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Abstract: The cyclic lipopeptide produced from Bacillus pumilus strain HY1 was isolated from
Korean soybean sauce cheonggukjang. The chemical structures of the surfactin isomers were analyzed
using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS)
and electrospray ionization tandem mass spectrometry (ESI-MS/MS). The five potential surfactin
isoforms were detected with protonated masses of m/z 994.7, 1008.7, 1022.7, 1036.7, and 1050.7 and
different structures in combination with Na+, K+, and Ca2+ ions. ESI-MS/MS analysis revealed that
the isolated surfactin possessed the precise amino acid sequence LLVDLL and hydroxyl fatty acids
with 12 to 16 carbons. The surfactin content during cheonggukjang fermentation increased from 0.3
to 51.2 mg/kg over 60 h of fermentation. The mixture of five surfactin isoforms of cheonggukjang
inhibited the growth of two cancer cell lines. The growth of both MCF-7 and Caco-2 cells was strongly
inhibited with 100 µg/µL of surfactin. This study is the first-time report of five surfactin isomers
of Bacillus pumilus strain HY1 during Korean soybean sauce cheonggukjang fermentation, which has
cytotoxic properties.

Keywords: Bacillus pumilus HY1; solid-state fermentation; cheonggukjang; surfactin; mass spectrum;
cytotoxic effect

1. Introduction

Surfactins are cyclic lipopeptide (CLP) biosurfactants produced by several Bacillus
strains including B. subtilis, B. amyloliquefaciens, B. pumilus, B. licheniformis, and B. mo-
javensis [1–5]. Surfactin is produced non-ribosomally by multienzyme complexes called
nonribosomal peptide synthetases [6]. The small microbial peptides produced via non-
ribosomal pathways had demonstrated potent biological activities and growing economic
value in uses such as drugs, e.g., antibiotics [7], cytotoxic benzolactones [8], alkaloids [9],
or as food additives [10]. Surfactin is composed of one β-hydroxy fatty acid molecule with
a long fatty acid moiety, linked to a seven amino acid peptide to form a lactone ring [11].
It exhibits diverse biological activities, including antitumoral [4,12,13], antiviral [14], an-
tibacterial [15], antimycoplasmal [16], hemolytic [17], and fibrinolytic activities [18]. It
also inhibits fibrin clot formation [19], phosphodiesterase activity [20], cyclic adenosine
monophosphate (cAMP) signaling [20], and platelet and spleen cytosolic phospholipase
A2 (PLA2) activity [21].

Fermented soybean is a good source of hydrolyzed peptides, protein, lipids, and
many Koreans consume soybeans for their health benefits, which includes reducing arterial
stiffness. There are several types of fermented soybean foods, including meju (soybean
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cake), doenjang (soybean paste), kanjang (soybean sauce), and cheonggukjang (soybean cook).
Meanwhile, several reports have shown the antioxidant, antimicrobial, antigenotoxic, blood
pressure lowering, and anti-diabetic activities of cheonggukjang [22,23]. In a previous study,
we reported the production of surfactin from a potential probiotic, Bacillus subtilis CSY191,
during the fermentation of cheonggukjang, and the purified surfactin exhibited anticancer
activity against human breast cancer MCF-7 cells [4]. The identification and separation
of the various beneficial metabolites in chenoggukjang, e.g., surfactin and micropeptide,
enables a demonstration of their health benefits and promotes the development of distinct,
functional products for the food industry.

In the present study, surfactin was purified from strain B. pumilus HY1, a bacte-
rial strain commonly detected in traditional Korean fermented soy sauce (kanjang). The
surfactin was fractionated through TLC and RP-HPLC and characterized using mass
spectrometry. The concentration of surfactin during the fermentation of cheonggukjang
by B. pumilus HY1 was determined. Finally, the antiproliferative activity of the surfactin
extraction of cheonggukjang against the cancer cell lines MCF-7 (human breast cancer line)
and Caco-2 (human intestinal cancer line) was studied.

