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Abstract 

 

Type 1 diabetes (T1D) has a large genetic component, and expanded genetic studies of T1D 

can lead to novel biological and therapeutic discovery and improved risk prediction.  In this 

study, we performed genetic association and fine-mapping analyses in 817,718 European 

ancestry samples genome-wide and 29,746 samples at the MHC locus, which identified 165 

independent risk signals for T1D of which 19 were novel.  We used risk variants to train a 

machine learning model (named T1GRS) to predict T1D, which highly differentiated T1D from 

non-disease and type 2 diabetes (T2D) in Europeans as well as African Americans at or beyond 

the level of current standards. We identified extensive non-linear interactions between risk loci 

in T1GRS, for example between HLA-DQB1*57 and INS, coding and non-coding HLA alleles, 

and DEXI, INS and other beta cell loci, that provided mechanistic insight and improved risk 

prediction. T1D individuals formed distinct clusters based on genetic features from T1GRS 

which had significant differences in age of onset, HbA1c, and renal disease severity. Finally, we 

provided T1GRS in formats to enhance accessibility of risk prediction to any user and 

computing environment.  Overall, the improved genetic discovery and prediction of T1D will 

have wide clinical, therapeutic, and research applications. 
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Type 1 diabetes (T1D) is an autoimmune disease characterized by immune infiltration of the 

pancreatic islets and beta cell destruction, leading to lifelong dependance on insulin therapy1.  

Onset of T1D is typically during early life or adolescence, but can also occur in adults2. While 

both genetic and environmental factors contribute to the development of T1D, the underlying 

etiology is not fully understood1.  Determining individuals at risk for T1D can help prevent 

diabetic ketoacidosis at onset, which can lead to life-long complications, as well as to inform 

selection for preventative therapies such as teplizumab3–5. Typically T1D is accompanied by 

autoantibodies (Aab) against islet-specific proteins which can be detected in blood prior to 

disease onset and used as biomarkers6.  However, islet Aab can be transient, are less 

frequently found in adult-onset cases, and are not fully predictive of T1D6,7. Furthermore, the 

detection of islet Aab is limited until after T1D progression has started where many individuals 

already have reduced beta cell function, and therefore earlier prediction of disease is needed. 

 

Inherited genetic risk factors can also predict the development of T1D. Genetic variants in class 

I and II MHC genes are the largest risk factors for T1D8,9, most notably the HLA-DRB1*0301-

DQB1*0201 (DR3-DQ2) and HLA-DRB1*0401-DQB1*0302 (DR4-DQ8) haplotypes which when 

inherited together increase risk of T1D over 16-fold8.  Outside of the MHC locus, T1D is highly 

polygenic with over 90 genomic loci such as INS and PTPN22 harboring variants affecting T1D 

risk10–13.  The heritability of T1D, however, remains incompletely described14, and therefore 

additional T1D-associated variants likely remain to be discovered. In addition, risk loci detected 

through association studies contain many associated variants due to linkage disequilibrium and 

at best indicate the presence of one or more unknown causal variants15. Larger genetic 

association studies can boost statistical power to detect new risk loci while detailed fine-

mapping analyses can narrow down candidate causal variants for these signals, which together 

can enhance the ability to predict T1D using genetic variation15.  

 

Genetic variants associated with T1D risk can be used to construct genetic risk scores (GRS)16–

18, which are summarizations of the T1D genetic risk of an individual used to predict the 

development of T1D.  The utility of a GRS as a diagnostic tool can, for example, aid in selection 

for preventative therapies, complement interpretation of blood biomarkers, and distinguish 

between forms of diabetes16,18,19.  Previous studies have created risk scores for T1D which 

accurately discriminate T1D from non-diabetes, as well as T1D from T2D16,18,20.  Improvements 

to existing T1D GRS, however, can further enhance the utility and accessibility of GRS.  Current 

T1D GRS are calculated using the additive sum of effects for risk alleles of an individual and, 
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outside of several known interactions in specific class II MHC alleles such as DR3-DQ2 and 

DR4-DQ8, do not consider non-linear interactions between variant alleles16,18,20. Furthermore, 

existing T1D GRS are not straightforward to calculate from imputed genotypes derived from 

reference panels such as TOPMed and require extensive phasing of HLA haplotypes and use of 

proxy SNPs18,20. These complexities can further lead to inconsistencies resulting in ambiguity of 

the HLA alleles in an individual18. These issues limit the utility of current T1D GRS in both basic 

research and clinical settings. 

 

In this study, we performed the most comprehensive genetic association study of T1D to date 

using genome-wide association and fine-mapping analyses in 817,718 samples as well as 

detailed fine-mapping of the MHC locus in 29,746 samples, which revealed 199 total T1D risk 

variants.  We then utilized T1D risk variants to train a machine learning (ML) model, named 

T1GRS, to predict T1D.  The T1GRS model exceeds diagnostic ability compared to the current 

standard T1D GRS2 and reveals novel interactions both at the MHC locus and other loci 

genome wide.  T1GRS also improves accessibility of T1D prediction by using publicly available 

imputation panels and by providing containerized pipelines.  Finally, we use predictions from 

T1GRS to define genetic sub-groups of T1D individuals which have distinct clinical features. 

 

Results 

Genome-wide association and fine-mapping identifies novel T1D risk loci and signals. 

We performed a T1D association study of 817,718 samples (20,355 T1D cases and 797,363 

non-diabetes) using a meta-analysis of 9 cohorts consisting of individuals of European ancestry 

(Supplementary Table 1). Variants were imputed into the TOPMed v3 reference panel or, for 

UK Biobank, the HRC reference panel, and up to 62.1M variants with minor allele frequency 

(MAF)>1x10-5 were considered in association tests.  In total, we identified 92 loci that reached 

genome wide significance (P<5x10-8) of which 79 were previously known T1D risk loci and the 

other 13 had not, to our knowledge, been previously reported (Fig 1A,B).   

 

We next performed fine-mapping of likely causal variants at the 92 identified loci, plus an 

additional 10 previously established T1D loci that did not reach genome-wide significance in our 

study, using SuSIE (see methods).  Across all 102 loci, we identified 138 independent risk 

signals, where several loci such as IL2RA, INS, PTPN22, and IFIH1 had more than 2 

independent signals (Supplementary Table 2).  At each independent signal, we derived 

‘credible sets’ of variants likely causal for the signal (Supplementary Table 3).  Over half 
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(79/138) of the credible sets had 15 or fewer variants and over a third (47/138) had 5 or fewer 

variants (Fig.1C).  Signals with larger credible sets (>125 variants) included many of the loci 

that did not reach genome-wide significance in our study and likely have lower fine-mapping 

resolution due to weaker association.  Overall, there was a high degree of concordance with 

previous fine-mapping, where ~97% of independent signals at known loci in this study 

overlapped signals in a previous genome-wide association study10.  At several signals the fine-

mapping resolution was improved, likely due to both the larger sample size as well as the 

method used in fine-mapping.  For example, at the CTRB1/2 locus, fine-mapping resolved a 

single causal variant (rs55993634, PIP=.989), whereas this same variant previously had lower 

probability10.  At the INS locus, fine-mapping resolved likely causal variants at all three 

independent risk signals (rs689 PIP=.87; rs7948458 PIP=.96; rs11042966 PIP=.99).  At a small 

number of loci there was limited overlap in credible sets compared to previous studies, notably 

the UBASH3A locus, where reported signals have complex patterns of linkage disequilibrium 

(LD)10.   

 

We annotated credible set variants at the 13 novel loci to understand potential molecular 

mechanisms of these loci.  At seven loci a candidate variant mapped within a protein-coding 

gene and the remaining six mapped to intergenic sequence.  At the ZMIZ1 locus, candidate 

variants mapped in the intron of the ZMIZ1 gene which is also involved in T2D risk and affects 

beta cell function and glucose homeostasis  (Fig 1D)21.  At another locus, candidate variants 

mapped to an intron of a long noncoding RNA PVT1 downstream from MYC that has been 

shown to be associated with renal diabetic complications22. Loci that were intergenic included 

variants near CLNK (Fig 1E), a mast cell immunoreceptor signal transducer that plays a role in 

the regulation of immunoreceptor signaling. Credible set variants at this locus further overlapped 

accessible chromatin sites in pancreatic and immune cell types (Supplementary Table 4).  

 

In total these results provide expanded genetic association and fine-mapping of T1D risk and 

revealed novel risk loci and independent risk signals at both known and novel loci.  

 

Fine-mapping of the MHC locus identifies additional class I and II risk signals.  

Given the particular importance of the MHC locus to T1D genetic risk, we next performed 

detailed fine-mapping to identify additional T1D risk signals at this locus.  We utilized genotypes 

from 29,746 T1D case and control individuals of European ancestry from five publicly available 

cohorts (see Methods).  After quality control, we imputed variant genotypes into the HLA 
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reference panel in the Michigan Imputation Server containing 55,614 variants including two- and 

four- digit HLA alleles, amino acid residues, and intragenic variants23.   

 

Given the extreme associations and extensive LD in the MHC region, methods such as SuSIE 

are currently not as amenable to fine-mapping this locus.  We therefore instead performed a 

stepwise conditional analysis by iteratively adding the most significant variant into the model 

and re-performing association tests (see Methods).  In total, this process revealed 23 

independent signals associated with T1D at genome-wide significance (p<5x10-8) (Fig. 2A,B, 

Supplementary Table 5,6).  For each signal we then derived ‘credible sets’ of variants likely 

causal for the signal using a Bayesian approach.  As expected, these signals primarily consisted 

of variants in LD with class I and class II MHC alleles that have established roles in T1D (Fig. 

2C, Supplementary Table 5).  For example, signals represented the amino acid change in 

HLA-DQB1 at position 57 (rs1064173 r2=0.65)24 and HLA-DRB1 at position 13 (rs1391373 

r2=0.763)25, and known T1D risk and protective alleles including HLA-DQB1*02:01 (rs9273530 

r2=0.991), HLA-DQB1*06:02 (rs9273375 r2=0.801), HLA-A*24:02 (rs17185657 r2=0.973)8, and 

HLA-B*39.  We also identified a small number of signals not linked to any known T1D risk or 

protective MHC alleles, including a non-coding signal indexed by rs9276235 that maps to an 

intergenic region in between HLA-DRB1 and HLA-DQA2 (Supplementary Fig. 1A). 

