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Abstract

Human Endogenous Retrovirus type K (HERV-K) is the only HERV known to be insertionally

polymorphic; not all individuals have a retrovirus at a specific genomic location. It is possible

that HERV-Ks contribute to human disease because people differ in both number and geno-

mic location of these retroviruses. Indeed viral transcripts, proteins, and antibody against

HERV-K are detected in cancers, auto-immune, and neurodegenerative diseases. How-

ever, attempts to link a polymorphic HERV-K with any disease have been frustrated in part

because population prevalence of HERV-K provirus at each polymorphic site is lacking and

it is challenging to identify closely related elements such as HERV-K from short read

sequence data. We present an integrated and computationally robust approach that uses

whole genome short read data to determine the occupation status at all sites reported to

contain a HERV-K provirus. Our method estimates the proportion of fixed length genomic

sequence (k-mers) from whole genome sequence data matching a reference set of k-mers

unique to each HERV-K locus and applies mixture model-based clustering of these values

to account for low depth sequence data. Our analysis of 1000 Genomes Project Data (KGP)

reveals numerous differences among the five KGP super-populations in the prevalence of

individual and co-occurring HERV-K proviruses; we provide a visualization tool to easily

depict the proportion of the KGP populations with any combination of polymorphic HERV-K

provirus. Further, because HERV-K is insertionally polymorphic, the genome burden of

known polymorphic HERV-K is variable in humans; this burden is lowest in East Asian

(EAS) individuals. Our study identifies population-specific sequence variation for HERV-K

proviruses at several loci. We expect these resources will advance research on HERV-K

contributions to human diseases.
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Author summary

Human Endogenous Retrovirus type K (HERV-K) is the youngest of retrovirus families in

the human genome and is the only group of endogenous retroviruses that has polymor-

phic members; a locus containing a HERV-K can be occupied in one individual but

empty in others. HERV-Ks could contribute to disease risk or pathogenesis but linking

one of the known polymorphic HERV-K to a specific disease has been difficult. We

develop an easy to use method that reveals the considerable variation existing among

global populations in the prevalence of individual and co-occurring polymorphic HERV-

K, and in the number of HERV-K that any individual has in their genome. Our study pro-

vides a reference of diversity for the currently known polymorphic HERV-K in global

populations and tools needed to determine the profile of all known polymorphic HERV-

K in the genome of any patient population.

Introduction

Endogenous retroviruses (ERVs) are derived from infectious retroviruses that integrated into

a host germ cell at some time in the evolutionary history of a species [1–5]. ERVs in humans

(HERVs) comprise up to 8% of the genome and have contributed important functions to their

host [6–8]. The infection events that resulted in the contemporary profile of HERVs occurred

prior to emergence of modern humans so most HERVs are fixed in human populations and

those of closely related primates. However some HERVs are still transcriptionally active and

capable of causing new germline insertions so that individuals differ in the number and geno-

mic location occupied by an ERV, a situation termed insertional polymorphism [9–11].

Among all families of HERVs, HERV-K is the only one known to be insertionally polymorphic

in humans. However, HERV-K genomes are closely related and as with many repetitive ele-

ments, they are difficult to accurately assign to a genomic location using standard mapping

approaches [12,13].

The DNA form of a retrovirus is called a provirus and minimally encodes the structural gag
and env gene, and genes for a protease and polymerase, termed pol. Viral genes are flanked by

long terminal repeats (5’ or 3’ LTR). While there are several HERV-K that are full length, none

are infectious and most contain mutations or deletions that affect the open reading frames or

truncate the virus. Further, the LTRs are substrates for homologous recombination, which

deletes virus genes while retaining a single, or solo, LTR at the integration site [14–16]. Inser-

tional polymorphism typically refers to the presence or absence of a retrovirus at a specific

locus [17,18]. However an occupied site can contain a provirus in some individuals and a solo

LTR in others and hence still display polymorphism. Thus HERV-K and other HERVs have

contributed to genomic diversity in the global human population in several ways [19].

The presence of antibodies to HERV proteins or HERV transcripts has spurred a quest to

determine if HERVs from multiple families have a role in either proliferative or degenerative

diseases in humans [20–26]. Although there are known mechanisms by which a HERV can

cause disease; for example, by inducing genome structural variation through recombination

[27–31], affecting host gene expression [32], and inappropriate activation of an immune

response by viral RNA or proteins [23], it has been difficult to establish an etiological role of a

HERV in any disease. HERV-K specifically has been associated with breast and other cancers

[3,33–37], and autoimmune diseases, such as rheumatoid arthritis [38,39], multiple sclerosis

[22,40] and systemic lupus erythematosus [8,22,41] without definitive evidence of causality or
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of specific loci involved. Recently, a HERV-K envelope protein was shown to recapitulate the

clinical and histological lesions characterizing Amyotropic Lateral Sclerosis [42,43], providing

an important mechanistic advance of a role for a HERV-K protein in a disease. Despite grow-

ing evidence for a contribution of HERV-K transcripts or proteins to the pathogenesis of

human disease, it is difficult to distinguish among HERV-K loci to investigate potential roles

and, in particular, to determine if a loci that is polymorphic for presence or absence of a provi-

rus could be involved.