2. Results
2.1. Isolation of Surfactin from B. pumilus HY1

The production spectrum of surfactin by the strain Bacillus pumilus HY1 was recorded
and represented in the Figure 1. In fact, the negative control Escherichia coli DH5α lacks
surfactin-producing genes, and did not shown any halo zone in the agar plate.
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The surfactin was produced during the fermentation of high producer B. pumilus 
HY1 in No. 3 medium. Acid-precipitated and methanol-extracted bacterial cells were con-
centrated and chromatographed. The TLC of the obtained CLP material was performed 
on silica gel 60, using solvent (chloroform/methanol/water = 65:25:4, v/v/v) as the mobile 
phase, which showed a broad spot with a Rf value of 0.5 to 0.55. Analytical gel filtration 

Figure 1. Surfactin production test of Bacillus pumilus HY1. The strain HY1 grown on defibrinogen
sheep blood agar at 37 ◦C for 24 h: (a) Bacillus pumilus HY1; and (b) Escherichia coli DH5α. The
Escherichia coli DH5α were used as negative control of surfactin production in agar plate.

The surfactin was produced during the fermentation of high producer B. pumilus
HY1 in No. 3 medium. Acid-precipitated and methanol-extracted bacterial cells were
concentrated and chromatographed. The TLC of the obtained CLP material was performed
on silica gel 60, using solvent (chloroform/methanol/water = 65:25:4, v/v/v) as the mobile
phase, which showed a broad spot with a Rf value of 0.5 to 0.55. Analytical gel filtration of
the entire surfactin mixture was performed using surfactin from B. subtilis (Sigma-Aldrich,
Inc.) as a size marker, yielding a molecular mass of 1036. Reverse phase HPLC was used to
analyze surfactin, followed by purification at 214 nm (Figure 2).
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Figure 2. TLC and HPLC profiles of the surfactin produced by Bacillus pumilus HY1: (a) TLC profiles
as follow: Developing solvent—chloroform:methanol:water = 65:25:4 (v/v/v) drops and visualization—
10% H2SO4 in water; and (b) HPLC profiles as follow: Eluent solvent—acetonitrile:water = 1:1 (v/v),
flow rate—2.5 mL/min, and absorbance—214 nm.

2.2. Mass Spectrum of Surfactin by B. pumilus HY1

The purified surfactin was analyzed and identified using MALDI-TOF MS, ICP MS,
and ESI MS/MS. The MALDI-TOF MS displayed [M + H]+ peaks at m/z 994.7, 1008.7,
1022.7, 1036.7, and 1050.7, and these peaks were separated by m/z 14. The MALDI-TOF
MS displayed the groups of peaks at m/z 1016.58, 1030.58, 1044.61, 1058.62, and 1072.62,
which could reflect the isoform ensembles of surfactin (Figure 3). The surfactin contained
a mixture of structural analogs with a mass difference of 14 Da. Most of the peaks could
reflect essentially pure surfactin isoforms using MALDI-TOF MS to detect the distribution
of the molecular ions in these fractions and the assignment of the ions to different surfactin
species. Based on the mass spectrometric data, the surfactin isoforms were eluted according
to their hydrophobicities. For the large peak appearing in fractions in front of the five main
peaks, the main parent ions detected at m/z 1016.5811, 1030.5833, 1044.6104, 1058.6250, and
1072.6289 were attributed to a small amount of the sodium adduct of a valine-7 surfactin.
The low mass peaks at m/z 1032.5869, 1046.5831, 1060.6001, 1074.6023, and 1088.6222
represented the potassium adduct of these species. The other mass peaks at m/z 1033.5630,
1047.5841, 1061.6024, 1075.5997, and 1089.8287 represented the calcium adduct of these
species (Figure 3). These peaks contained essentially pure C12 to C16 surfactin species,
respectively. The purified surfactin was analyzed using ICP MS, and potassium and calcium
ions were detected (Table 1). These results were consistent with those of the MALDI-TOF
MS analysis, suggesting the presence of ions. The four amino acids Asp, Glu, Val, and Leu
at a ratio 1:1:1:4 were detected in the purified HPLC fraction of surfactin after hydrolysis
and derivatization using Marfey’s reagent. The amino acid composition corresponded to
that of surfactin. For the detailed analysis, the peptide sequence of surfactin was deduced
after interpreting the ESI-MS/MS spectrum of the precursor ions m/z 994.7081, 1008.7334,
1022.7391, 1036.7528, and 1050.7487, assuming the preferential cleavage of the ring opening
in the lactone bond in the collision chamber (Figure 4).
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Table 1. ICP mass spectrum of surfactin isomers from surfactin produced by Bacillus pumilus HY1.