 

As novel signals at the MHC locus may be obscured by partial LD with known risk due to the 

large and extensive associations in the region, we next performed a second round of stepwise 

analyses at the HLA locus after first pre-conditioning on 70 known class I and class II MHC risk 

alleles and 20 known DR3/DR4 haplotypic and allelic interactions (See methods, 

Supplementary Table 7-9).  These analyses revealed four additional novel signals (p<5x10-8) 

not linked to any known HLA risk alleles (Supplementary Fig. 1B), one of which is a coding 

signal consisting of the amino acid residue 71 in HLA-DRB126. The other three novel signals 

map fully to non-coding sequence, and we annotated credible set variants for these signals 

using published maps of accessible chromatin sites and transcription factor (TF) binding.  For 

example, at the novel signal near HLA-A, credible set variant rs7763052 (PIP=0.173) overlaps 

an accessible chromatin site active in effector CD8+ T cells and NK cells (Supplementary Fig. 

1C)27. At another novel signal located upstream of HLA-DRB1 candidate variant rs9270965 

(PIP=0.987) preferentially bound to SOX3 in a published high-throughput SELEX-seq assay28.  
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Altogether, the use of an HLA-specific imputation panel resolved independent signals at the 

HLA locus including several coding and non-coding signals not previously implicated in T1D 

risk. 

 

A machine learning model improves classification of T1D from non-diabetes and T2D.  

We next sought to use known and novel risk alleles at the MHC locus and genome-wide to 

predict T1D.  We developed a machine learning model using gradient boosting to predict T1D, 

which we named T1GRS. The T1GRS model comprises a total of 199 T1D-associated variants, 

including 70 known HLA risk variants, 27 additional HLA variants identified in conditional 

analyses, and lead variants at the primary signals of 102 risk loci genome-wide (see Methods, 

Supplementary Table 10).  We trained both a “full” model using all 199 variants in addition to 

sex, population structure captured by the first four principal components derived from 

genotyping data, and cohort label, as well as a “reduced” model using just the 199 variants for 

application in settings where the other variables are not available or relevant.  In addition to a 

model consisting of all 199 variants, we also trained sub-models consisting of only (i) the 97 

HLA variants or (iii) the 102 variants mapping outside the HLA locus (non-MHC).  We evaluated 

the ability of each model to differentiate T1D from non-diabetes in 29,746 individuals (10,107 

T1D and 19,639 non-diabetes) using 10-fold cross-validation.   

 

We evaluated T1GRS for the ability to discriminate T1D from non-diabetes using 29,746 

European-ancestry samples from five cohorts where T1D cases had a range of age of diagnosis 

(Supplementary Table 1).  When testing the ability of T1GRS to differentiate T1D from non-

diabetes, there was overall strong discrimination when using all 199 variants (full model area 

under the curve AUC=0.931) (Fig. 3A). When calculating precision-recall in T1GRS, there was 

an Average Precision (AP) score of 0.867 (Supplementary Fig. 2A).  We observed similar 

discrimination of T1D when using the 97 MHC variant model (AUC=0.915, AP=0.835) (Fig. 3B, 

Supplementary Fig. 2B).  Surprisingly, we also observed reasonable discrimination of T1D 

when using only the 102 variants outside of the HLA locus, although the average precision was 

lower (AUC=0.800, AP=0.660) (Fig. 3C, Supplementary Fig. 2C).   

 

We next compared the predictive ability of T1GRS to the previously reported T1D risk score 

GRS218. There was significantly improved ability of the T1GRS model to discriminate T1D from 

non-disease compared to GRS2 when using all variants (GRS2 Total AUC= 0.916, p=2.58x10-

50) and MHC variants (GRS2 MHC AUC= 0.897, p=1.13x10-53) (Fig. 3A-B).  The greatest 
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improvement, however, was observed when considering only non-MHC variants genome-wide, 

where T1GRS dramatically improved over GRS2 (GRS2 non-MHC AUC=0.692, p=4.04x10-231) 

(Fig. 3C).  Similarly, the average precision across each model was higher in T1GRS compared 

to GRS2, which was again most prominent in the non-MHC model (GRS2 all variant AP=0.839, 

MHC AP=0.803, non-MHC AP=0.517) (Supplementary Fig. 2A-C).  

 

We then examined the application of the “reduced” T1GRS model to predict T1D.  In the training 

data, this T1GRS model significantly outperformed GRS2 using all variants (AUC=0.919, 

p=1.46x10-4) and non-MHC variants (AUC=0.714, p=2.75x10-20), although had slightly reduced 

performance among MHC-only variants (AUC=0.894, p=7.84x10-3) (Supplementary Fig. 3A-C).  

We next applied this T1GRS model to an independent set of 263 T1D case and non-diabetic 

samples of European ancestry from the nPOD biorepository29, and again T1GRS strongly 

differentiated T1D from non-disease (AUC=0.887, MHC AUC=0.874, non-MHC AUC=0.727) 

(Supplementary Fig. 3D-F).  The T1GRS model outperformed GRS2 in the independent 

samples in all comparisons, particularly in the non-MHC model (GRS2 Total AUC=0.882; GRS2 

MHC AUC=0.870; GRS2 non-MHC AUC=0.678). (Supplementary Fig. 3D-F).  

 

As genetic risk scores have been used to help distinguish type 1 and type 2 diabetes (T2D) to 

avoid misdiagnosis18,20, we next evaluated the ability of T1GRS to differentiate T1D from T2D 

cases.  For these comparisons we used 1,999 T2D samples in the WTCCC1 cohort and the 115 

T1D samples in the nPOD biorepository described above (Supplementary Fig. 3G-I)30. The 

T1GRS model accurately differentiated T1D and T2D using all variants (AUC=0.876) 

(Supplementary Fig. 3G).  As with the non-diabetes comparisons, this predictive ability was 

largely driven by MHC variants (AUC=0.865) (Supplementary Fig. 3H) and to a lesser extent 

the non-MHC variants (AUC=0.661) (Supplementary Fig. 3I).  The ability of T1GRS to 

discriminate T1D from T2D was similar to T1D GRS2 across all comparisons (GRS2 

AUC=0.867, MHC AUC=0.867; non-MHC AUC=0.605) (Supplementary Fig. 3G-I).  

 

Finally, we evaluated the cross-ancestry portability of T1GRS by measuring its ability to 

distinguish T1D from non-diabetes in African American individuals.  It has been previously 

argued that European GWAS does not effectively capture T1D risk in African Americans31.  We 

tested T1GRS on 284 T1D and 404 non-diabetes individuals of African American ancestry and, 

not surprisingly, T1GRS discriminated T1D in this population to a significantly lower degree 

compared to Europeans (AUC=0.844, AUC=0.931, p=1.45x10-08) (Supplementary Fig. 3J).  
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The ability of T1GRS to predict T1D in African Americans was almost solely driven by MHC 

variants (AUC=0.833), as the non-MHC variants had very limited predictive ability (AUC=0.583). 

However, the predictive ability of T1GRS in African Americans was the same as a published 

T1D risk score derived from a T1D GWAS performed in African American individuals 

(AUC=0.846, p=0.879) (Supplementary Fig. 3K), suggesting that T1GRS can be used to 

predict T1D in African Americans at the same level as current standards31.   

 

In total, this reveals that T1GRS can discriminate T1D from T2D or non-diabetes at the same or 

greater level than the current standard GRS in European and African American ancestry 

individuals including, for Europeans, a marked improvement in predictions when using genetic 

risk outside of the MHC locus. 

 

Application of T1GRS as a diagnostic test for T1D in European individuals 

We next determined the diagnostic ability, specificity, and sensitivity of T1GRS using the 29,746 

T1D and non-disease individuals (Table 1).  The output from the T1GRS model ranges from 0-1 

and describes the probability that the individual will have T1D.  When comparing the ability of 

the T1GRS model to discriminate T1D from non-diabetes, at a probability threshold of 0.828 

there was 50% sensitivity and 97.31% specificity for T1D. The Youden index is a formula that 

can indicate diagnostic feasibility of a GRS when greater than 0.50.  The maximum Youden 

index for T1GRS was 0.723 at a probability threshold of 0.248, corresponding to 89% sensitivity 

and 83% specificity for T1D, which is an improvement over the maximum Youden Index for 

GRS2 of 0.683.  

 

We further examined how well T1GRS discriminates T1D from non-diabetes at various 

thresholds compared to previous T1D GRS (Fig. 3D)18,20.  In previous T1D GRS, the 50th T1D 

percentile (50% sensitivity) corresponds to a false positive rate of around 3.3-6%, and at this 

same sensitivity T1GRS has a lower false positive rate (2.3%)18,20.  Similarly, at a false positive 

rate of 5%, the sensitivity of T1GRS is 65% which is a 30% increase in the number of accurately 

classified T1D individuals at this threshold compared to previous GRS20.  At the 75th T1D 

percentile (25% sensitivity) the false positive rate is also reduced (0.65%) compared to previous 

GRS, and only 128 controls fall above this threshold. The lower end of prediction range is 

improved as well, where the 5th percentile (95% sensitivity) for T1D in T1GRS had a higher 

specificity of 71.83% compared to previous GRS18,20.   
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We next examined differences at the MHC locus in classifying T1D in T1GRS compared to 

GRS2.  The GRS2 model assigns specific MHC alleles based on proxy variants in an individual 

which in some cases can lead to incompatible MHC class II allele configurations (i.e. more than 

two alleles). In our samples, a total of 978 individuals (630 T1D, 348 non-diabetic) had 

incompatible MHC class II allele status using GRS2.  By comparison, T1GRS directly uses the 

variants imputed from the HLA reference panel and thus avoids these incompatibilities. Of the 

630 T1D individuals with incompatible MHC class II alleles in GRS2, 70.0% (441) were 

classified above the 50th percentile in T1GRS (Fig. 3E). We further imputed HLA haplotypes in 

our samples using the SNP2HLA T1DGC reference panel as this contained a variant HLA-

DQB1*02:02 necessary to fully characterize DR3/DR4 status32. We identified 3,810 individuals 

heterozygous for high-risk DR3/DR4 alleles of which 3,290 had T1D. A relatively large 

proportion (8.8%, 290) of the T1D individuals heterozygous for DR3/DR4 have HLA-DQ allele 

ambiguity in GRS2, whereas 90.7% of these individuals are classified above the 50th percentile 

in T1GRS. (Fig. 3E).  