In this paper, we focus on characterizing the genomic distribution of known insertionally

polymorphic HERV-K proviruses in the 1000 Genomes Project (KGP) data. We present a

data-mining tool and a statistical framework that accommodates low depth whole genome

sequence data characteristic of the KGP—and often patient—data to estimate the presence or

absence of a provirus at all loci currently known to contain a HERV-K provirus. Using these

data, we determine the number of known polymorphic HERV-K proviruses per genome

because HERV-Ks can affect genomic stability [44] contributing to the pathogenesis of a dis-

ease. We also provide a tool to visualize HERV-K co-occurrence in global populations to facili-

tate exploration of synergy that might exist among specific polymorphic HERV-K in disease

[45]. Our results provide a reference of global population diversity in HERV-K proviruses at

all currently known polymorphic loci in the human genome and demonstrate that there are

notable differences in the prevalence of HERV-Ks in different global populations and in the

total number of HERV-Ks currently known to be polymorphic within a person’s genome.

Results

A model to estimate polymorphic HERV-K from whole genome sequence

data

The goal of this research was to develop a computationally efficient and easy to use tool that

could accurately report the status of all reported insertionally polymorphic HERV-Ks with

coding potential (provirus) from whole genome sequence (WGS) data. We use the KGP data-

base, which represents individuals in five super-populations and 26 populations, to establish

the diversity in global populations at each known polymorphic HERV-K proviral locus and

the total number of these polymorphic HERV-K in individual genomes to provide a founda-

tion to study the role of HERV-K in human disease. Our reference set consists of all HERV-K

sequences that are available in public databases and that can be unambiguously assigned a

location in hg19. Sequences of HERV-K that are not present in hg19 but that were generated

by PCR primers to the host flanking regions are included in the reference HERV-K set. From

these HERV-K reference sequences, we generate a set of k-mers (see S2 Fig for optimizing k)

that are unique to all HERV-Ks at each locus. The analysis of subject data starts with a data

mining step that recovers all whole genome sequence reads that map to identified HERV-K

elements in hg19. The rationale here is that polymorphic HERV-K that are not present in hg19

are greater than 80% homologous to those in the human reference genome and will map on

existing elements. The recovered reads from a query WGS data set are then reduced to k-mers
and mapped, requiring 100% match, to the reference set of k-mers (T), which represents all

unique sites for HERV-K at each locus. The output is a ratio (n/T) of subject k-mers (n) that

are 100% match to the reference k-mers (T) (see Methods for full details; the value of T for

each HERV-K is in S1 Dataset:virus).

Our preliminary analysis of the KGP data demonstrated that our k-mer-based approach is

sensitive to sequence depth; some HERV-K loci are represented by an almost continuous

range of n/T values from 0–1 (S1 Fig), making presence/absence classification difficult. How-

ever, the majority of the KGP data is approximately 6x depth and thus to make use of this
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important resource, we developed a mixture model to statistically assign the n/T values from

genomes to a cluster considering the sequence depth. K was optimized to 50 because this value

improved our model computational efficiency and output (Fig 1B, S1 Text, S2 Fig). The affect

of sequence depth on n/T can be seen by comparing the sequence data of 28 individuals in the

KGP data that have both low and high sequence depth data (Fig 1 shows a subset of eight indi-

viduals for clarity). If read depth is greater than 20, there is less dispersion of n/T values, most

likely because more reads from the query WGS data are recovered from the mapped intervals.

The states, ‘provirus’, ‘solo LTR’, and ‘absent’ are preliminarily assigned to each cluster based

on the high depth data (data in Fig 1B used for description below). Individuals with n/T = 1

have the reference allele (represented by the yellow cluster of low depth data) and n/T = 0 (red

cluster) indicates that the HERV-K is absent (no k-mers to unique sites in the HERV-K at this

locus were recovered from mapped sequence reads). The k-mers derived from persons with

low (green) and intermediate (blue) n/T values were mapped to the HERV-K reference for this

locus to determine whether they localized only in the LTR (assign ‘solo LTR’ to green cluster)

or in the coding region (assign ‘provirus’ to blue cluster) (S3 Fig).

Prevalence of polymorphic HERV-K in each KGP super-population

The WGS data of each individual in the KGP dataset were evaluated using our optimized anal-

ysis workflow. HERV-Ks on chrY were not considered. Twenty sites, omitting one at

chr1:73594980 [see Methods] that have been reported to be polymorphic for presence/absence

[10,11,34,46] were identified as polymorphic for a HERV-K provirus by our analysis (S1 Data-

set:virus). Polymorphic HERV-Ks greater than 6 kbp in length cluster together in a phyloge-

netic analysis indicating that they are closely related (S4 Fig). The prevalence (proportion of

individuals in a given population with a provirus present at a given locus) of the 20 polymor-

phic HERV-K proviruses varied from 0.9% to 99.5% when averaged across the entire KGP

dataset (Table 1). However, there were notable differences in prevalence at each HERV-K site

among the five super-populations (AFR, EAS, AMR, EUR, SAS; see Methods for key to abbre-

viations). Of the 20, the prevalence of seven polymorphic HERV-Ks was greater than 90% and

the difference between populations with the lowest and highest prevalence was less than 6.5%

(Table 1). There was 100% occupancy for six of the seven high prevalence polymorphic

HERV-Ks (98.8% for the seventh), indicating that the rate of conversion to solo LTR is low for

viruses at these sites (see S1 Text for occupancy and S2 Dataset:KGP(absence, solo, presence)

for model prediction of solo LTR prevalence). Two polymorphic HERV-Ks had an overall

prevalence of less than 10% in any population (Table 1) and were found in individuals of AFR

origin; we found no evidence of a solo LTR at these two sites. Nine of the remaining 11

HERV-Ks are of interest because the difference between super-populations with the highest

and lowest prevalence is between 28 and 80 percentage points (Table 1). Of note, for the three

HERV-Ks with the largest difference among super-populations, the prevalence is lowest in

EAS populations.