Elements Concentration (ppb) Elements Concentration (ppb)

Al 0.0 P 1121.5
B 133.6 Rb 0.0
Br 0.0 Re 0.0
Ca 1509.6 Ru 94.4
Cd 0.0 S 348,218.9
Cr 122,736.5 Sc 74,514.2
Cs 0.0 Se 1,112,974.3
Cu 0.0 Sn 115.1
Ge 194.9 Sr 0.0
Hg 26.9 Ta 2.9

I 1375.0 Ti 580.2
K 89.4 U 0.0
Li 122.4 V 0.0

Mg 5634.3 W 44.7
Mn 0.0 Y 538.1
Mo 0.0 Yb 0.0
Na 6446.2 Zn 2351.4
Os 0.0

2.3. Changes in Viable Cell Number of B. pumilus HY1 and Surfactin Concentration during
Cheonggukjang Fermentation

Changes in the bacterial viable cell numbers and surfactin concentration during the fer-
mentation of cheonggukjang are shown in Figure 5. As a result of HPLC analysis in Figure 5a,
the surfactin peak was detected at approximately 8.17 min. The level of viable cells in
fermented cheonggukjang ranged from 3.0 log CFU/mL (0 h) to 11.7 log CFU/mL (60 h).
Correspondingly, the concentration of surfactin in cheonggukjang fermentation increased
from 0.3 mg/kg in the initial stage to 51.2 mg/kg after 60 h. The surfactin concentration
peaked at 48.4 mg/kg at 48 h and increased slightly at the end of fermentation (Figure 5b).

Molecules 2021, 26, 4478 6 of 13 
 

 

 
Figure 5. Typical HPLC chromatogram of the 95% methanol extracts in cheonggukjang (fermentation 
time: 60 h) and changes in the viable cell numbers and surfactin concentration during fermentation 
of chenonggujang by Bacillus pumilus HY1. (a) HPLC chromatogram; and (b) viable cell numbers and 
surfactin concentration. 

2.4. Effect of MSIC on the Growth of Cancer Cells 
We used the well-characterized MTT assay to assess the metabolic activity of cells, to 

determine whether surfactin could inhibit the growth of MCF-7 and Caco-2 cells, two can-
cer cell lines. MCF-7 and Caco-2 cells were incubated with MSIC at concentrations ranging 
from 0 to 120 μg/μL of surfactin, as shown in Figure 6. The MSIC inhibited the growth of 
cancer cells in a concentration-dependent manner. Morphological changes provide the 
most direct criteria for recognizing the apoptotic process. As shown in Figure 7, mem-
brane blebbing and DNA fragmentation were observed 24 h after exposure to MSIC (100 
μg/μL of surfactin). A protrusion-like shape began to form a branch as the shape of the 
cell lengthened. Moreover, it resulted in very severe morphological deformation of cells 
such as membrane shrinking and the rounding up of cells (Figure 7). As shown in Figure 
8, DNA laddering, typical of the cells in which apoptosis occurred, was observed in the 
cancer cells with surfactin treatment. This means that endonuclease was activated by the 
surfactin treatment and then chromosomal DNA fragmented. 

 
Figure 6. Cell population of human breast (MCF-7) and intestinal (Caco-2) cancer cell lines accord-
ing to treatment of different surfactin concentrations: (a) mixture of five surfactin isoforms of 
cheonggukjang-treated MCF-7 cells; and (b) mixture of five surfactin isoforms of cheonggukjang-
treated Caco-2 cells. 
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time: 60 h) and changes in the viable cell numbers and surfactin concentration during fermentation
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surfactin concentration.