 

We next determined the impact of variants outside the MHC locus on prediction of T1D. Of the 

4,613 T1D individuals highly predicted by T1GRS (above the 50th T1D percentile) and without 

ambiguous HLA alleles in GRS2, 1,282 (27.8%) fell below the published GRS2 50th T1D 

percentile (14.6). (Supplementary Fig. 4A).  Of these 1,282 T1D samples, 21.1% shifted above 

the 50th T1D percentile in the non-MHC model using T1GRS, suggesting that T1GRS had 

improved capture of non-MHC risk for these individuals.  Furthermore, the average non-MHC 

percentile of all 4,613 T1D samples was significantly higher in T1GRS compared to GRS2 

(59.63% vs. 49.98%, paired t-test P=1.56x10-126) (Fig. 3F). Risk prediction in T1GRS was 

augmented by the inclusion of 60 additional genome-wide loci compared to previous scores, 

several of which are rare variants with relatively large effects (odds ratio [OR]>2) on T1D and 

may impact predictions for individuals carrying rare alleles. For example, the CEL locus contains 

a rare T1D risk variant (OR=2.8, MAF.0015), and among T1D individuals carrying the CEL risk 

allele the non-MHC percentile was significantly higher in T1GRS compared to GRS2 (paired T-

test P=5.28x10-3) (Supplementary Fig. 4B).   

 

These results overall demonstrate that T1GRS has improved diagnostic ability compared to 

previous T1D GRS, which is due, in part, to improved capture of risk variant effects genome-

wide.  
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Genetic prediction of T1D using machine learning identifies non-linear interactions  

One key benefit of a machine learning model compared to previous additive genetic risk scores 

is the improved ability to identify non-linear interactions between features.  We determined to 

what extent the added predictive value of genome-wide risk in T1GRS was due to capturing 

interactions between variants.  We computed an ‘additive’ non-MHC T1GRS model where all 

102 risk alleles were weighted by T1D effect size derived from the T1D meta-analysis.  In highly 

predicted T1D donors above the 50th T1GRS percentile, the ‘additive’ T1GRS model had very 

similar average non-MHC risk percentile to T1D GRS2 (GRS2=49.98% vs. additive T1GRS 

50.15%, paired t-test P =0.588) (Fig. 3F).  When examining the ability of the ‘additive’ non-MHC 

T1GRS model to discriminate T1D from non-diabetes, the inclusion of additional T1D risk loci 

significantly improved over GRS2 (AUC=0.739, p=1.18x10-26).  However, the performance of 

this ‘additive’ T1GRS model was in turn substantially lower than the full non-MHC T1GRS model 

which considers interactions (p=1.33x10-50) (Supplementary Fig. 4C).   These results argue 

that the improved predictions in T1GRS using genome-wide variants is due to both the inclusion 

of additional risk variants as well as capturing interactions between variants. 

  

Next, we identified features of T1GRS influencing the classification of T1D in individuals using 

Shapley (SHAP) analysis. The strongest features overall were the tag SNP for HLA-DQB1*57 

(rs1064173) as well as the lead variants at the INS and PTPN22 loci (Fig. 4A).  Several alleles 

had extensive variability in SHAP values across individuals indicating broad interactions with 

other features; for example, among individuals homozygous for the risk allele of the HLA-

DQB1*57 tag rs1064173 (Fig 4A,C).  To characterize interactions between variants, we 

calculated Shapley interaction (SHAP int) values for each pair of variants in the all variant, 

MHC-only, and non-MHC variant models. We evaluated the significance of interactions using a 

permutation test and considered interactions significant at FDR<.05 (see Methods). Most 

permuted interactions had SHAP int scores of zero, and the top interactions in each model were 

all significantly larger than expected (Supplementary Tables 11,12; Supplementary Fig.5). 

The strongest interaction was between HLA-DQB1*57 (rs1064173) and HLA-DRB1*13 

(rs1391373) (SHAP int=1234.73) which reflects the established interaction resulting from HLA-

DR3 and -DR4 haplotypes (Fig. 4A,B) 25.  HLA-DQB1*57 significantly interacted with other HLA 

alleles including a DR3-DQ2 allele (HLA-DQB1*02:01 SHAP int=976.09), the protective 

DRB1*15:01/DQB1*06:02 haplotype (rs9268652 SHAP int=1105.88), and the novel non-coding 

signal rs9276235 near HLA-DRB1/HLA-DQA2 (SHAP int=841.29) (Fig. 4B,D).  The non-coding 
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signal rs9276235 also significantly interacted with many other signals across the HLA locus (Fig 

4D).  

 

We also identified significant interactions (FDR<0.05) between risk variants genome-wide (Fig. 

4B,E,F). At several loci, fine-mapping resulted in different variants representing the locus, such 

as at INS where the T1GRS variant rs689 (PIP=0.865) had higher casual probability than the 

variant rs3842753 (PIP=0.135) included in previous GRS18, which likely improves the 

characterization of interactions involving these loci. We identified significant interactions 

between MHC and non-MHC loci, most notably DQB1*57 and PTPN22 (SHAP int=934.07) and 

INS (SHAP int=793.46) (Fig. 4B).  There were also significant interactions between pairs of 

non-MHC loci, which revealed synergistic relationships between variants acting both within and 

across cell types.  Many of the strongest non-MHC interactions were between the INS locus and 

loci implicated in immune or pancreatic cell function such as SH2B3 (SHAP int.=978.10), CFTR 

(SHAP int.=959.74), DEXI (SHAP int.=864.76), BCL11A (SHAP int.=784.40), and PTPN22 

(SHAP int.=760.50) (Fig. 4F,G)10,33–36.  In addition to the INS locus interaction, we also identified 

significant interactions between the DEXI locus and other putative beta cell signals including 

GLIS3 (SHAP int.=667.19) and AKAP11 (SHAP int.=635.95) (Fig. 4F,H)37.   

 

At some individuals there were large differences in the predictions of T1D in T1GRS compared 

to GRS2.  To highlight differences in predictions between models, we examined the risk profile 

of a T1D individual highly predicted in T1GRS (77th percentile) but not in GRS2 (23rd percentile). 

We determined the importance of each feature to T1GRS predictions in this individual using 

SHAP values, where positive and negative values indicate increased and decreased risk, 

respectively (Supplementary Fig. 5G-I).  The DQB1*57 tag SNP had the largest contribution to 

the predictions in the overall score (+5.85) and the MHC-only score (+7.88), where the 

magnitude of the effect indicated the presence of interactions (Supplementary Fig. 5G,H). By 

comparison, in GRS2, MHC risk is primarily determined by HLA class II alleles and in this 

individual HLA-DR4-DQ8 risk is mitigated by a protective DQ4.2 haplotype. The MHC percentile 

was higher in T1GRS (63%) compared to thus GRS2 (32%) which is likely driven by interactions 

with DQB1*57.  In addition, this individual had large contributions from non-MHC loci including 

several not in previous scores IRF4 (+1.02) and VSIR (+1.00) which added substantial risk to 

this individual (Supplementary Fig. 5G). The non-MHC percentile was higher in T1GRS (70th 

percentile) than GRS2 (24th percentile) as well as the ‘additive’ T1GRS model (43rd percentile), 

again indicating that interactions are contributing to the higher prediction in T1GRS. In sum, 
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multiple factors led to improved predictions for this individual including additional loci and 

interactions between loci.   

 

Clustering of European individuals by T1D risk reveals disease heterogeneity 

We next sought to determine to what extent T1D individuals had heterogeneity in their genetic 

risk profiles (see Methods) (Fig. 5). In brief, we performed principal components analysis (PCA) 

of the SHAP features for each T1D donor from the T1GRS model and k-means clustering of the 

top 10 PCs.  We visualized the resulting clusters using dimension reduction of the PCs with 

UMAP (Fig. 5AB, Supplementary Fig. 6).  

 

In total we identified five clusters of T1D individuals (Calinski Harabasz Score=985.54), which 

were most strongly distinguished by different combinations of HLA alleles as well as the INS 

locus (Fig. 5B). Two clusters (C1, C2) are marked by the presence of the HLA-DQB1*57 amino 

acid and are further separated based on the presence of the INS risk allele (Fig. 5A,B). Cluster 

(C4) is described by the presence of HLA-B*39 alleles and lack of the protective HLA-DR15-

DQ6 haplotype (Fig. 5A,B,D).  Cluster (C0) is marked by the lack of HLA-DQB1*57 and the 

presence of HLA-DP alleles and HLA-DQB1*03:01 (Fig. 5A,B), and contains many of the non-

MHC-DR3/DR4 samples previously shown to have distinct genetic risk (Fig. 5C,D) 38. Finally, 

cluster (C3) is marked by the presence of HLA-DRB1*13 and HLA-DR3 alleles. (Fig. 5A-C).  

 

We finally determined whether groups of T1D individuals defined from genetic profiles had 

differences in clinical properties including age of onset, HbA1C level, and chronic kidney 

disease. We observed highly significant differences in average age of onset across groups 

(ANOVA P=1.1x10-21).  For example, the C4 cluster (HLA-B*39+/ HLA-DR15-DQ6-) had 

significantly lower age of onset (10.6 years) than other clusters in particular compared to the C0 

cluster with many non-DR3/DR4 samples (T-test P=2.30x10-11) and the C3 cluster (T-test 

P=2.90x10-9) (Fig. 5C,D). The C0 cluster also had highest HbA1C levels at recruitment (8.05%), 

which may indicate poorer management of symptoms in these individuals (Fig. 5E).  We also 

identified a significant difference in the rate of late-stage chronic kidney disease across clusters 

(Kruskal-Wallis P=0.031).  The C3 cluster (DRB1*13+/HLA-DR3+) exhibited a larger proportion 

of late-stage chronic kidney disease compared to the C0 cluster (Mann-Whitney U P=4.12x10-3), 

although they both had the latest ages of onset (Fig. 5F).  There was similar, although not 

significant, difference in the rate of end-stage renal disease (ESRD) across clusters (Kruskal-
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Wallis P=0.10), although there was a significant difference in ESRD between C3 and C0 (Mann-

Whitney U P=7.83x10-3). 