Individuals from African populations differ significantly from the other four super-popula-

tions in the prevalence of ten of the polymorphic HERV-K, three of which occur in close prox-

imity on chr19. (Table 1, S2 Dataset:compare_prevalence). EUR and AFR super-populations

are significantly different in the prevalence at all but one of the 20 polymorphic HERV-K

based on adjusted p-values (S2 Dataset:compare_prevalence).

The number of polymorphic HERV-Ks per individual

The HERV-K genome is close to 10 kbp. As there are 20 known HERV-K loci with the poten-

tial to encode a provirus that are polymorphic in human populations, we asked if there is a
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difference in the burden of these repetitive, and potentially functional, viral elements among

individuals. This was indeed the case. Of the 20 polymorphic HERV-K proviruses assessed, the

number per person’s genome ranges from 7–18 (Fig 2, S2 Dataset:HERV-K per person). More

than 63% of individuals from all super-populations except EAS carry 12 to 14 proviruses in

their genome. Individuals from EAS have a lower burden with 69% of individuals carrying

9–11 of the 20 polymorphic HERV-K proviruses. 7% of AFR individuals have 16 or 17 provi-

ruses compared to a maximum of 2% in other groups (S2 Dataset:HERV-K per person). These

Fig 1. A mixture model to account for low depth WGS data. A) Mixture model output on n/T values of 2535 individuals from KGP

with low depth sequence data for chr12:55727215–55728183 when K = 70. At this value of k there are clusters representing low n/T

values that are not well resolved and individual 25 and 14, which have the same status in high depth data, are assigned to different

clusters. B) The result of the mixture model on the same data with k optimized to 50. The model returns four clusters each indicated by a

unique color and eight of the 28 individuals that have both low and high depth sequence data are shown (see S1 Dataset:KGP for

identification). The n/T ratio is 1 for persons with high depth data [red numbers, #6 and 12] who have the reference allele, while the

corresponding low depth data [black numbers, yellow cluster] from the same individuals have n/T ranging from 0.7 to 0.9. There is less

of an effect of sequence depth for individuals who do not have the HERV-K (n/T = 0, red cluster, #23 and 28). However optimizing k

improves separation of the solo LTR (green cluster; #4 and #16) from the blue cluster (#25 and #14), which represents a state where

some unique k-mers in the set T are missing in the query data (this is likely an allele; see S3 Fig). States are confirmed by mapping the k-
mers from individuals in a cluster to the reference HERV-K at this locus (S3 Fig).

https://doi.org/10.1371/journal.pcbi.1006564.g001

Table 1. Provirus frequencies of polymorphic HERV-K.

KGP AFR AMR EAS EUR SAS

chr1:75842771c 42.88 26.76 56.53 6.02 68.91 66.80

chr3:112743479a 98.46 96.71 99.72 99.81 99.60 97.37

chr3:148281477 41.89 38.86 42.61 45.05 46.53 37.45

chr3:185280336a 99.49 98.06 100.00 100.00 100.00 100.00

chr4:69463709c 72.50 93.87 88.92 31.07 85.35 61.94

chr5:156084717a 99.41 98.36 99.72 100.00 99.80 99.60

chr6:57623896a 93.65 90.73 97.16 90.87 97.23 94.33

chr6:78427019a 97.71 95.52 97.16 99.61 97.23 99.60

chr7:4622057�c 47.50 61.14 30.11 58.25 36.44 41.50

chr8:12316492c 14.08 32.88 12.22 0 15.64 3.04

chr8:7355397c 18.66 39.16 12.50 6.02 11.29 15.99

chr10:27182399a 99.13 97.46 99.43 99.81 99.80 99.80

chr11:101565794c 63.04 80.87 77.27 6.99 86.53 63.16

chr12:55727215 72.19 72.80 80.40 63.30 80.99 65.79

chr12:58721242c 70.73 58.89 78.41 60.00 87.33 75.51

chr19:21841536c 26.98 39.16 11.93 32.23 10.69 32.39

chr19:22414379c 67.77 89.24 60.80 56.89 55.84 67.21

chr19:22457244b 0.87 3.29 0.00 0.00 0.00 0.00

chr22:18926187a 99.49 98.36 99.72 100.00 99.80 100.00

chrX:93606603b 2.25 7.32 2.27 0.00 0.00 0.00

For simplicity, only the starting coordinate is listed.

� The value given represents individuals containing the tandem repeat found in hg19
a: prevalence > 90%
b: low prevalence HERV-K and no individuals with only a solo LTR
c: max-min difference is > 28%

underline: AFR significantly different from other 4 super populations.

See S2 Dataset:compare_prevalence for full analysis of the data.

https://doi.org/10.1371/journal.pcbi.1006564.t001
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data suggest that a comprehensive investigation of polymorphic HERV-Ks may be a more pro-

ductive means to advance studies of their potential disease impact.