2.4. Effect of MSIC on the Growth of Cancer Cells

We used the well-characterized MTT assay to assess the metabolic activity of cells,
to determine whether surfactin could inhibit the growth of MCF-7 and Caco-2 cells, two
cancer cell lines. MCF-7 and Caco-2 cells were incubated with MSIC at concentrations
ranging from 0 to 120 µg/µL of surfactin, as shown in Figure 6. The MSIC inhibited
the growth of cancer cells in a concentration-dependent manner. Morphological changes
provide the most direct criteria for recognizing the apoptotic process. As shown in Figure 7,
membrane blebbing and DNA fragmentation were observed 24 h after exposure to MSIC
(100 µg/µL of surfactin). A protrusion-like shape began to form a branch as the shape of
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the cell lengthened. Moreover, it resulted in very severe morphological deformation of
cells such as membrane shrinking and the rounding up of cells (Figure 7). As shown in
Figure 8, DNA laddering, typical of the cells in which apoptosis occurred, was observed in
the cancer cells with surfactin treatment. This means that endonuclease was activated by
the surfactin treatment and then chromosomal DNA fragmented.
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Figure 6. Cell population of human breast (MCF-7) and intestinal (Caco-2) cancer cell lines according
to treatment of different surfactin concentrations: (a) mixture of five surfactin isoforms of cheong-
gukjang-treated MCF-7 cells; and (b) mixture of five surfactin isoforms of cheonggukjang-treated
Caco-2 cells.
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Figure 7. Cytotoxicity test of human breast (MCF-7) and intestinal (Caco-2) cancer cell lines by
treatment of mixture of five surfactin isoforms of cheonggukjang (MSIC): (a) MCF-7 cells (control);
(b) MSIC-treated MCF-7 cells (100 µg/µL); (c) Caco-2 cells (control); and (d) MSIC-treated Caco-2
cells (100 µg/µL).
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treatment of mixture of five surfactin isoforms of cheonggukjang (MSIC): Line 1, size marker; line 2
and 3, MCF-7 cells (control); line 4 and 5, Caco-2 cells (control); line 6 and 7, MSIC-treated MCF-7
cells (100 µg/µL); and line 8 and 9, MSIC-treated Caco-2 cells (100 µg/µL).

3. Discussion

In the present study, we investigated the purification of surfactin from B. pumilus
HY1, the CLP (such as iturin and surfactin) producing strain isolated from kanjang [24].
The surfactins were fractionated using high resolution RP-HPLC and were determined by
MADI-TOF MS and ESI-MS/MS. Moreover, the surfactin concentration was confirmed
during cheonggukjang fermentation by B. pumilus HY1, and the cytotoxic effect of SECs
against MCF-7 and Caco-2 cells was examined. Surfactin is a cyclic heptalipopeptide
with the sequence Glu-Leu-Leu-Val-Asp-Leu, a terminal Leu linked to a β-hydroxy fatty
acid residue, with amide (Glu) and lactone (Leu) bonds forming a cyclic structure. Three
isoforms in natural surfactin with substitution of the L-Leu in position 7 of the main product
by L-Val and L-Ile were characterized using 2D NMR spectroscopy in combination with
chemical analysis [25]. The molecular network was distributed with known compounds
from the Global Natural Products Social (GNPS) molecular networking standard library,
where one molecular family (group of related precursor ions) contained the standard of the
compound’s surfactin class [26]. The surfactin of B. pumilus HY1 possessed five potential
isoforms with protonated masses of 994.7, 1008.7, 1022.7, 1036.7, and 1050.7 m/z and
different structures in combination with Na+, K+, and Ca2+ ions (Figure 3). These results are
consistent with data obtained from the analysis of the amino acid composition and showed
that surfactin purified from B. pumilus HY1 was identical to surfactin produced from
B. subtilis and B. amyloliquefaciens [4,27]. ESI-MS/MS analysis revealed that the structure
of fatty acid was simulated, and the results indicated that surfactin was determined as a
homologous series of hydroxy fatty acids with 12, 13, 14, 15, and 16 carbon atoms (Table 1).
The biological activity of surfactins from Bacillus sp. depends both on the peptide ring and
the nature of their lipid moieties. The hemolytic activity of surfactin was enhanced by the
increase in the number of carbon atoms in the fatty acid side chains, and this enhanced
activity likely reflects stronger interactions with biomembranes [28].