 

Overall, these results reveal clusters of T1D individuals defined based on genetic risk that have 

evidence for heterogeneity in the clinical presentation of T1D and complications.   

 

Conclusions 

We performed extensive genetic association and fine-mapping analysis in European ancestry 

individuals which revealed 165 independent risk signals for T1D, including many novel signals 

which provide new biological insight and potential therapeutic targets for T1D.  Using these risk 

signals we then developed a model T1GRS to predict T1D in European ancestry individuals 

from genetic data which has improved accuracy compared to other contemporary risk scores.  

The T1GRS model in particular improved prediction of T1D outside of the MHC locus, both due 

to the inclusion of additional common and rare risk loci as well as by capturing interactions 

between loci. In addition, interactions provide potential insight into the mechanistic basis of trait 

association for risk loci both within and across disease-relevant cell types. Previous T1D GRS 

have comparatively focused more heavily on risk alleles at the HLA locus.  T1GRS will therefore 

likely help improve prediction of T1D particularly in individuals who may not have large-effect 

HLA risk alleles but carry an excess burden of polygenic risk, or in individuals with complex 

interactions between risk alleles genome-wide not captured by additive scores.  Although 

trained using individuals of European ancestry, T1GRS also has similar predictive ability to 

discriminate T1D in African Americans compared to a GRS specifically designed for this 

population. Future studies that train similar models using large association studies in non-

European genetic individuals will undoubtedly further improve upon the prediction of T1D in 

African American and other ancestries.              

 

The risk prediction model also enabled us to group T1D individuals based on genetic risk 

profiles, and these groups had evidence for heterogeneity in clinical features such as age of 

onset and severity of complications such as renal disease.   In some cases, these patterns were 

unknown or unexpected, such as a significantly lower age of onset in HLA-B*39+/HLA-DR15-

DQ6- individuals and significantly higher rate of renal complications.  Recent studies have 

argued for the existence of distinct endotypes of T1D one of which is characterized by younger 

age of onset, aggressive insulitis and beta cell destruction, and abnormal proinsulin processing, 

and the other characterized by older age of onset, less insulitis and normal proinsulin 
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processing39. These endotypes were defined using pancreatic tissue from few donors and 

relatively few islets per donor, however, and the extent to which these patterns generalize to the 

broader T1D population is unclear.  Furthermore, many of these measurements are not feasible 

at present to collect from living donors, limiting their clinical value. Given evidence for 

heterogeneity in genetic risk in T1D individuals and the ability to obtain genetic profiles from all 

donors, genetic background should be considered in definitions of T1D heterogeneity, in 

combination with other biomarkers. 

 

A primary goal of this study was to provide a predictive model of T1D that could be easily 

applied using genetic data from any samples of interest.  Our model uses only variants present 

on the contemporary TOPMed r3 and Michigan HLA reference panels, where available web 

tools enable any user to impute genotyping microarray or sequencing data into these panels.  

Previous approaches have utilized proxy variants to capture HLA alleles which may not be 

present in current reference panels or on all genotyping microarrays.  Furthermore, using proxy 

SNPs to phase HLA alleles leads to ambiguity in HLA typing for a proportion of individuals, 

including for individuals with high-risk DR3/DR3 haplotypes, complicating risk prediction in these 

individuals.  By comparison, the T1GRS model uses variants directly from imputation panels for 

risk prediction and therefore avoids many issues with ambiguous allele phasing.  Second, we 

facilitated the prediction of T1D using T1GRS by providing scripts that take variant files directly 

from TOPMed and Michigan HLA outputs as input to the model.  These scripts and models are 

provided in containers which can be easily run in any computing environment. 

 

In total, T1GRS provides a new predictive of model of T1D which should facilitate and improve 

the use of genetic risk scores for T1D in both basic research and clinical applications. 

 

Research Design and Methods 

 

Research subjects and genotype imputation 

For the MHC analysis, we compiled genotype data from 29,746 T1D case and control 

individuals of European ancestry from five publicly available cohorts (Supplementary Table 1). 

T1D cases were matched to control subjects by ancestry and, where possible, genotype array 

as previously described10. We performed quality control on variants using the HRC imputation 

preparation program (version 4.2.9, https://www.well.ox.ac.uk/~wrayner/tools/) and PLINK to 

remove variants with MAF<1%, missing genotypes >5%, in violation of Hardy-Weinberg 
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equilibrium (HWE P <1×10−5 in control cohorts and HWE P<1×10−10 in case cohorts), allele 

ambiguity and difference in allele frequency > 0.2 compared to HRC r1.1 reference panel40,41.  

We imputed 55,615 variants from the ‘Four-digit Multi-ethnic HLA reference panel (v1)’ from 

Michigan imputation server and retained variants with r2>0.5 and a standard deviation in control 

allele frequency< 0.055 to test for association in the 29,746 samples42.  

 

To examine genetic risk outside of the MHC, we compiled association data from 20,355 case 

and 797,363 control individuals from 817,718 European ancestry cohorts matched by ancestry 

and genotype array where possible, as described previously10 (Supplementary Table 1). For 

the FinnGen cohort, we downloaded the summary statistics from the r10 version for “T1D_Early” 

which includes 2,832 individuals diagnosed with T1D under the age of 20 and excludes 

individuals diagnosed with T2D (r10.risteys.finngen.fi/endpoints/T1D_EARLY).  

 

We used genotyping microarray data for 263 individuals in the Network for Pancreatic Organ 

Donors with Diabetes (nPOD) including 115 T1D cases and 148 individuals without T1D. 

Additionally, we used 1,999 T2D individuals from the WTCCC1 cohort29,30.  To examine 

predictive ability of T1GRS in individuals of African American ancestry, we used 284 T1D 

samples from SEARCH consortium and 404 non-disease individuals from CLEAR cohort43,44. 

For all cohorts, we performed variant quality control as stated above prior to imputation with 

Michigan HLA and TOPMed imputation panels.  

 

Association testing and meta-analysis at the MHC locus 

In the MHC locus, we tested variants for association across a 4 MB locus on chromosome 6 

from 30 Mb to 34 Mb (hg19).  We used firth bias corrected logistic regression in EPACTS and 

tested variants for association with MAF>1% including the first four genotype PCs and sex as 

covariates45. For both the MHC and genome-wide association analyses, we combined summary 

statistics from all five cohorts using a fixed effects inverse variance weighted meta-analysis.  

 

Conditional analysis of independent signals 

We performed conditional forward stepwise analysis in the MHC locus by including the most 

significant variant from each meta-analysis as a covariate in the association tests for each 

cohort and then re-doing the meta-analysis.  We repeated this process by iteratively adding 

each new variant to the model until no significant variants (p<5x10-8) remained in the meta-

analysis.  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

We also performed a ‘preconditional’ analysis to examine the effect of signals outside of 70 

established class I and II HLA risk alleles and 20 DR3/DR4 pairwise HLA haplotypic and allelic 

interactions25,46–48.  We added 90 covariates to our model described above to capture the 

additive effect of each alternate allele for 70 HLA risk alleles and a binary column for each of 20 

interactions prior to performing the association tests and meta-analysis.  We then performed 

conditional forward stepwise regression iteratively adding the most significant variant to the 

model and re-performing the meta-analysis until no variants reached p<5x10-8.   

 

Credible set generation for signals in the MHC  

For all conditional signals identified in the MHC locus though stepwise analysis, we generated 

95% credible sets (CSs). We first identified any variants with linkage to the lead variant in each 

signal (r2>0.1) and we calculated Bayes Factor for each variant in this set based on the effect 

and standard error as described in the method of Wakefield49. We then generated posterior 

inclusion probability (PIP) scores by dividing the Bayes Factor by the total sum of the Bayes 

Factors for all variants in the set. We ordered variants in descending order and included variants 

up to the 95% threshold in each credible set. 

 

SuSIE fine-mapping of the non-MHC loci 

We used SuSIE to fine-map significant non-MHC loci identified through two rounds of variant 

clumping using PLINK ('--clump-p1 5e-8 --clump-p2 0.05 --clump-r2 0.1 --clump-kb 10000'; '--

clump-p1 5e-8 --clump-r2 0 --clump-kb 500'). We then generated loci 500kb around the variants 

included in each clumped region.  We identified 92 genome-wide significant loci and included 10 

additional loci not reaching genome wide significance that were previously reported (CDKN1C, 

CYP27B1, LMO7, CCR7, 17q24, ACOXL, CCR5, IRF2, TAGAP, and 6q27) for a total of 102 

loci. We created 95% credible sets for each locus in SuSIE using genotypes from 6 dbGAP 

cohorts including 32,518 samples (DCCT, GENIE-ROI, GENIE-UK, GoKIND, T1DGC, and 

WTCCC1) to define the LD matrix and setting parameters to ‘L=10, coverage=0.95, 

min_abs_corr=0.01, max_iter=50000'.  For complex loci with multiple signals identified in a 

previous study (DLK1, IFIH1, TYK2, IL10, PTPN2, AIRE, UBASH3A, CTLA4, and IL2RA), we 

re-computed the T1D meta-analysis using only the 6 dbGAP cohorts with genotype data 

included in the LD matrix listed above 10.  Lead variants were defined as the variant with the 

largest posterior inclusion probability (PIP) for the signal.  We defined novel loci as variants that 

reached genome wide significance and mapped 500kb away from any other established loci.  
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Annotations of credible sets 

We leveraged genomic datasets27,50 and examined preferential transcription factor (TF) binding 

motifs to conduct a functional analysis in novel credible sets.  We overlapped all variants in 

novel credible sets with accessible chromatin peaks in 46 immune and 12 pancreatic cell 

types27,50.  Then we tested each variant for preferential allelic binding to transcription factor 

motifs using FIMO51.  We also leveraged databases such as GTEx and JASPAR to annotate 

credible set variants.  