Co-occurrence of polymorphic HERV-Ks

Our data provide a comprehensive picture of sites occupied by HERV-K provirus in each

genome. Although most previous studies investigating a role of HERV-K in human disease

assessed the prevalence of the HERV-K at a given locus, it is possible that, for example, two

HERV-Ks each at 40% prevalence in a population rarely co-occur in an individual genome. By

providing the status of all known polymorphic HERV-K in the genome, our tools facilitate

such assessment and can advance investigation of HERV-K and human disease. We assessed

combinations of three, four and five polymorphic HERV-Ks in KGP data and found that there

are many combinations of co-occurring viruses that are population-specific (S3 Dataset). To

facilitate exploration of HERV-K combinations among KGP populations, we developed a D3.j

visualization tool (see Methods) that allows a user to choose any combination of the 20 poly-

morphic HERV-K proviruses and display the co-occurrence prevalence among the 26 popula-

tions represented in the KGP data. As an example, we show a combination of four HERV-Ks

to represent the variation that occurs in KGP individuals, which in this case ranges from 3%

in EAS to 59% in EUR (Fig 3A). We also determine that the three polymorphic HERV-Ks

found on chr19 co-occur only from three AFR populations and in less than 2% of individuals

(Fig 3B).

Fig 2. Histogram of the number of proviruses per individual from the KGP. The number of the 20 known polymorphic HERV-K

proviruses in individual from each of the five KGP super-populations, represented by indicated colors.

https://doi.org/10.1371/journal.pcbi.1006564.g002
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KGP super-populations are distinguished by HERV-K status

Because there are clearly population-specific differences in both individual HERV-K preva-

lence and in the prevalence of HERV-K co-occurrence, we explored whether the presence or

absence of these 20 documented polymorphic HERV-Ks is sufficient to distinguish popula-

tions using Fisher’s linear discriminant analysis (LDA) [47]. Based on the status ‘provirus’,

‘solo LTR’, or ‘absence’, there is little resolution of AFR, EUR, and EAS super-populations (Fig

4A). However, there is sufficient signature to separate AFR, EUR, and EAS if we utilize the n/T

ratio of the 20 polymorphic HERV-Ks (S5 Fig) and we further improve population separation

if we use the n/T ratio for all 96 HERV-Ks (Fig 4B). This indicates that we are losing informa-

tion by reducing the data to three states and that fixed HERV-K also contain signal for popula-

tion of origin.

An n/T = 1 indicates that the query set contains all k-mers that map to the reference set T

for a specific HERV-K. If there is a HERV-K allele that has not been reported in any database

but that is common in a population, we expect n/T<1 because we require 100% match to ref-

erence set T and k-mers covering allelic sites will be excluded (see Fig 1B, blue cluster for an

example). We assessed the density distributions of n/T plots for each of the 96 HERV-Ks for

evidence of population-specific alleles (S1 Text, S7 Fig). Five HERV-Ks have some indication

of population specific distributions (S1 Dataset:virus). The HERV-K at chr1:155596457–

155605636, which we report as fixed, is notable because the reference allele (n/T = 1) is only

found in AFR (Fig 5A, S7 Fig). Individuals from other populations have n/T near 0.5. We

mapped k-mers from individuals with n/T near 0.5 to the reference HERV-K sequences and

confirmed that there is a loss of k-mers at several sites covered by the unique reference k-mers
for this virus (S8 Fig). There are also cases where the reference allele is found in all populations

except AFR (Fig 5B and see S7 Fig for additional examples).

Discussion

Our research provides a tool to mine whole genome sequence data to collectively evaluate the

status of HERV-K provirus at known polymorphic and fixed sites in the human genome. The

tool incorporates a statistical clustering algorithm to accommodate low depth sequence data

and a visualization tool to explore the co-occurrence of known polymorphic HERV-K in the

global populations represented in the KGP data. There are numerous significant differences in

the prevalence of individual and co-occurring known polymorphic HERV-K among the five

KGP super-populations. It is notable that individuals from EAS carry a lower total burden of

the 20 polymorphic HERV-K than other represented populations. These data provide a com-

prehensive framework of genomic diversity among 20 documented polymorphic HERV-K

proviruses to advance studies on potential roles for HERV-K in human disease, which have

been alluring yet difficult to establish [21,22,24].

Tools developed to interrogate ERV insertional polymorphism typically exploit the unique

signature created by the host-virus junction [11,48,49]. These approaches indicate that a site is

occupied by an ERV but not whether there is a provirus associated with the site, which is more

difficult to accomplish with short read sequence data. Our analysis tool provides an efficient

Fig 3. A visualization tool to examine co-occurrence of polymorphic HERV-Ks. A) The co-occurrence of polymorphic HERV-Ks at chr1:75842771–

75849143, chr3:112743479–112752282, chr6:57623896–57628704, and chr12:58721242–58730698 in the 26 populations are represented based on their

geographic location. The relative prevalence for these four co-occurring HERV-Ks in each population bubble is displayed based on the color gradient

shown in the scale at the top. The actual prevalence of the given combination of HERV-K provirus for each population and the cumulative prevalence for

each super-population are shown in text on the right. Note that AFR and EAS have the lowest prevalence of these four polymorphic HERV-Ks. B) As in

(A) showing the co-occurrence of the three polymorphic HERV-Ks that are present on chr19 by population. This is a rare combination only found in

two AFR populations and individuals in the Caribbean of African ancestry.

https://doi.org/10.1371/journal.pcbi.1006564.g003
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means to detect occupancy and provirus status in one step. We decrease computational time

by analyzing only the set of reads that map to existing HERV-K loci in the reference genome.