In previous studies, the biological activities of surfactin occurred via interactions with
cellular membranes, and it may have a detergent-like effect on cell membranes [4,13]. The
many research processes that have penetrated the hydrophobic residues of the peptide
moiety permeate into the membrane interface, leading to membrane permeabilization
but not surface effect [4,28]. At higher concentrations, this detergent-like activity could
stabilize leaks due to the compound’s ability to generate multiple-structured polymers [28].
Although it is not yet clear whether a sub-optimal concentration (IC50 100 µg/µL) of
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surfactin affects the cell morphology (Figure 7), surfactin-treated cells appeared to be
leaky and/or lysed. Meta et al. [29]. proposed that surfactin may disturb a biochemical
reaction(s) that occurs at a specific membrane site, perhaps via the long chain fatty acid,
acting as a pseudosubstrate (similar to PIP3 or a farnesyl group) for either the PI3K/Akt
or farnesyltransferase/Ras/ERK pathways, which promote apoptosis. The up-regulation
of Bax, down-regulation of Bcl-xL, and activation of caspase-3 proteins could confirm the
apoptosis of HL-60 cell lines using bioactive Cembranoids [30]. However, the expression
level of these proteins was not studied in the present study, but the morphological changes,
e.g., membrane blebbing and DNA fragmentation of the MSIC, which treated Caco-2 and
MCF-7 cell lines, conclude that the potential apoptosis may occur. Alongside apoptosis,
autophagy or senescence may be responsible for surfactin-induced growth arrests through
the induction of either the p38-mediated MAPK pathway or ROS production [31,32]. In a
previous study, Cao et al. [33] suggested that surfactin induces apoptosis in human breast
cancer MCF-7 cells through a ROS/JNK-mediated mitochondrial/caspase pathway, and
that the surfactin has notable anti-tumor effects on MCF-7 cells; however, there was no
obvious cytotoxicity on normal cells.

Carbohydrate and lipoprotein extracts from edible mushrooms and several bacterial
cells were reported for their growth inhibition towards malignant cancer cells [34]. A
number of recent studies have focused on the anticancer activities of CLP. Kameda et al. [9]
provided the first evidence that CLP has anticancer activity based on the fact that extracted
CLP from B. natto KMD 2311 can induce apoptosis of cancer cells. 35. Wakamatsu et al. [34]
reported that the exposure of B16 cells to lipoproteins resulted in chromatin condensation,
DNA fragmentation, and sub-G1 arrest. Sudo et al. [35] examined lipoproteins for their
ability to inhibit growth and induce differentiation of HL60 human promyelocytic leukemia
cells, and Wakamatsu et al. [34] discovered that lipoproteins induce neuronal differentiation
in PC12 cells and provided the groundwork for the use of microbial extracellular CLP
as a novel reagent for the treatment of cancer cells. Wang et al. [36] reported that a new
CLP purified from B. subtilis subsp. natto T-2 dose-dependently inhibited the growth
of human leukemia K562 cells. Kim et al. [13] examined the effects of surfactin on the
proliferation of LoVo cells (a human colon carcinoma cell line) and suggested that surfactin
may have anticancer properties as a result of its ability to down-regulate the cell cycle and
suppress cell survival. In addition, Cao et al. [37] reported that the purified surfactin from
Bacillus natto TK-1 induced the time-dependent apoptosis of human breast cancer MCF-7
cells through cell cycle arrest at the G2/M phase. In sum, the above reports and the results
of our work suggest that the surfactin of B. pumilus HY1 has potential value as a novel
anti-tumor agent.

The content of surfactin increased from 0.3 mg/kg on day 0 to a final content of
51.2 mg/kg, corresponding to the cell concentration increases of 3.0–11.7 log CFU/g dur-
ing cheonggukjang fermentation (Figure 5b). Several authors have studied the production
of surfactin from solid-state fermentation [4,13,27,38]. This process is associated with the
production of a higher concentration of surfactin in solid-state fermentation, which occurs
in the manufacturing of soybean-fermented food [10]. In particular, Slvinski et al. [39] stud-
ied the production of surfactin through B. pumilus UFPEDA 448 in solid-state fermentation,
using a medium based on okara with the addition of sugarcane bagasse as a bulking agent.
This result shows that the concentration of surfactin is proportional to the concentration of
cells because surfactin is produced from Bacillus sp.

The cheonggukjang is reported to have anticancer, blood pressure reduction, hypoc-
holesterolemic, and fibrinolytic properties [4,22]. However, although these effects of
cheonggukjang have been extensively studied, little is known about its potential antitumoral
activities. In addition, we previously reported that the surfactin content, during cheong-
gukjang fermentation with B. subtilis CSY191, increased from 0.3 to 48.2 mg/kg over 60 h
of fermentation, while the level of cytotoxic activity increased from 2.6- to 5.1-fold [4].
These findings will improve the quality of Korean traditional soybean fermented foods as
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one of the best functional foods because of their wide variety of antitumor, antimicrobial,
antifungal, and antiviral activities.