 

Constructing a non-linear Machine learning polygenic risk score 

We leveraged 199 variants including the lead variant from 27 independent MHC signals, 70 

additional established HLA associated alleles, and 102 non-MHC most probable variants 

identified using SuSIE. We developed two models based on the XGBoost classifier 

framework52,53, one with the 199 variants alone (“variant only” model), and another with 

additional covariates of sex, PC1-4, and binary covariates for each cohort (“full” model).  This 

approach generates a probability from zero to one that a sample has T1D which can be treated 

as a genetic risk score. Five cohorts containing 10,107 T1D and 19,639 non-diabetes samples 

were combined into one genotype matrix which was then randomly split into 10 subsections for 

cross fold validation. Over 10 iterations, a model was trained on 90% of the data and evaluated 

on the remaining 10%. The probability scores for each sample in each testing fold were 

recorded and used for the overall AUC. This process was identical in the T1GRS evaluation 

conditions: full (199 variants), MHC only (97 variants), and non-MHC only (102 variants) 

models. A representative model for each of the evaluation conditions was trained on all samples 

and applied to the nPOD validation cohort of 115 T1D and 148 non-diabetes samples. A 

standard random seed was set to ensure reproducibility and identical hyperparameters were 

used for each version of the model. Additionally, versions of each model were trained without 

PC and cohort information (“variant only” models) and evaluated in an identical manner. 

 

Feature importance and interaction analysis 

Feature importance and interaction within non-linear models were calculated using the SHAP 

machine learning interpretability suite (https://shap.readthedocs.io/en/latest/)54. SHAP, which 

stands for SHapley Additive exPlanations, is a unified approach to explain the output of any 

machine learning model. It is based on cooperative game theory and the concept of Shapley 

values. SHAP values assign each feature an importance value for a particular prediction in the 
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context of a specific model. These values allow for non-linear interactions between features to 

be accounted for on a per-individual basis and enables ranking pairwise feature interactions by 

magnitude. Each model was run through the standard SHAP python pipeline and the feature 

importance was recorded. Feature interaction analysis was performed using the 

shap_interaction_values function.  

 

PCA analysis and kmeans clustering of SHAP values 

SHAP analysis results in a vector of patient specific feature contributions to outcome, where the 

same feature can have different contributions to outcome in different patients, based on the 

additive non-linear effects described by SHAP analysis. To uncover differences in the etiologies 

of phenotypically similar disease we performed PCA analysis on these SHAP feature 

contribution vectors in T1D samples, then created a UMAP using the top 20 PCs from PCA 

analysis and n_neighbors=10. Next, we performed unsupervised kmeans clustering on the top 

10 PCs. A range of clusters were tested from k=2-10 and we found that k=5 resulted in the 

highest Calinski Harabasz Score (Fig. 5A), indicating that k=5 clusters yielded the greatest 

separation between clusters.  Clinical features including age of onset, HbA1C (%), chronic 

kidney disease (RENALST stages 1-4), and end stage renal disease ESRD (1 vs 2) were 

compared between clusters using pairwise t-tests. An ANOVA was used to compare age of 

onset between clusters while Kruskal-Wallis tests were applied to the other phenotypes. 

 

Statistical analysis of the genetic risk score 

We then calculated GRS2 using 60 exact TOPMed variants, two exact Michigan HLA for 

rs116522341, rs1281934, and the proxy variants DQB1*06:02, B*18:01, DPB1*03:01, 

rs1611547, and rs114170382 from Michigan HLA for rs17843689, rs371250843, rs559242105, 

rs144530872, and rs149663102 respectively. In GRS2, we excluded individuals with more than 

2 HLA-DR/DQ proxy SNPs according to the published methods18. Within each GRS, we 

examined the total genetic risk score, and its components of MHC (Michigan HLA) and non-

MHC variants (TOPMed). We calculated the area under the curve (AUC) for the receiver 

operator characteristic (ROC) analysis to assess the differentiation power of each GRS for T1D. 

We then tested the difference between each AUC using the deLong test.  First, we compared 

the T1GRS model to GRS2 in individuals with T1D and those without in the “full” model and in 

the “variant only” model.  Next, we validated T1GRS using an independent set of individuals in 

the nPOD biorepository to differentiate between T1D and individuals without disease and using 

the T1D from nPOD and 1,999 Type 2 diabetes (T2D) from WTCCC1.   
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We also calculated a published African American risk score in 284 T1D and 404 non-diabetes 

samples from SEARCH and CLEAR studies to compare to T1GRS31,43,44.  We used TOPMed to 

impute rs34850435, rs9271594, rs9273363, rs2290400, rs689, Michigan HLA to impute 

rs2187668, and used rs9268838 as a proxy for rs34303755 (r2=0.849, D’=1.0 in African 

Americans).  

 

Lastly, we generated a scale for T1GRS scores using the number of individuals with T1D who 

fell at various percentiles and calculated a diagnostic for each GRS value using the Youden 

index (sensitivity + specificity -1).   We calculated sensitivity at each GRS score on the scale as 

TP/(TP + FN) and specificity as TN/(TN+FP)55.  Additionally, we defined DR3/DR4 individuals 

using four-digit HLA alleles imputed from the T1DGC reference panel using SNP2HLA32. DR3 

status was classified by the presence of HLA-DRB1*03:01-DQB1*02:01, while DR4 was 

identified by the presence of HLA-DRB1*04:01/02/04/05/08-DQB1*03:02/04/02:0256.   

 

Code availability 

The T1GRS model and code to generate T1D predictions using T1GRS is available at 

https://github.com/Gaulton-Lab/t1grs  

 

Data availability 

Summary statistics from the T1D GWAS will be made available in the GWAS catalog. 
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Figures 

 

Figure 1. Genome-wide association and fine-mapping of type 1 diabetes.  A. Genome-wide 

association analysis of type 1 diabetes (T1D). P values are from the marginal T1D association 

statistics in a meta-analysis of n = 817,718 samples.  Novel loci with p-values less than 5x10-8 

are colored purple and labeled. Variants with p-value less than 1x10-225 were capped at this 

threshold for display. B. In total there are 102 T1D loci including 89 previously established loci 

and 13 novel loci. The genomic annotation category of the novel loci is shown to the right.  C. 

Number of credible set variants for the 138 signals identified after fine-mapping 102 T1D loci 

with SuSIE. D,E.  Locus plots showing T1D association for the novel loci ZMIZ1 and CLNK.  

The color of each variant represents the linkage disequilibrium (r2) with the lead variant at the 

locus. 

 

Figure 2. Genetic association of T1D at the MHC locus.  A. T1D association at the MHC 

locus.  P values are from the marginal T1D association statistics frm meta-analysis of n = 

29,746 samples.  The lead variant for each signal is colored blue and signals with a p-value less 

than 1x10-325 were capped at this threshold for display.  The gene map shows the location of 

class I and II HLA genes. B.  The number of variants per credible set are shown for the 23 

signals identified in conditional fine-mapping. C. Locus plots with conditional T1D association for 
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signals linked to known T1D HLA or amino acid associations.  Locus plots are colored by 

linkage (r2) to the lead variant for each signal. The gene maps show the location of class I and II 

HLA genes. 

 

Figure 3. Genetic prediction of T1D using T1GRS. Receiver operating characteristic (ROC) 

curves assessing the accuracy of predicting T1D from non-diabetes using T1GRS and T1D 

GRS2.  The AUC for T1GRS is colored purple while the existing T1D GRS2 is colored green. P 

values comparing predictive ability of GRSs are calculated using the de-Long test.  The AUCs 

for T1GRS and GRS2 are shown for A. All variants, B. MHC-only variants, and C. non-MHC 

genome-wide variants. D. Percentile thresholds for T1GRS probability calculated in individuals 

with T1D compared with non-diabetes. E. T1GRS probability in individuals with HLA-DQ proxy 

SNP ambiguity in T1D GRS2 separated by high-risk HLA-DR3/DR4 (left) and all other HLA 

alleles (right). F. Non-MHC percentile risk in individuals with T1D above the T1GRS total 50th 

T1D threshold.  Green represents GRS2 non-MHC percentile risk, blue is the percentile scaled 

to an additive effect of T1GRS non-MHC variants, and pink is the non-MHC T1GRS probability 

percentile that includes non-linear interactions. GRS2 scores for individuals who fall above the 

50th T1D percentile in T1GRS.  

  

Figure 4. Feature importance and interactions in T1GRS. SHAP analysis results of feature 

importance in the top 25 features for each model (left). Red, purple and blue colors represent 

the contribution of 2,1, or 0 copies of the alternate allele. The spread along the x-axis indicates 

interactions with other variants that can alter the overall SHAP value where larger SHAP values 

have a greater impact on the T1GRS performance. Chord diagrams map the strongest 

interactions within each model (right) where blue represents an MHC-MHC interaction, green is 

non-MHC-MHC interaction, and orange is non-MHC-non-MHC interaction.  SHAP analysis 

results of feature importance (left) and interactions (right) in the “reduced” T1GRS model using 

A,B. all 199 MHC and non-MHC variants. C,D. 97 MHC-only variants and E,F. 102 genome-

wide non-MHC signals. Below are histograms quantifying SHAP interaction strength in the non-

MHC model for G. the INS locus and H. the DEXI locus. 

 

Figure 5. Genetic heterogeneity in T1D individuals. A. UMAP of the first 10 PCs showing 

clustering of T1D individuals defined by feature importance in T1GRS.  The five clusters are 

separated by color.  B.  The mean quantity of risk allele contribution and standard error across 

the 5 clusters in 9 variants with strong feature influence in the clustering. C. HLA-DR3/DR4 
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status of T1D individuals overlayed on the UMAP plot.  D,E.  Box and whisker plots showing 

distributions of T1D age of disease onset and HBA1C levels at recruitment for each cluster. F,G.  

Stacked barplot showing distribution of renal function stages and end-stage renal disease for 

each cluster.  P-values are pairwise t-tests between groups (*<0.05, **<0.01, ***<0.001).   