This approach is justified because the known polymorphic HERV-K that are missing from the

human reference are closely related to those in the reference genome assembly (see S4 Fig) and

hence reads derived from them map to a related HERV-K in the reference. We employ k-mer
counting methods, which also increase computational efficiency. A reference set of k-mers that

is unique to each HERV-K is generated for each location in the genome and the proportion of

reads (n/T) from the query set that maps to the k-mer reference set is reported as a continuous

variable; there is no threshold of read count or coverage imposed for classification. Instead we

utilize a mixture model to statistically cluster values based on n/T and sequence depth and

assign the same HERV-K status to all individuals in a cluster. Clusters representing n/T of 1

consist of individuals from whom all the unique k-mers identified in the HERV-K reference

set were recovered from their mapped WGS data. We classify other clusters by determining if

k-mers mapped on the reference allele are distributed at sites in the coding portion of the

genome or only in the LTR; reads mapping only in the LTRs are classified as solo LTR. This

approach demonstrated that the k-mers derived from some individuals only covered a subset

of the unique sites and led to the interesting finding that several HERV-K loci could have pop-

ulation specific alleles.

Wildschutte et al [11] have conducted the most comprehensive study of HERV-K preva-

lence in the KGP data to date. The goal of that paper was to identify new polymorphic inser-

tions, either provirus or solo LTR, based on detecting reads containing the host virus junction.

However, they implemented an additional step to detect provirus and provide the prevalence

of some polymorphic HERV-K provirus for comparison with our results (see S1 Dataset:virus

for comparison of prevalence values reported in Wildschutte et al [11]). There are five

HERV-K previously reported in Subramanian et al 2011 [10] that were not included in Wild-

schutte et al [11]; all are polymorphic in our analysis (range 43–99%, see Table 1 and S1 Data-

set:virus-column N). Seven polymorphic HERV-K, which Wildschutte et al [11] indicate

occur in greater than 98% of KGP individuals, are fixed in our study. Our estimated prevalence

for 14 HERV-K differs from that reported in Wildschutte et al [11] by 5% or more. Of these

14, the prevalence estimates at chr1:155596457–155605636 are most divergent. Our data show

this site is fixed for provirus and Wildschutte et al [11] report that only 14% of the KGP data,

all from AFR, have a HERV-K provirus integration. Our plots for chr1:155596457–155605636

show that AFR individuals carry the reference allele at this site (n/T near 1, Fig 5A) and all

other individuals have n/T near 0.5. The k-mers from individuals with low n/T values for

chr1:155596457–155605636 map to only a subset of sites marked by unique k-mers in the cod-

ing region (S8 Fig), which is consistent with sequence polymorphism or a deletion at these

positions. The reference set T is small for this HERV-K and therefore overall coverage of the

genome is low. Because Wildschutte et al [11] used a minimum coverage threshold for their k-
mer mapping method, it is possible that alleles present in non-AFR populations do not meet

their inclusion criteria. There is a similar signal for alleles, represented by lower n/T values, at

the other 13 HERV-K sites although the differences between our prevalence estimates and

those of Wildschutte et al [11] are small (S1 Dataset:virus). In most cases these putative alleles

are found in all populations at different frequencies but in five there is some degree of popula-

tion specificity (Fig 5, S7 Fig, S1 Dataset:virus). Our results indicate that there could be

Fig 4. Linear discriminant analysis of HERV-K status among three super-populations. A) LDA based on the states ‘provirus’,

‘solo LTR’ and ‘absence’ of the 20 polymorphic HERV-K for AFR, EAS, and EUR. AMR and SAS overlap these three populations

and are removed for clarity B) LDA plot on n/T ratio of all 96 HERV-K separates AFR, EAS, and EUR super-populations. See S6

Fig for plots with all five super-populations.

https://doi.org/10.1371/journal.pcbi.1006564.g004
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Fig 5. Population specificity of HERV-K alleles. A) n/T plot for HERV-K at chr1:155596457–155605636 colored by

each of the 5 super-populations. Only individuals from AFR and a few from AMR have an n/T approximating 1

indicative of the HERV-K reference sequence. B) Plot of chr5:156084717–156093896 colored by each of the 5 super-

Genomic distribution of polymorphic HERV-K
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considerably more sequence variation in HERV-K among human populations than previously

appreciated. These data also suggest that using a HERV-K consensus sequence to study patho-

genic potential could miss important features of HERV-K proviral polymorphism, which can

be characterized by both the site occupancy status (presence/absence) and, when present, by

sequence differences among individuals.

HERV-Ks are the youngest family of endogenous retroviruses in humans and consequently

they share considerable sequence identity. This has the effect of limiting the number of unique

sites associated with some HERV-K, which decreases the size of the reference set T (S1 Data-

set:virus). The set T is small for near identical HERV-K such as HERV-Ks involved in a dupli-

cation event. The HERV-Ks at chr1:13458305–13467826 and chr1:13678850–13688242 are

identical and cannot be distinguished. We report n/T for only one of these HERV-K (see S1

Dataset:virus, column M). We treat the two HERV-K proviruses spanning chr7:4622057–

4640031 as a single virus with n/T = 1 reflecting the tandem arrangement found in the hg19.