4. Materials and Methods
4.1. Soybean, Media, Cells, and Regents

Soybean cultivar, namely Taekwang, was harvested and provided in 2013 from the
National Institute of Crop Science of the Rural Development Administration in Korea.
The tryptic soy (TS), number 3 (No. 3), and DMEM/F-12 media were purchased from
Becton Dickinson Co. (Difco, Sparks, MD, USA). MCF-7 (human breast cancer cell line)
and Caco-2 (human intestinal cancer cell line) were obtained from the Korean Cell Line
Bank in Seoul, Korea. Sheep blood, surfactin standards (consisting of C13 and C15 β-
amino acids), glycerol, triglycerol, α-cyano-4-hydroxycinnamic acid, trifluoroacetic acid,
triethylamine, phenylisothiocyanate, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium
bromide (MTT), ethylenediaminetetraacetic acid (EDTA), dimethyl sulfoxide (DMSO), fetal
bovine serum (FBS), penicillin, and streptomycin were obtained from the Sigma-Aldrich,
Inc. (Merck KGaA, Darmstadt, Germany). The high-performance liquid chromatography
(HPLC)-grade chloroform, methanol, water and acetonitrile were purchased from Fisher
Scientific International, Inc. (Fairlawn, NJ, USA). Other regents and solvents used the
analytical grade (Sigma-Aldrich, Inc., St. Louis, MO, USA).

4.2. Indentification of HY1 Strain, and Isolation and Purification of Surfactin

The cyclic lipopeptide producer strain HY1 was isolated from Korean soybean sauce
(cheonggukjang). The cheonggukjang sample was serially diluted and grew on nutrient agar media
to get a pure colony. The genomic DNA of the strain HY1 was extracted and used for amplifica-
tion using Bacillus specific 16S rRNA primers: (478F 5′-TTCTACGGAGAGTTGATCC-3′; 479R,
5′-CACCTTCCGGTACGGCTACC-3′). The DNA sequencing and phylogenetic analysis of
the HY1 strain was conducted as previously described [24]. Surfactin was isolated from
strain HY1, according to Lee et al. [4] and Cho et al. [40]. The strain HY1 was cultured
in 50 mL TS liquid medium at 30 ◦C for 48 h to prepare bacteria. The cells were grown
in 10 L No. 3 medium (polypeptone 10 g, glucose 10 g, KH2PO4 1 g, and MgSO4·7H2O
0.5 g per liter, pH 6.8) at 30 ◦C. After cultivation for 3 days, the supernatant was collected
through centrifugation and adjusted to pH 2.0 using concentrated HCl. The precipitate was
collected through centrifugation and extracted three times with methanol. The methanolic
extracts were separated using thin layer chromatography on silica gel 60 plates (Merck
KGaA, Darmstadt, Germany). Chloroform/methanol/water (65:25:5, v/v/v) was used as
the developing solvent. The various spots were visualized by charring after spraying with
concentrated sulfuric acid. To isolate the surfactin fraction, the corresponding spots were
scratched from the thin-layer chromatography (TLC) plate and the silica gel material was
extracted using methanol. The crude extract of surfactin was calculated at 3.25 gm/L
of initial culture. For further purification, 1 mg of extract was subjected to recycling
preparative HPLC (LC-908, Japan Analytical Industry, Co., Ltd., Tokyo Japan) and HPLC
JAIGEL-1H column (C18, 250 × 94.6 mm, 5 µm, Phenomenex, CA, USA) and eluted with
acetonitrile/water (1:1, v/v) as the mobile phase at a flow rate of 2.5 mL/min.

4.3. Mass Spectrometric Analysis of Surfactin Isoforms

The purified CLP was analyzed using matrix-assisted laser desorption ionization
time-of-flight mass spectrometry (MALDI-TOF MS, Vg-Instruments, Manchester, UK) and
an inductively coupled plasma mass spectrometer (ICP MS; Elan Drc II, PerkinElmer
Inc., New York, NY, USA). Five micrograms of sample were dissolved in DMSO-glycerol
and introduced on a copper probe tip using a mixture of glycerol and triglycerol as a
matrix. A saturated solution of α-cyano-4-hydroxycinnamic acid in 70% acetonitrile/0.1%
trifluoroacetic acid (1:1, v/v) was mixed with an equal volume of sample for the MALDI-
TOF mass analysis. One microliter of the sample (2 to 3 ρmol) was deposited onto a sample
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plate and air-dried. Ions were accelerated with a voltage of 20 kV. The positive-ion and
reflector mode was applied.