 

Supplementary Figure 1. Annotation of novel T1D signals at the MHC locus.  A. Locus plot 

showing a novel non-coding signal at the MHC locus with index variant rs9276235.  The bottom 

of the plot shows expression QTLs for TAP2 at this variant in GTEx for multiple tissues.    B.  

Locus and credible set plots for novel signals identified in pre-conditioned HLA T1D association 

analysis.  C. Annotation of a novel T1D signal upstream of HLA-A where variant rs7763052 

maps in accessible chromatin sites for stimulated (S) and unstimulated (U) conditions of 

different immune cell types. 

 

Supplementary Figure 2: Precision-Recall Curves in T1GRS and GRS2. Precision-Recall 

curves highlighting the Average Precision (AP) in purple for T1GRS and green for GRS2 in A. 

total scores B. MHC only scores and C. non-MHC scores.  

 

Supplementary Figure 3. ROC statistics for T1GRS and T1D GRS2.  The AUC for T1GRS is 

purple while the existing GRS2 is green. P-values comparing the predictive ability of GRSs are 

calculated using the de-Long test.  The AUCs for the “variants-only” T1GRS and T1D GRS2 are 

compared in T1D and non-disease individuals in the discovery group of 29,746 samples for A. 

All variants B. MHC-only variants and C. non-MHC genome-wide variants. The AUCs for 

T1GRS and T1D GRS2 are compared in T1D and non-disease individuals from the independent 

nPOD test group for D. All variants E. MHC-only variants and F. non-MHC genome-wide 

variants. The AUCs for T1GRS and GRS2 are compared in Type 1 diabetes cases from the 

nPOD test group and Type 2 diabetes individuals from WTCCC1 for G. Total scores H. MHC 

variants and I. non-MHC variants. J. AUCs in T1GRS between African Americans and 

individuals of European ancestry with and without T1D. K. AUCs in African American individuals 

with and without diabetes in T1GRS and a 7 variant African American GRS. 

 

Supplementary Figure 4. A. T1D GRS2 scores for individuals who fall above the 50th T1D 

percentile in T1GRS. B. GRS2 and T1GRS non-MHC percentiles for 157 T1D individuals with a 

large effect rare variant (CEL). C. ROC statistics for non-MHC differentiation in T1D and non-

disease for T1GRS ML model, T1GRS additive model, and GRS2. 
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Supplementary Figure 5. Distribution and top variant interaction SHAP values in T1GRS. A. 

199 variant total model distribution of SHAP interactions with B. the top 25 interactions in the 

199 variant model. C. 97 variant MHC only model distribution of SHAP interactions with D. the 

top 25 interactions in the 97 MHC variant model.  E. 102 variant non-MHC only model 

distribution of SHAP interactions with F. the top 25 interactions in the 97 MHC variant model. 

SHAP values in a high-risk individual with T1D in G. 199 variant total model H. 97 variant MHC 

only model and I. 102 variant non-MHC only model.  

 

Supplementary Figure 6. PC influences in the Cluster analysis of T1D samples. A-J. On the 

left, UMAPs of PCs 1 through 10 after kmeans (n=5) clustering T1D samples. The color variable 

represents the presence of a PC in a region. On the right, bar plots highlight the features with 

the strongest influences in each PC with larger values.  

Table 1. T1D prediction using T1GRS 

T1GRS 
probability 

T1D Centile Non-Disease 
Centile 

Sensitivity (%) Specificity (%) Youden Index 

0.116742 5 71.83 95.00 71.83 0.6683 
0.229681 10 81.85 90.00 81.85  0.7184 
0.347085 15 87.00 85.00 87.00  0.7200 
0.450841 20 89.98 80.00 89.98  0.6998 
0.54173 25 92.14 75.00 92.14  0.6714 
0.617035 30 93.69 70.00 93.69  0.6369 
0.688681 35 94.98 65.00 94.98  0.5997 
0.743972 40 95.95 60.00 95.95  0.5595 
0.789471 45 96.71 55.00 96.71  0.5171 
0.827839 50 97.31 50.00 97.31  0.4732 
0.933922 75 99.91 25.00 99.35  0.2436 
0.971637 95 81.85 5.000 99.91  0.0492 
 

 

 

 

 

 

 

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 

 

 

 

 

 

 

 

 

 

 

References 

1 Katsarou A, Gudbjörnsdottir S, Rawshani A, et al. Type 1 diabetes mellitus. Nat Rev Dis 
Primer 2017; 3: 1–17. 

2 Thomas NJ, Jones SE, Weedon MN, Shields BM, Oram RA, Hattersley AT. Frequency and 
phenotype of type 1 diabetes in the first six decades of life: a cross-sectional, genetically 
stratified survival analysis from UK Biobank. Lancet Diabetes Endocrinol 2018; 6: 122–9. 

3 Cameron FJ, Scratch SE, Nadebaum C, et al. Neurological consequences of diabetic 
ketoacidosis at initial presentation of type 1 diabetes in a prospective cohort study of children. 
Diabetes Care 2014; 37: 1554–62. 

4 Duca LM, Wang B, Rewers M, Rewers A. Diabetic Ketoacidosis at Diagnosis of Type 1 
Diabetes Predicts Poor Long-term Glycemic Control. Diabetes Care 2017; 40: 1249–55. 

5 Herold KC, Bundy BN, Long SA, et al. An Anti-CD3 Antibody, Teplizumab, in Relatives at Risk 
for Type 1 Diabetes. N Engl J Med 2019; 381: 603–13. 

6 Ziegler A-G, Nepom GT. Prediction and Pathogenesis in Type 1 Diabetes. Immunity 2010; 32: 
468–78. 

7 Sørgjerd EP, Thorsby PM, Torjesen PA, Skorpen F, Kvaløy K, Grill V. Presence of anti-GAD in 
a non-diabetic population of adults; time dynamics and clinical influence: results from the 
HUNT study. BMJ Open Diabetes Res Care 2015; 3: e000076. 

8 Noble JA, Valdes AM. Genetics of the HLA region in the prediction of type 1 diabetes. Curr 
Diab Rep 2011; 11: 533–42. 

9 Noble JA, Valdes AM, Cook M, Klitz W, Thomson G, Erlich HA. The role of HLA class II genes 
in insulin-dependent diabetes mellitus: molecular analysis of 180 Caucasian, multiplex 
families. Am J Hum Genet 1996; 59: 1134–48. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 Chiou J, Geusz RJ, Okino ML, et al. Interpreting type 1 diabetes risk with genetics and single-
cell epigenomics. Nat 2021 5947863 2021; 594: 398–402. 

11 Barrett JC, Clayton DG, Concannon P, et al. Genome-wide association study and meta-
analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 2009; 41: 703–7. 

12 Bradfield JP, Qu H-Q, Wang K, et al. A genome-wide meta-analysis of six type 1 diabetes 
cohorts identifies multiple associated loci. PLoS Genet 2011; 7: e1002293. 

13 Onengut-Gumuscu S, Chen WM, Burren O, et al. Fine mapping of type 1 diabetes 
susceptibility loci and evidence for colocalization of causal variants with lymphoid gene 
enhancers. Nat Genet 2015; 47: 381–6. 

14 Grant SFA, Wells AD, Rich SS. Next steps in the identification of gene targets for type 1 
diabetes. Diabetologia 2020; 63: 2260–9. 

15 Uffelmann E, Huang QQ, Munung NS, et al. Genome-wide association studies. Nat Rev 
Methods Primer 2021; 1: 1–21. 

16 Winkler C, Krumsiek J, Buettner F, et al. Feature ranking of type 1 diabetes susceptibility 
genes improves prediction of type 1 diabetes. Diabetologia 2014; 57: 2521–9. 

17 Mishra R, Åkerlund M, Cousminer DL, et al. Genetic Discrimination Between LADA and 
Childhood-Onset Type 1 Diabetes Within the MHC. Diabetes Care 2019; 43: 418–25. 

18 Sharp SA, Rich SS, Wood AR, et al. Development and standardization of an improved type 1 
diabetes genetic risk score for use in newborn screening and incident diagnosis. In: Diabetes 
Care. American Diabetes Association Inc., 2019: 200–7. 

19 Joglekar MV, Kaur S, Pociot F, Hardikar AA. Prediction of progression to type 1 diabetes with 
dynamic biomarkers and risk scores. Lancet Diabetes Endocrinol 2024; 12: 483–92. 

20 Oram RA, Patel K, Hill A, et al. A Type 1 Diabetes Genetic Risk Score Can Aid Discrimination 
Between Type 1 and Type 2 Diabetes in Young Adults. Diabetes Care 2016; 39: 337–44. 

21 Alghamdi TA, Krentz NAJ, Smith N, et al. Zmiz1 is required for mature β-cell function and 
mass expansion upon high fat feeding. Mol Metab 2022; 66: 101621. 

22 Taheri M, Eghtedarian R, Dinger ME, Ghafouri-Fard S. Emerging roles of non-coding RNAs in 
the pathogenesis of type 1 diabetes mellitus. Biomed Pharmacother 2020; 129: 110509. 

23 Luo Y, Kanai M, Choi W, et al. A high-resolution HLA reference panel capturing global 
population diversity enables multi-ethnic fine-mapping in HIV host response. Jacques Fellay; 
14. DOI:10.1101/2020.07.16.20155606. 

24 Todd JA, Bell JI, McDevitt HO. HLA-DQ beta gene contributes to susceptibility and resistance 
to insulin-dependent diabetes mellitus. Nature 1987; 329: 599–604. 

25 Hu X, Deutsch AJ, Lenz TL, et al. Additive and interaction effects at three amino acid 
positions in HLA-DQ and HLA-DR molecules drive type 1 diabetes risk. Nat Genet 2015; 47: 
898–905. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 Zhao LP, Papadopoulos GK, Lybrand TP, et al. The KAG motif of HLA-DRB1 (β71, β74, β86) 
predicts seroconversion and development of type 1 diabetes. EBioMedicine 2021; 69: 
103431. 

27 Calderon D, Nguyen MLT, Mezger A, et al. Landscape of stimulation-responsive chromatin 
across diverse human immune cells. Nat Genet 2019; 51: 1494–505. 