In this case, n/T<1 can mean either that both proviruses are present but with substitutions at a

unique k-mer site or that one provirus converted to a solo LTR. Thus although an n/T ratio of

0 or 1 reliably indicates absence and presence of reference HERV-Ks, respectively, when T is

small, sequence polymorphism and a deletion event can be difficult to distinguish from a solo

LTR. However, because our mixture model statistically clusters similar n/T values based on

sequence depth, all individuals in a cluster have the same status (e.g allele or solo LTR) even if

we do not know what that state is. The ability of our tools to resolve the status of closely related

HERV-K provirus sequences will improve as more empirical sequence data becomes available.

Our approach provides researchers with a rapid means to determine if the prevalence, and

overall burden of the 96 HERV-K proviruses evaluated differ between a patient data set and

the population represented in KGP to which they trace ancestry. The visualization tool will

facilitate investigation of combinations of HERV-Ks in certain clinical conditions. The poten-

tial that HERV-K has multiple allelic forms in different populations is worthy of further analy-

sis because a sequence allele could also contribute to a disease condition.

Materials and methods

HERV-K proviruses

The 96 HERV-K proviruses previously reported [10,11,34,46] were supplemented with

HERV-K alleles present in the NCBI nt database (November 2016 release) (92 in hg19, and 4

from the NCBI nt database). We required that any allele of a HERV-K from the nt database

have at least 2kb of hg19 reference-matching host flanking sequence to confirm genome loca-

tion. In total, 234 alleles were collected at the 96 known HERV-K loci. The location informa-

tion and virus features are summarized in S1 Dataset: virus.

Developing a k-mer based detection model

We identified the k-mers that correspond to unique sequence characterizing each HERV-K. K-
mers are substrings (subsequences) of length k that exist in a string (DNA sequence). The

length k is determined empirically (S1 Text). Each k-mer is labeled with the corresponding

viruses in which it is observed.

Only those k-mers referring to a single virus locus, unique k-mers, are selected for the set T.

Where multiple alleles of a HERV-K are available, k-mers unique to all alleles at that location

populations. In this case, all populations except AFR have the reference allele and all super-populations have an

alternative allele that is not present in our reference set.

https://doi.org/10.1371/journal.pcbi.1006564.g005
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comprise T. Multiple 2bps different k-mers (such as SNPs) corresponding to the same location

on the virus, are merged into a single entry for the purposes of computing T. We map unique

k-mers back to the corresponding alleles to determine coverage of the HERV-K and whether

k-mers are located in LTRs (S3 Fig; S1 Dataset: virus).

Analysis of 1000 genome project (KGP) data

To develop a method to recover sequences containing information on HERV-K we leverage

the fact that HERV-Ks are closely related. Thus, most sequence reads obtained from an indi-

vidual with a polymorphic HERV-K that is absent in the human reference, hg19, will map to

the location of a closely related HERV-K that is present the human genome reference. (As we

show in S4 Fig, the known polymorphic HERV-K proviruses are closely related.) A file with

the coordinates for all reported HERV-K insertions is used to extract mapped reads from a

genome sequence file (S1 Dataset:bed, which provides the coordinates for both hg19 and

hg38). Note that the KGP data were mapped to GRCh37, which includes the decoy sequence

hs37d5. This decoy contains the HERV-K at chr1:73594980_73595948, which is not present in

hg19. Thus, we did not recover any reads for this HERV-K, which is polymorphic but report-

edly at high prevalence in most populations [11].

The KGP data were downloaded in aligned Binary Alignment/Map (BAM) format (ftp://

ftp.ncbi.nlm.nih.gov/1000genomes/ftp/data/). It contains data for 2,535 individuals (S1 Data-

set:KGP) sequenced via low-depth whole-genome sequencing (mean depth = 6.98X). The indi-

viduals represent 26 populations, derived from 5 super-populations, including African (AFR),

Admixed America (AMR), East Asian (EAS), European (EUR), and South Asian (SAS)

[50,51]. Of 2,535 individuals, 28 also have high-depth DNA sequences (mean depth = 48.06X),

which we use as a pilot dataset to develop the mixture model, described below and in Supple-

mentary Text.

Our computational framework to indicate the status of each known HERV-K provirus is

based on the n/T ratio, which is the proportion of k-mers in the data mined from WGS of each

individual that are identical to the reference set T for each HERV-K provirus. Sequence reads

are extracted from a mapped file of whole human genome sequence data based on coordinates

corresponding to each annotated HERV-K. The reads are k-merized and mapped to the set T,

which represents all unique k-mers assigned to each HERV-K in the reference set. We use

exact match to map the k-mer data set to the unique k-mer references. The n/T ratio is an indi-

cator of the presence of each HERV-K; n/T = 1 indicates that the individual has the HERV-K

in our reference dataset documented to be at that locus while n/T = 0 indicates that no k-mers
unique to a HERV-K locus were recovered (see Fig 1 for more explanation). Using a hash table

(S1 Text), it takes 15 minutes to generate the n/T matrix for 100 files. The source code for the

entire process is at https://github.com/lwl1112/polymorphicHERV

Dirichlet process Gaussian mixture model (DPGMM)

