ± 0.01

C. glutamicum DM1729 ΔilvB (pET2-Pbca) + glucose (pH 6.8) 1.43 ± 0.06

C. glutamicum ΔramA (pET2-Pbca) + glucose (pH 6.8) 2.38 ± 0.19

C. glutamicum ΔramA (pET2-Pbca) + glucose + acetateb 5.19 ± 0.06

C. glutamicum (pET2-Pbca) + glucose + acetateb 1.37 ± 0.13

C. glutamicum Δgca (pET2-Pbca) + glucose (pH 6.8) 1.91 ± 0.06

a The values are means of at least three independent experiments.
b The initial pH values in these cultures were set to 6.3.

doi:10.1371/journal.pone.0154382.t002
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compared to that in wild-type cells of C. glutamicum. The higher activity of the bca promoter
in the absence of a functional RamA protein indicates that RamA acts as a negative transcrip-
tional regulator for the expression of the bca gene in C. glutamicum.

The most common RamA binding motifs have been identified as A/T/C-GGGG-N and A/
T/C-CCCC-N [73]. As shown in Fig 3A, three such motifs were also observed in the sequence
of the bca promoter region and therefore, it was likely that the RamA protein binds to the bca
promoter region. To analyze the binding of RamA to the bca promoter region, a His-tagged
RamA protein was over-produced in E. coli BL21 (DE3) containing the pET28-ramA construct,
identified by MALDI-TOF mass spectrometry, and used for EMSAs. For this purpose, the bca
promoter fragment (Pbca) and its sub-fragments with only two, one or no RamA binding motifs
(PF1, PF2 and PF3, respectively, as shown in Fig 3B), were incubated with varying amounts
(0–2 μg) of purified His-tagged RamA protein and the assay mixture was separated on an aga-
rose gel. An aceA-aceB inter-genic fragment was used as positive control fragment for binding
of the His-tagged RamA protein, as the RamA protein was already known to bind to this region
[58], while fragment 1b having no binding affinity for RamA [58] was used as negative control
fragment in the EMSA experiments. As shown in Fig 3C, the bca promoter fragment Pbca with
all three RamA binding motifs was retarded by the RamA protein and the retardation was
observed to be proportional to increasing concentration of the His-tagged RamA protein. The
PF1 fragment showed less retardation with 2 μg RamA, fragments PF2 and PF3 did not show
significant retardation. These results show that RamA binds to the bca promoter region and
indicates that the two distal RamA binding motifs are functional.

Taken together, the higher bca promoter activity in C. glutamicum ΔramA compared to that
in the wild-type and binding of His-tagged RamA protein to the bca promoter fragment in the
EMSA experiments showed that RamA negatively regulates the expression of the bca gene in
C. glutamicum.

Expression of the bca gene not affected in the absence of a functional
Gca protein
To test for a possible effect of Gca on growth and on expression of the bca gene, a gca deletion
mutant of C. glutamicum was generated, using the suicide vector pK19mobsacB and homolo-
gous recombination. A mutant version of gca gene was constructed by amplifying and con-
densing the gca upper and lower fragments (each 423 bp), resulting in a truncated gca gene
with an intragenic deletion of 422 bp, which was exchanged with the native chromosomal copy
of gca. In minimal medium containing glucose 4% (w/v), the resulting strain C. glutamicum
Δgca was observed to grow with the same growth rates and to the same final OD600 as the wild-
type C. glutamicum (data not shown), indicating that the gca gene is dispensable under the con-
ditions tested. This result is consistent with the previous observation that gca is not essential
for growth of C. glutamicum under normal conditions [17].

Plasmid pET2-Pbca was transformed into C. glutamicum Δgca and the activities of the bca
promoter were determined by analysis of the specific CAT activities in crude cell extracts of
cultures grown in minimal medium with glucose 1% (w/v). As shown in Table 2, the specific
CAT activities in extracts of C. glutamicum Δgca were observed to be nearly the same as in the
respective wild type derivative. This result indicates that there is no significant effect of the
absence of a functional Gca protein on expression of the bca gene in C. glutamicum.