28 Yan J, Qiu Y, Ribeiro dos Santos AM, et al. Systematic analysis of binding of transcription 
factors to noncoding variants. Nature 2021; 591: 147–51. 

29 Campbell-Thompson M, Wasserfall C, Kaddis J, et al. Network for Pancreatic Organ Donors 
with Diabetes (nPOD): Developing a Tissue Biobank for Type 1 Diabetes. Diabetes Metab 
Res Rev 2012; 28: 608–17. 

30 Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases 
of seven common diseases and 3,000 shared controls. Nature 2007; 447: 661–78. 

31 Onengut-Gumuscu S, Chen WM, Robertson CC, et al. Type 1 diabetes risk in African-
ancestry participants and utility of an ancestry-specific genetic risk score. Diabetes Care 
2019; 42: 406–15. 

32 Jia X, Han B, Onengut-Gumuscu S, Chen W-M, Concannon PJ. Imputing Amino Acid 
Polymorphisms in Human Leukocyte Antigens. PLoS ONE 2013; 8: 64683. 

33 Peiris H, Park S, Louis S, et al. Discovering human diabetes-risk gene function with genetics 
and physiological assays. Nat Commun 2018; 9: 3855. 

34 Dos Santos RS, Marroqui L, Velayos T, et al. DEXI, a candidate gene for type 1 diabetes, 
modulates rat and human pancreatic beta cell inflammation via regulation of the type I 
IFN/STAT signalling pathway. Diabetologia 2019; 62: 459–72. 

35 Pant T, Foda B, Geurts A, Chen Y-G. Lnk/Sh2b3 modulates bioenergetic metabolism of 
activated CD8 T cells and control the development of Type 1 Diabetes. J Immunol 2023; 210: 
77.03. 

36 Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase 
is associated with type I diabetes. Nat Genet 2004; 36: 337–8. 

37 Ämmälä C, Ashcroft FM, Rorsman P. Calcium-independent potentiation of insulin release by 
cyclic AMP in single β-cells. Nature 1993; 363: 356–8. 

38 McGrail C, Chiou J, Elgamal R, et al. Genetic discovery and risk prediction for type 1 
diabetes in individuals without high-risk HLA-DR3/DR4 haplotypes. medRxiv 2023; : 
2023.11.11.23298405. 

39 Redondo MJ, Morgan NG. Heterogeneity and endotypes in type 1 diabetes mellitus. Nat Rev 
Endocrinol 2023; 19: 542–54. 

40 Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and 
population-based linkage analyses. Am J Hum Genet 2007; 81: 559–75. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


41 McCarthy S, Das S, Kretzschmar W, et al. A reference panel of 64,976 haplotypes for 
genotype imputation. Nat Genet 2016; 48: 1279–83. 

42 Das S, Forer L, Schönherr S, et al. Next-generation genotype imputation service and 
methods. Nat Genet 2016; 48: 1284–7. 

43 SEARCH for Diabetes in Youth: a multicenter study of the prevalence, incidence and 
classification of diabetes mellitus in youth. Control Clin Trials 2004; 25: 458–71. 

44 Danila MI, Laufer VA, Reynolds RJ, et al. Dense Genotyping of Immune-Related Regions 
Identifies Loci for Rheumatoid Arthritis Risk and Damage in African Americans. Mol Med 
2017; 23: 177–87. 

45 EPACTS - Genome Analysis Wiki. https://genome.sph.umich.edu/wiki/EPACTS (accessed 
April 24, 2023). 

46 Erlich H, Valdes AM, Noble J, et al. HLA DR-DQ Haplotypes and Genotypes and Type 1 
Diabetes Risk: Analysis of the Type 1 Diabetes Genetics Consortium Families. 2008. 
DOI:10.2337/db07-1331. 

47 Noble JA, Valdes AM, Varney MD, et al. HLA Class I and Genetic Susceptibility to Type 1 
Diabetes. Diabetes 2010; 59: 2972–9. 

48 Varney MD, Valdes AM, Carlson JA, et al. HLA DPA1, DPB1 Alleles and Haplotypes 
Contribute to the Risk Associated With Type 1 Diabetes: Analysis of the Type 1 Diabetes 
Genetics Consortium Families. Diabetes 2010; 59: 2055–62. 

49 Wakefield J. Bayes factors for genome-wide association studies: comparison with P-values. 
Genet Epidemiol 2009; 33: 79–86. 

50 Zhang K, Hocker JD, Miller M, et al. A single-cell atlas of chromatin accessibility in the human 
genome. Cell 2021; 184: 5985-6001.e19. 

51 Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. 
Bioinformatics 2011; 27: 1017–8. 

52 Chen T, Guestrin C. XGBoost: A Scalable Tree Boosting System. In: Proceedings of the 22nd 
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San 
Francisco California USA: ACM, 2016: 785–94. 

53 Elgart M, Lyons G, Romero-Brufau S, et al. Non-linear machine learning models 
incorporating SNPs and PRS improve polygenic prediction in diverse human populations. 
Commun Biol 2022; 5: 1–12. 

54 Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. In: Proceedings 
of the 31st International Conference on Neural Information Processing Systems. Red Hook, 
NY, USA: Curran Associates Inc., 2017: 4768–77. 

55 Florkowski CM. Sensitivity, Specificity, Receiver-Operating Characteristic (ROC) Curves and 
Likelihood Ratios: Communicating the Performance of Diagnostic Tests. Clin Biochem Rev 
2008; 29: S83–7. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


56 Inshaw JRJ, Cutler AJ, Crouch DJM, Wicker LS, Todd JA. Genetic Variants Predisposing 
Most Strongly to Type 1 Diabetes Diagnosed Under Age 7 Years Lie Near Candidate Genes 
That Function in the Immune System and in Pancreatic β-Cells. Diabetes Care 2020; 43: 
169–77. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


��

���

���

� � � � � � � � � �� �� �� �� �� �� �� �� �� ����������
&KURPRVRPH

�

�

��

��

��

��

�OR
J�
��
3�
YD
OX
H�

TH
EM
13
L

CL
NK

TH
EM
13
1L

FB
XO
8
HIV
EP
1

PV
T1
/M
YC

MK
I67

VS
IR

ZM
IZ1

CD
6
SIK
6

UB
AS
H3
B

EL
L

A.)

Novel
Known

1389

�

�

�

�

�

��

��

1
XP
EH
U�R
I�8
QL
TX
H�
&6

&UHGLEOH�6HW�7\SH
QRQFRGLQJ
H[RQLF
LQWURQLF

�

�

�

�

�

��

��

1
XP
EH
U�R
I�8
QL
TX
H�
&6

&UHGLEOH�6HW�7\SH
QRQFRGLQJ
H[RQLF
LQWURQLF

B.)

C.)

6X6,(�&6V

1
XP
EH
U�R
I�8
QL
TX
H�
&6

9DULDQWV�SHU�&6
����
������
�����
�����
����
���
���

26 21 18 18 31 9 15

1-2

Variants per Credible Set

3-5 6-10 11-20 21-50
51-
100 101+

D.)

���� ���� ���� ���� ���� ����
&KURPRVRPH���3RVLWLRQ��0E�

�

�

�

�

�

�O
R
J
�
�
�3
�Y
D
OX
H
�

�����������$�*

�������� �������� �������� �������� ��������
�

�

�

�

�

/2
*
�
�
�3
�

FKU�B��������B��������

�����������$�*

���

���

���

���

���

���

=1)���%

&/1.

E.)

���� ���� ���� ���� ���� ����
&KURPRVRPH����3RVLWLRQ��0E�

�

�

�

�

�

�

�

�

�

�OR
J�
��
3�
YD
OX
H�

������������*�7

�������� �������� �������� �������� ��������
�

�

�

�

�

�

�

�

�

/2
*
��
�3
�

FKU��B��������B��������

������������*�&
���
���
���
���

=0,=�
33,)

=&&+&��
(,)�$/�
6)73$�

6)73$�
1870�%

r2 10:79287626:G:C r2 4:10717222:A:G

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


   H
LA

-A

   H
LA

-B

   H
LA

-DRB1

   H
LA

-DQA1

   H
LA

-DQB1

   H
LA

-DPA1

   H
LA

-DPB1

HLA
-C

INS

PTPN22

IFIH1 GMNC ERBB3 PTPN2

A.)

�� �� �� �� �� �� ��
&KURPRVRPH���3RVLWLRQ��0E�

�

��

���

���

���

���

���

�OR
J�
��
3�
YD
OX
H�

�

�

��

��

��

&R
XQ
W

9DULDQWV�SHU�&6
������
�����
����
���
���

�

�

��

��

��

&R
XQ
W

9DULDQWV�SHU�&6
������
�����
����
���
���

B.)