We utilized a statistical model to account for the dependency of the number of k-mers
obtained from a person’s sequence data (denoted by nik for the ith subject and kth HERV-K,

with i = 1,. . .,I,k = 1,. . .,96) that maps to the reference set T for each HERV-K on sequencing

depth. Thus for each HERV-K we could statistically cluster those nik/T values for i = 1,. . .,I
based on the sequence depth of the WGS data for each individual for subsequent biological

classification (provirus, solo LTR, absence, see Fig 1). More specifically in our analysis, for

each k HERV-K, k = 1,. . .,96, consider a sample of size I measurements xi (i = 1:I), where each

xi is a vector of length 2 xi = (xi1,xi2) with xi1 being the nik/T measurement and xi2 the log func-

tion of depth. Here, for notation simplification, we use xi instead of xik. To perform clustering
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analysis, we utilize the mixture model approach, which is arguably the most widely used statis-

tical method for clustering. Specifically, we follow the work proposed by Lin et al. [52] that

employs a Gaussian Mixture Model (GMM) with density function given by

f ðxijyÞ ¼
PM

j¼1
pj Nðmj;SjÞ; for i ¼ 1 : I ð1Þ

where all relevant and needed (unknown) parameters are represented by θ = (π{1:M}, μ{1:M}, S{1:

M}). N(μj,Sj) is the Gaussian density for the jth component parameterized by the 2-dimensional

mean vector μj and 2x2 covariance matrix Sj. π{1:M} are the mixture components prior proba-

bilities summing to 1. To allow a flexible modeling approach, we employ the standard Bayesian

(truncated) Dirichlet Process prior for the parameters θ = (πj, μj, Sj, j = 1:M) [53,54]. The idea

is that some of the mixture probabilities (πj) can be zero, hence the actual number of mixture

components needed may be smaller than the upper bound M. This mechanism allows auto-

matic determination of the number of mixture components needed by the data set at hand.

For model estimation, a latent indicator Zi 2{1,2,. . .,M} with P(Zi = j) = πj is used, for i = 1:I.
Specifically, Zi = j if, and only if, xi comes from component j. Given a fitted model via the

Bayesian expectation–maximization algorithm, in terms of estimates of all parameters θ,

instead of interpreting the fitted Gaussian mixture components as clusters, we identify clusters

by aggregating Gaussian components so that non-Gaussian type of clusters can be flexibly rep-

resented. Merging components into clusters can be done by associating each of the Gaussian

components to the closest mode of f(x1:I|θ) = ∏i = 1:If(xi|θ). Hence, the number of modes iden-

tified is the realized number of clusters. [S1 Text for additional detail]

Co-occurrence of polymorphic HERV-K

We consider that both the individual prevalence of a HERV-K and the co-occurrence of multi-

ple HERV-Ks could differ among populations.

The time of a brute-force approach for finding all combinations Cm of size m from p poly-

morphic HERV-K is
Pp

m¼1

p
m

� �
¼ 2p � 1

� �
, which is not efficient and is redundant. We

employed the Apriori algorithm [55], which is commonly used for finding frequent pattern

sets; in our case indicating which of the known polymorphic HERV-K frequently appear

together. It first generates combinations Cm (initialized to 1). In the optimization, frequent

combinations Fm are returned from candidates Cm when prevalence exceeds the minimum

threshold of co-occurrence. Fm are then self-joined to generate combinations Cm+1 of size m
+1 and out of which Fm+1 satisfy the minimum co-occurrence. In each pass, candidate combi-

nations are pruned so as to avoid generating all combinations, which reduces running time

significantly.

Statistical analysis of HERV-K frequencies across populations

We made statistical comparisons across 5 super-populations for the following three problems.

For each problem, there are 5

2

� �
= 10 families of 1-to-1 comparisons conducted. The ‘prop-test’

function in R is used to test whether the proportions for two super-populations are the same.

1. individual prevalence of polymorphic HERV-K. (20 comparisons for each polymorphic

HERV-K in a family)

2. The number of polymorphic HERV-K present per individual. (21 comparisons as the num-

ber of co-occurring polymorphic HERV-K is from 0 to 20)

3. The co-occurrence for combinations of polymorphic HERV-K.

Genomic distribution of polymorphic HERV-K
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Therefore, multiple hypotheses would be conducted on frequencies F across super-popula-

tions P1. . .5 as follows:

Null hypothesis, H0 : FPi
¼ FPj

, where i6¼j;

Alternative hypothesis, HA : FPi
6¼ FPj

, where i6¼j.

A separate P-value is computed for each test and the Benjamini-Hochberg procedure [56]

is used to account for multiple comparisons.

Visualization in D3.js

We utilized D3.js (Data Driven Documents) [57], an open-source java script library to create

an interactive visualization to display co-occurrence of polymorphic HERV-Ks in human pop-

ulations. Our visualization system includes two modules, a welcome page and a result page.

Input JSON data include locations of polymorphic HERV-K, population information, and the

0/1 (absence / presence) matrix. (See S1 Text). Source code is available at: https://github.com/

lwl1112/polymorphicHERV/tree/master/visualization and a searchable tool with the data

reported here is at: http://pages.iu.edu/~wli6/visualization/

Supporting information

S1 Text. This file contains methods, table of site occupancy, and references cited in meth-

ods.