Discussion
In nature, CO2 is in chemical equilibrium with HCO3

-, carbonic acid and carbonate. Of these,
CO2 and its hydrated counterpart HCO3

- are most important metabolites in living organisms
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Fig 3. The bca promoter sequence and EMSAs. (A): Sequence of the bca promoter region (Pbca) with its potential RamA binding motifs (boxed and
indicated above the sequence) inC. glutamicum. The transcriptional start point is indicated by a box and “+1”. (B): The bca promoter (Pbca) and its sub-
fragments with exclusion of one, two and three RamA binding motifs in PF1, PF2 and PF3, respectively. (C):Representative EMSAs for binding assays using
purified His- tagged RamA protein. The aceA-aceB inter-genic region was used as a positive control fragment (shown as PC) [58], fragment 1b [58] as a
negative control fragment (shown as NC) and bovine serum albumin (BSA) as negative protein control. Lane–shows the respective fragment without protein
whereas lanes 1, 2 and 3 show EMSAs using 0.8, 1.5 and 2 μg of His- tagged RamA, respectively, and lane 4 EMSAs using 2 μg of BSA instead of RamA.

doi:10.1371/journal.pone.0154382.g003
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as they serve as substrate or product in carboxylating and decarboxylation reactions, are
involved in ion transport and internal pH regulation, regulate virulence and toxin formation in
pathogenic bacteria and recently have been shown to be regulatory triggers of global transcrip-
tional regulation and of microbial and mammalian production processes [74, 75, 4]. In aerobic
(micro)organisms, CO2 is the product of respiration and as such in sufficient amounts present
within metabolically active cells. However, for anaplerotic (and also other) carboxylation reac-
tions, the physiologically most important reactant is HCO3

- [2, 15, 17]. As CO2 (but not
HCO3

-) can diffuse out of the cell (for a recent review see [76]), the intracellular conversion of
CO2 to HCO3

- is essential to retain CO2 as genuine carboxylation substrate inside the cell. The
chemical inter-conversion of CO2 and HCO3

- is relatively slow at physiological pH [77] and
thus, nature has evolved enzymatic conversion by zinc-dependent CAs, catalyzing the revers-
ible hydration of CO2 with high turnover numbers and allowing the cells to maintain the intra-
cellular balance of CO2/HCO3

- that is needed for cellular processes [2, 78, 79]. The role of CAs
has intensively been studied in E. coli and other microorganisms, in particular in relation to
CO2/HCO3

- balance in the intracellular environment under physiological conditions (for refer-
ences see introduction) and it has been observed that under atmospheric conditions, inactiva-
tion of CA(s) is lethal or highly inhibitory unless the CO2 content is increased to 5–10% [14–
18, 80–82]. In spite of numerous studies on the physiological function of CAs in bacterial CO2/
HCO3

- metabolism, there is much less information on the transcriptional organization and on
expression control of the respective CA genes.

The purpose of this work was to broaden our knowledge about the transcriptional organiza-
tion of the CA genes as well as expression analysis in relation to media composition (carbon
sources) and transcriptional regulation in C. glutamicum. This organism is an industrial work-
horse widely used for the production of amino acids and a variety of other metabolites [31, 32,
83, 84, 85, 86]. The PEP-pyruvate-oxaloacetate node of this organism (see Fig 1), being an
important branch-point of carbon flux distribution and having a role in anaplerosis, gluconeo-
genesis and amino acid biosynthesis, involves several carboxylation/decarboxlation reactions
and thus, a pivotal effect of the intracellular CO2/HCO3

- balance on the overall physiology of
C. glutamicum can be presumed. Two CA genes, namely bca and gca, encoding β- and γ-CA,
respectively, have previously been identified and bca has been shown to be essential under
atmospheric conditions in C. glutamicum [17].

In this study, the TSS of the bca gene was identified to be the first nucleotide of its putative
translational start codon (ATG). Thus, bca codes for a leaderless transcript which lacks the 5ˊ-
untranslated region. Leaderless mRNAs starting with an AUG start codon have been reported
in bacteria, archaea, eukaryotes [87] and also in C. glutamicum [71]. In fact, a recent RNA
sequence analysis (RNAseq) with C. glutamicum revealed that about 33% of all mRNAs includ-
ing that of the bca gene, in the cells are leaderless and that the translational start codon of these
leaderless mRNAs generally is an AUG (about 79%) or GUG (about 21%) [72]. However, for
leaderless mRNAs starting with the initiation codon AUG, no signals have been shown down-
stream of the 5ˊ-terminal AUG for recruitment of ribosomes [87]. In E. coli, it has been shown
that for translation initiation of leaderless mRNAs, the molar ratio of the initiation factors IF2
and IF3 plays a final role, indicating that the translation efficiency of these mRNAs can be
altered, based on the availability of components of the translational machinery [87, 88]. Homo-
logues of genes encoding IF2 and IF3 have been found in the genome of C. glutamicum
(cg1563 and cg2176, respectively; [89]), however, a role of these factors in translation of lead-
erless transcripts remains to be investigated.