�� �� �� ��
&KURPRVRPH���3RVLWLRQ��0E�

�

��

���

���

���

���

���

�OR
J�
��
3�
YD
OX
H�

$$B'4%�B��B��������BH[RQ�B$
UV�������

�� �� �� ��
&KURPRVRPH���3RVLWLRQ��0E�

�

��

���

���

���

���

���

�OR
J�
��
3�
YD
OX
H�

$$B'5%�B��B��������BH[RQ�B)+

UV�������

�� �� �� ��
&KURPRVRPH���3RVLWLRQ��0E�

�

��

��

��

��

���

���

���

���

�OR
J�
��
3�
YD
OX
H�

+/$B'4%�
�����
UV�������

�� �� �� ��
&KURPRVRPH���3RVLWLRQ��0E�

�

��

��

��

��

��

��

��

��

�OR
J�
��
3�
YD
OX
H�

+/$B%
��

�� �� �� ��
&KURPRVRPH���3RVLWLRQ��0E�

�

�

��

��

��

��

�OR
J�
��
3�
YD
OX
H�

+/$B'4%�
�����

UV�������

�� �� �� ��
&KURPRVRPH���3RVLWLRQ��0E�

�

�

�

�

�

��

��

��

�OR
J�
��
3�
YD
OX
H�

+/$B$
�����
UV��������

C.)
r2 rs1064173 r2 rs1391373 r2 rs9273530

r2 rs17185657r2 rs9273375r2 HLA-B*39

HLA-A
HLA-B

HLA-C HLA-DRB1
HLA-DQA1
HLA-DQB1

HLA-A
HLA-B

HLA-C HLA-DRB1
HLA-DQA1
HLA-DQB1

HLA-A
HLA-B

HLA-C HLA-DRB1
HLA-DQA1
HLA-DQB1

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


p=2.58e−50
GRS2 AUC=0.916
T1GRS AUC=0.9310.00

0.25

0.50

0.75

1.00

Se
ns

iti
vi

ty

0.00 0.25 0.50 0.75 1.00
1 − Specificity

p=1.13e−53
GRS2 MHC AUC=0.897
T1GRS MHC AUC=0.9150.00

0.25

0.50

0.75

1.00

Se
ns

iti
vi

ty

0.00 0.25 0.50 0.75 1.00
1 − Specificity

p=4.04−231
GRS2 non−MHC AUC=0.692
T1GRS non−MHC AUC=0.8000.00

0.25

0.50

0.75

1.00

Se
ns

iti
vi

ty

0.00 0.25 0.50 0.75 1.00
1 − Specificity

ND
T1D0.00

0.25

0.50

0.75

1.00

T1
G

R
S 

To
ta

l P
ro

ba
bi

lit
y

ND T1D
Disease_status Status

0.00

0.25

0.50

0.75

1.00

T1
G

R
S 

M
H

C
 P

ro
ba

bi
lit

y

ND T1D
Disease_status Status

0.00

0.25

0.50

0.75

1.00

T1
G

R
S 

no
n−

M
H

C
 P

ro
ba

bi
lit

y

ND T1D
Disease_status Status

ND
T1D0

5

10

15

20

G
R

S2
 T

ot
al

 s
co

re

ND T1D
Disease_status Status

0

5

10

15

20

G
R

S2
 M

H
C

 s
co

re

ND T1D
Disease_status Status

0

5

10

15

20

G
R

S2
 n

on
−M

H
C

 s
co

re

ND T1D
Disease_status Status

B.)A.) C.)

T1GRS 
50th T1D 
centile

D.)

��WK ��WK ��WK ��WK
7�*56�7�'�&HQWLOH

�

����

����

����

�����

�����

�����

�����

�����

)U
HT
XH
QF
\

7KUHVKROGV�LQ�7�'�&HQWLOHV
&RQWURO���%HORZ
&RQWURO���$ERYH
7�'���%HORZ
7�'���$ERYH

��WK ��WK ��WK ��WK
7�*56�7�'�&HQWLOH

�

����

����

����

�����

�����

�����

�����

�����

)U
HT
XH
QF
\

7KUHVKROGV�LQ�7�'�&HQWLOHV
&RQWURO���%HORZ
&RQWURO���$ERYH
7�'���%HORZ
7�'���$ERYH

��WK ��WK ��WK ��WK
7�*56�7�'�&HQWLOH

�

����

����

����

�����

�����

�����

�����

�����

)U
HT
XH
QF
\

&RQWURO���%HORZ
&RQWURO���$ERYH
7�'���%HORZ
7�'���$ERYH

*56� $GGLWLYH�7�*56 ,QWHUDFWLRQV�7�*56
�

��

��

��

��

���

3
HU
FH
QW
LOH
�Q
RQ
�0
+
&
�5
LV
N

7�'�VDPSOHV�DERYH���WK�7�*56�FHQWLOH

'5��'5� 2WKHU
+/$�6WDWXV

���

���

���

���

���

���

���

7�
*
5
6
�7
RW
DO
�3
UR
ED
EL
OLW
\

'LVHDVH
&RQWURO
7�'

F.)

E.)

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.) B.)

G.) H.)

�
��
�

��
�

��
�

��
�

��
��

6+$3�LQWHUDFWLRQ�YDOXH

���

���

���

���

����

����

����

����

����

)U
HT
XH
QF
\

,16�LQWHUDFWLRQV

�
��
�

��
�

��
�

��
�

6+$3�LQWHUDFWLRQ�YDOXH

�

�

��

��

��

��

)U
HT
XH
QF
\

'(;,�LQWHUDFWLRQV

SH2B3CFTRDEXI

BCL11A

PTPN22

GLIS3

AKAP11

INS

0
0

0
0

0
0

0

20
00

0
0

0
0

0
0

0
0

2000
0000000000000000

0
0

0
0

0
0

0

2000

0

0

0
0

0
0

0
0

0
0

0
0

20
00

4000
6000

8000 10000 12000 14000 16000 18000
20000

22000

0

2000
0

0
0

PTPN22
PGM1MKI67RNLSSIK3FLI1

INS

BADEMSYSH2B3

IKZF4KLRG1

LMO7

GPR183

14q32

CTSH
DEXI
IL27
NEURL4
CD226
ELL
2p24

IF
IH

1
CT

LA
4

AD
CY

3
BC

L1
1A

UB
AS

H3
A

CL
NKIL

2

TH
EM

13
1LCP

E
IR

F1IL7
R

HIV
EP

1

CENPWIRF4
CFTR

ITGB8

MYC

DPB1_1460_33045278_intron1

DRB1_5569_32551951_exon2

DRB1_6124_32551396_intron2

DRB1_9738_32547782_intron5_C

HLA_A*02:01

HLA_DPB1*03:01

HLA_DPB1*04:02

HLA_DQA1*03:01

HLA_DQB1*02:01

HLA_DQB1*05:01

rs1064173

rs1
391373

rs9268652

rs9270965

rs9276235

Origin
MHC
Non−MHC

Interaction
MHC / MHC
Non−MHC / Non−MHC
MHC / Non−MHC

C.)

E.)

0
40

0
0

40
0

0

40
0

0

400

800
0400800

1200

1600

2000

0

400

800

1200
0

400

0
40

0
80

0
12

00
16

00

2000
2400

2800 3200 3600 4000 4400
4800

0

400

0

400
800

14q32

AKAP11

BCL11A

CFTR

D
EX

I

GLIS3

IL2

INS

PTPN22

SH2B3

Origin
MHC
Non−MHC

Interaction
MHC / MHC
Non−MHC / Non−MHC
MHC / Non−MHC

D.)

F.)

0
50

00
10

00
0

0

50
00

10
00

0

0

5000

10000
0500010000

15000
0

5000

10000

15000

0
0

5000
0

0
50

00
0

0

50
00

10000
15000

0 5000 0 5000 10000 0
5000 10000

0
5000

10000

AA_A
105_29911087_exon3_GP

DPB1_1460

33045278_intron1

DRB1_9738

32547782_intron5_C

HLA_A:01:01

HLA_A:02:01

HLA_C:05:01
HLA_DPB1:03:01

HLA_DQA1:05:01

HLA_DQB1:02:01

HLA_DQB1:03:02

rs1
064173

rs1391373

rs
28

48
71

0

rs7
77

57
59

rs9276235

Origin
MHC
Non−MHC

Interaction
MHC / MHC
Non−MHC / Non−MHC
MHC / Non−MHC

0
50

00
10

00
0

0

50
00

10
00

0

0

5000

10000
0500010000

15000
0

5000

10000

15000

0
0

5000
0

0
50

00
0

0

50
00

10000
15000

0 5000 0 5000 10000 0
5000 10000

0
5000

10000

AA_A
105_29911087_exon3_GP

DPB1_1460

33045278_intron1

DRB1_9738

32547782_intron5_C

HLA_A:01:01

HLA_A:02:01

HLA_C:05:01
HLA_DPB1:03:01

HLA_DQA1:05:01

HLA_DQB1:02:01

HLA_DQB1:03:02

rs1
064173

rs1391373

rs
28

48
71

0

rs7
77

57
59

rs9276235

Origin
MHC
Non−MHC

Interaction
MHC / MHC
Non−MHC / Non−MHC
MHC / Non−MHC

0
50

00
10

00
0

0

50
00

10
00

0

0

5000

10000
0500010000

15000
0

5000

10000

15000

0
0

5000
0

0
50

00
0

0

50
00

10000
15000

0 5000 0 5000 10000 0
5000 10000

0
5000

10000

AA_A
105_29911087_exon3_GP

DPB1_1460

33045278_intron1

DRB1_9738

32547782_intron5_C

HLA_A:01:01

HLA_A:02:01

HLA_C:05:01
HLA_DPB1:03:01

HLA_DQA1:05:01

HLA_DQB1:02:01

HLA_DQB1:03:02

rs1
064173

rs1391373

rs
28

48
71

0

rs7
77

57
59

rs9276235

Origin
MHC
Non−MHC

Interaction
MHC / MHC
Non−MHC / Non−MHC
MHC / Non−MHC

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/


A)

DR4/DR4

DR3/DR3

DR3/DR4

DR4/X

DR3/X

Non-DR3/DR4

UMAP PCS 1-10

UMAP of PCA with KMeans n=5, Calinski Harabasz Score=985.54

C.)
D.)

E.)

F.) G.)

1

0

2

3

4
B.)

� � � � �
&OXVWHU

����

����

����

����

����

����

����

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

UV�������

� � � � �
&OXVWHU

����

����

����

����

����

����

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

UV�������

� � � � �
&OXVWHU

���

���

���

���

���

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

FKU�����������$�7

� � � � �
&OXVWHU

���

���

���

���

���

���

���

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

+/$�'5%�
�����

� � � � �
&OXVWHU

���

���

���

���

���

���

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

+/$�'4%�
�����

� � � � �
&OXVWHU

���

���

���

���

���

���

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

+/$�'4$�
�����

� � � � �
&OXVWHU

���

���

���

���

���

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

+/$�%
�����

� � � � �
&OXVWHU

���

���

���

���

���

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

+/$�'4%�
�����

� � � � �
&OXVWHU

���

���

���

���

���

4
XD
QW
LW\
�5
LV
N�
$O
OH
OH

+/$�'3%�
�����

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 2, 2024. ; https://doi.org/10.1101/2024.07.31.24311310doi: medRxiv preprint 

https://doi.org/10.1101/2024.07.31.24311310
http://creativecommons.org/licenses/by-nc-nd/4.0/