(DOCX)

S1 Fig. The distribution of n/T values for chr12:55727215–55728183 when k = 70. The x-

axis is the n/T ratio, representing the proportion of k-mers derived from an individual’s

genome data that matches the unique set T for the HERV-K at chr12:55727215–55728183. The

y- axis represents sequence depth. Under these conditions, there is a tendency for clustering of

some values but dispersion of points is broad and separation into biologically meaningful clus-

ters would be difficult. For this reason, we developed the mixture model after optimizing the

length k to facilitate clustering (S2 Fig and S1 Text).

(TIFF)

S2 Fig. Effect of k on n/T. Six individuals with both high and low depth data are used to dem-

onstrate how varying the length of k affects n/T values for absent, solo LTR and present states.

High depth data is above the line (depth = 20). Different colors represent different values of k
from 30–70 as shown in the legend. Each number represents a different individual (see S1

Dataset:KGP for the identify of the sample corresponding to each number).

(TIF)

S3 Fig. Alignment of unique k-mers to HERV-K at chr12: 55727215. All k-mers derived

from the data mining step from each individual are mapped to the reference set of unique k-

mers, T, requiring 100% identity, to generate the set ‘n’ The first row shows the coverage of the

set T on the HERV-K. The following plots show the mapping of the k-mer set ‘n’ from 8 indi-

viduals for the HERV-K at chr12: 55727215. # 6, 12, 14, and 25 (see S1 Dataset: KGP, column

D for identification information) are labeled as ‘provirus’. Note the drop out of the peaks near

3500 and 5000bp for #14 and #25, which accounts for a decrease in n/T in these individuals. #4

and 16 have low n/T and k-mers map to the LTR region indicated above the diagram; these are

labeled as ‘solo LTR’. #23, and 28 are labeled as ‘absent’. For individuals with states ‘solo LTR’

and ‘absent’, there are some peaks in the coding region. This is most likely the result of assign-

ing unique k-mers to this HERV-K that are shared with those from a HERV-K that is absent
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from the reference HERV-K dataset.

(TIF)

S4 Fig. Maximum likelihood phylogenetic tree of fixed and polymorphic HERV-K. To

improve the alignment, only> = 6,500 bp HERV-Ks were included except for the HERV-K at

chr1:75,842,771, which has a long deletion but aligns well in other regions. Maximum likeli-

hood tree was generated using PhyML [4] using GTR with a gamma distribution. Node sup-

port was calculated using the alpha likelihood ratio test. Nodes with less than 0.9 alpha

likelihood ratio test support were collapsed and colored in grey. HERV-K taxa are named after

their genomic location in hg19. Polymorphic HERV-Ks identified in this study are indicated

in red text. The chr8:146086169 HERV-K was identified in one individual in Wildschutte et al
[5] but not found in this analysis.

(TIF)

S5 Fig. Linear discriminant analysis (LDA) based on n/T ratio of the 20 polymorphic

HERV-Ks. There is improved resolution of EAS from EUR and AFR using n/T compared to

reducing the data to the three states ‘provirus’, ‘solo LTR’, ‘absent’ (Fig 4) for these 20

HERV-Ks. However, there is still substantial overlap of EUR and AFR based on n/T of the 20

polymorphic HERV-K studied.

(TIF)

S6 Fig. Linear discriminant analysis (LDA) using the five super populations. A) LDA plot

based on the states ‘provirus’, ‘solo LTR’ and ‘absence’ of the 20 polymorphic HERV-Ks for the

5 super-populations represented in KGP. AMR are largely interspersed between AFR and

EUR and SAS are found between EUR and EAS based on polymorphic status alone. B) LDA

plot based on the n/T for all HERV-K proviruses for 5 super-populations. AMR and SAS over-

lap with EUR but are better separated from AFR based on these data.

(TIF)

S7 Fig. Kernel density estimation for 12 representative polymorphic HERV-Ks. We

assessed the density plots of all 96 HERV-K to determine if any peaks were specific to one of

the super-populations. Shown are examples of candidate alleles specific to a population. In oth-

ers several or all populations have the alleles but the prevalence is skewed. For example, the

candidate allele for chr3:112743479–112752282 (the peak near n/T~0.7) appears to be more

common in SAS individuals (pink trace). Similarly, EAS individuals (green trace) have a lower

prevalence of the chr12:58721242–58730698 reference allele (n/T peak near 1) than do EUR

(blue trace). Population-specific variation in HERV-K sequence could lead to under-estima-

tion of proviral prevalence with mapping methods that require a coverage threshold.

(TIF)

S8 Fig. Mapping four high-depth KGP individuals to the reference allele of

chr1:155596457–155605636. The first row shows the positions where unique k-mer set T map

to the reference HERV-K at chr1:155596457. The following rows show the mapping of k-mers
recovered from four high-depth individuals: the n/T ratio for # 21 & 22 is equal to or close to

1; for # 20 & 23 the n/T ratio is between 0.5 and 0.7, representing a candidate allele at this

locus. Note the loss of peaks at 1700bp and 3200bp in both individuals #20 and 23 and of the

peak at 4700bp in #23.

(TIF)

S1 Dataset. Information on HERV-K, bed files for data mining, 1000 genomes data.

(XLSX)
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S2 Dataset. Results from analysis including matrices of n/T, presence or absence, and anal-

ysis of population prevalence and total number of HERV-K per individual.

(XLSX)

S3 Dataset. Analysis of co-occurrence for 3, 4, and 5 HERV-K.

(XLSX)
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