Apart from the bca gene, we also determined the TSS for the gca gene, located at position
-20 relative to the first nucleotide of the putative translational start codon of cg0154, a gene
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located upstream of the gca. Co-transcription of cg0154 and gca has previously been shown
based on RNAseq analysis of C. glutamicum by Pfeifer-Sancar et al. [72].

To investigate a carbon source-dependent regulation of the CA genes in C. glutamicum, we
investigated the expression of bca and gca in terms of their respective promoter activities in
relation to glucose and acetate as carbon sources. This analysis revealed for both genes higher
promoter activities when the cells were grown on glucose as compared to acetate. Furthermore,
the activity of the bca promoter was observed to be about 15-fold higher than that of the gca
promoter. The lower level of gca expression as compared to bca expression is consistent with
the results of Mitsuhashi et al. [17] who found in Northern blot analysis of growing C. glutami-
cum cells the gca transcript level below the detection limit, suggesting that gca expression is
either constantly very low or tightly regulated. Furthermore, it was also observed that expres-
sion of gca under control of the lac promoter restored the growth of bcamutant under normal
environmental conditions [17]. However, our results suggest that the bca gene is subject to car-
bon source-dependent regulation as is the case for a variety of genes encoding key enzymes in
central metabolism in C. glutamicum [53, 73, 90, 91].

The lower bca promoter activity and thus, the lower bca expression in acetate-grown cells
than in glucose-grown cells of C. glutamicummight be attributed to a lower HCO3

- demand
and reduced need of anaplerosis by pyruvate or PEP carboxylation and using the glyoxylate
cycle for anaplerosis when growing on acetate instead of glucose. This hypothesis is in agree-
ment with carbon flux analysis of the central metabolism of C. glutamicum growing in minimal
medium containing glucose and/or acetate [92] and with the previous finding that a PEP and
pyruvate carboxylase-deficient double mutant of C. glutamicum grows on acetate but not on
glucose [93]. However the crucial role of bca during growth on glucose may not only be con-
fined to replenishment of oxaloacetate or other TCA cycle intermediates as Mitsuhashi et al.
[17] observed that addition of oxaloacetate, glutamate and succinate did not restore the growth
of C. glutamicum Δbca. It is, however, important to mention that C. glutamicum was found to
be unable to take up and to grow on the TCA cycle intermediates fumarate, succinate and L-
malate [94]. Therefore, a further potential role of CA in C. glutamicum, aside of replenishment
of TCA cycle intermediates, has to be experimentally proven.

The transcriptional regulator RamA originally has been identified as the regulator of acetate
metabolism in C. glutamicum [58]. Later it has been shown that RamA is functional as activator
or as repressor in carbon metabolism of this organism and is involved in expression control of
a variety of genes and operons encoding enzymes or pathways in the central metabolism of C.
glutamicum (reviewed in [73, 90, 95]). Based on the observed carbon source-dependent regula-
tion of the bca promoter, we speculated RamA to be involved in expression control of the bca
gene. In fact, we found higher bca promoter activity in a RamA-deficient mutant of C. glutami-
cum when compared to the wild-type strain. This finding is in perfect agreement with our pre-
vious results of a genome-wide transcriptional profiling which showed an about 2.5-fold
higher bcamRNA level in C. glutamicum ΔramA (supplementary material in [73]). In addition,
we found three typical RamA binding motifs in front of the bca TSS and showed binding of
His-tagged RamA protein to the bca promoter region. All these results indicate RamA to be a
negative transcriptional regulator for expression of bca in C. glutamicum. However, based on
the differential expression of bca in glucose-grown and in glucose-plus-acetate-grown cells of
the RamA-deficient mutant, it can be suggested that other transcriptional regulator(s) and/or
effector(s) are involved directly or indirectly in the carbon source-dependent bca regulation.
This argument is also reinforced by the fact that RamA affects and/or is affected by other tran-
scriptional regulators such as GlxR, SugR and RamB [58, 68, 91].
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