4.4. Amino Acid and Mineral Analysis

The amino acid and mineral composition analysis of the purified CLP wines were de-
termined according to methods previously described by Cho et al. [40]. The amino acid of
the purified CLP was sequenced using electrospray ionization tandem mass spectrometry
(ESI-MS/MS; Finnigan-MAT TSQ 700, San Jose, CA, USA). The sample was dissolved in
50% aqueous methanol containing 1% formic acid prior to injection into the mass spectrom-
eter. ESI-MS/MS spectra were acquired after inducing collisions between precursor ions
and nitrogen collision gas at acceleration voltages of 50 V.

4.5. Preparation and Fermentation of Cheonggukjang

Soybeans (1 kg) were washed and soaked with three times volume of tap water at
20 ± 2 ◦C for 12 h, followed by steaming for 30 min at 121 ± 1 ◦C. The steamed soybeans
were incubated at 37 ◦C for 1 h to cool down the sample. The cooked soybeans were
subsequently inoculated with 5% (v/w) HY1 (7.43 log CFU/mL), fermented for 60 h at
37 ± 2 ◦C and sampled at 0, 12, 24, 36, 48, and 60 h. The growth of strain HY1 during
fermentation was determined as viable cell counts at each time point. One gram of the
sample was mixed with 9 mL of 0.85% NaCl solution, and the dilutions were spread onto
TS agar plates. Colonies were counted after incubation at 37 ◦C for 24 h [22].

4.6. Extraction and Analysis of Surfactin

The extraction and analysis of surfactin were performed according to Lee et al. [4]
methods. Ten grams of ground cheonggukjang were extracted using 30 mL of methanol
and adjusted to pH 2.0 with concentrated HCl by shaking (160 rpm) at 30 ◦C for 12 h.
The extract was filtered through Whatman No. 2 filter paper and dried under a vacuum.
The dried material was redissolved in 10 mL of 80% methanol and filtered through a
0.45-µm Millipore PVDF filter (Schleicher & Schuell, GmbH, Dassel, Germany). The
filtrate was used for HPLC analysis to determine the surfactin concentration during the
fermentation of cheonggukjang. The injection volume of the sample was 20 µL. The surfactin
was analyzed through HPLC (Perkin–Elmer 200 series, Perkin–Elmer Corp., Norwalk,
CT, USA) using an RP C18 column (4.6 × 250 mm, 5 µm, Waters Corp., Milford, MA, USA).
The acetonitrile:water (1:1, v/v) was eluted at a flow rate of 1 mL/min at 40 ◦C. Surfactin
was measured at 214 nm using a UV detector (Perkin–Elmer UV 200 series, Perkin–Elmer
Corp., Norwalk, CT, USA). The concentration of surfactin was determined using a standard
curve with standard solutions at 25, 50, 75, and 100 µg/mL.

4.7. MTT Assay

MCF-7 and Caco-2 cells were used as cancer cell lines for the MTT assay. The cells
were cultured in DMEM/F-12 medium, supplemented with 10% FBS and 1% penicillin-
streptomycin. The MTT assay was determined by the method of Lee et al. [4]. Briefly, the
two cancer cells were dissociated with 0.05% trypsin-0.02% EDTA, and 180 µL of the cell
suspension (1 × 104 cells/mL) was seeded onto 48-well microtiter plates and treated with
various concentrations of mixture of five surfactin isoforms of cheonggukjang (20 µL). After
incubation for 24 h, 20 µL of MTT solution (2.5 mg/mL PBS) was added. The formazan
dye was solubilized by adding 150 µL of DMSO to each well, followed by gentle shaking.
The optical densities were read on an ELISA reader (680; Bio-Rad, Tokyo, Japan) at 540 nm.
The analysis of DNA fragmentation was determined by an electrophoresis method.

5. Conclusions

We identified five potential isoforms of surfactin from B. pumilus HY1. Surfactin is a
significant component of the stain HY1-fermented cheonggukjang, with surfactin reaching
51.2 mg/kg at the end of fermentation (60 h). Surfactin extraction of cheonggukjang had
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antiproliferative activity against two cancer cells lines. Further studies are needed to define
the in vivo cytotoxic effects of surfactin and clarify its precise molecular mechanism(s)
of action.
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