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STEPHEN F. ALTSCHUL1 and ANDREW F. NEUWALD2

ABSTRACT

We study a simple abstract problem motivated by a variety of applications in protein
sequence analysis. Consider a string of 0s and 1s of length L, and containing D 1s. If we
believe that some or all of the 1s may be clustered near the start of the sequence, which
subset is the most significantly so clustered, and how significant is this clustering? We
approach this question using the minimum description length principle and illustrate its
application by analyzing residues that distinguish translational initiation and elongation
factor guanosine triphosphatases (GTPases) from other P-loop GTPases. Within a structure
of yeast elongation factor 1a, these residues form a significant cluster centered on a region
implicated in guanine nucleotide exchange. Various biomedical questions may be cast as the
abstract problem considered here.

Keywords: cluster analysis, Minimum Description Length principle, Jeffreys’ priors.

1. INTRODUCTION

In the study of proteins, a variety of methods derive, from analyzing a multiple alignment of related

sequences or a corresponding phylogenetic tree, predictions that a specific set of residues within a

particular protein are functionally important (Lichtarge et al., 1996; Mihalek et al., 2004; Fischer et al., 2008;

Sankararaman and Sjölander, 2008; Janda et al., 2012; Neuwald and Altschul, 2016). When a three-

dimensional structure is available for that protein, the residues so identified may appear to form one or more

spatial clusters perhaps indicative of active sites or other functional modules. How can we identify the set of

residues that best constitute such a cluster, and determine whether the cluster is statistically significant or can

be explained completely by chance?

Pioneering work on this question was done by Karlin and Zhu (1996), who suggested that orders for the

amino acid residues in a protein other than their arrangement along the protein’s backbone could be studied.

Specifically, given a three-dimensional structure, one could reorder protein residues by their distance from

a specific starting residue or from a specific point in space; by their nearest distance to a progressively

growing residue set; by their distance to the center of mass of such a set; or by any other well-defined

criterion. Karlin and Zhu (1996) proposed seeking clusters of particular residue types within these
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reordered sequences. We use the first of these reordering methods here, and elsewhere describe several

others of utility in various biological contexts (Neuwald, Aravind and Altschul, submitted).

Our general approach diverges from Karlin and Zhu’s in three specific ways. First, we focus on clusters

of residues that are ‘‘distinguished’’ by a computer analysis of multiple alignments, rather than on residues

having specific physical–chemical properties such as charge (Karlin and Zhu, 1996; Zhu and Karlin, 1996).

This has no formal effect on our approach, only a motivational one. Second, we seek the most surprising

initial cluster along a sequence. In other words, we seek to define the best division of a sequence into an

initial segment with a high density of distinguished residues, and a terminal segment with a low density.

Finally, we assume we are given a fixed number of distinguished residues along a sequence, in contrast to

Karlin’s approach, which assumes a fixed independent probability for a residue being distinguished. In

other words, we derive statistics based on sampling without as opposed to with replacement.

Below we use the Minimum Description Length (MDL) principle (Grünwald, 2007) to formulate and

analyze our problem in simple abstract terms, and then illustrate its application to a specific protein

sequence and structure.

2. FORMALIZATION USING THE MDL PRINCIPLE

Assume we are given a sequence of length L consisting of D 1s and (L - D) 0s. We wish to compare the

hypothesis H1 that the 1s cluster near the start of the sequence with the null hypothesis H0 that the 1s and 0s

occur randomly.

The MDL principle defines a theory h as a probability distribution Ph over the space of all possible sets

of data. The description length (in bits) of a data set S given a theory h is then defined as DL(Sjh) =
- log2 [Ph(S)]. (Throughout this article, we assume logs to be base 2; when natural logarithms are needed, we

use the notation ln.) A model M is a parameterized set of theories, and the description length of S given M is

defined as DL(SjM) = minh2M DL(Sjh). The MDL principle asserts that given multiple models to explain S,

one should prefer the model M that minimizes DL(SjM) + COMP(M). Here, the description length or

complexity COMP(M) of a model M is the log of the number of effectively independent theories M contains.

A central element of MDL theory is the formal definition of COMP(M), and its calculation for specific models.

2.1. The description length of S given H0, and the complexity of H0

For our purposes, we take H0 to be the model consisting of a single Bernoulli trial theory for generating

S, with the probability of a 1 taken as P = D=L, and the probability of a 0 taken as Q = 1 - P. We then have

DL(SjH0) = - log PH0
(S) = - log PDQL - D

� �
= D log

L

D
+ (L - D) log

L

L - D
‚ (1)

which is L times the entropy of the Bernoulli trial. Because H0 contains only one theory, its complexity is

COMP(H0) = log (1) = 0. Note that, more formally, we could treat P as a parameter estimated from the data,

in which case the complexity of the resulting single-parameter model would be approximately 1
2

log (pL=2)

(Grünwald, 2007). However, because we will assume D to be fixed in our model H1 as well, where its

indeterminacy would add a similar complexity, we may avoid the complication of treating D as variable

when we wish simply to compare H0 to H1.

2.2. The description length of S given H1

The hypothesis H1 may be understood as a single-parameter model, whose parameter x describes the

location of a cut at a discrete point from 1 to L - 1 along the sequence S, thereby dividing it into an initial

segment S1 of length x, and a terminal segment S2 of length y = L - x. If S1 contains D1 1s, and S2 contains

D2 = (D - D1) 1s, assume at first that S1 is generated by Bernoulli trials with maximum-likelihood proba-

bility P1 = D1=x for a 1, and S2 is generated by Bernoulli trials with probability P2 = D2=y for a 1. Naively,

given a particular fixed value for our parameter x, the probability for the data S would seem to be

Kx(S) = PD1

1 (1 - P1)x - D1 PD2

2 (1 - P2)y - D2 : (2)

However, this equation estimates P1 (and therefore implicitly P2) by maximum-likelihood from the data S,

so Kx is not a probability distribution over the space of all possible data. To avoid adding a second
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parameter and attendant complexity to the model H1, we may define the probability Px for S as its

normalized maximum likelihood (NML) (Grünwald, 2007). This is simply

Px(S) = Kx(S)=Z‚ (3)

where Z is the sum of Kx(S) over all length-L sequences having D 1s. Note that using counting formulas,

one may calculate Z using at most D + 1 terms, corresponding to D1 equal to 0 to D. The description length

of the data S under H1 is then DL(SjH1) = - log [maxxPx(S)].

2.3. The complexity of H1

We still need to calculate the complexity of the model H1, which is the log of the effective number of

independent theories it contains. Intuitively, the problem is that while Px is a probability distribution for any

fixed x, we allow x to take on values from 1 to L - 1, each of which will yield a Px(S). When we select the

maximum, PX, it again becomes a likelihood, and we need to discount PX(S) for the multiple trials implicit

in the L - 1 possible choices for x. The Bonferroni correction, which simply multiplies PX(S) by L - 1, is

much too conservative, so we seek the number I of effectively independent values of x. For one-parameter

models parameterized by a continuous x, this is given by

I � 1ffiffiffiffiffiffi
2p
p

Z ffiffiffiffi
Jx

p
dx‚ (4)

where Jx is the Fisher information associated with parameter x (Grünwald, 2007). However, because our x

is discrete, we will study a continuous analog to our problem to approximate Jx and I. Specifically, we take

x as continuous, with domain (0‚ L), and the number of 1s observed in the initial and terminal segments to

be Poisson distributed. The NML probability for observing D1 1s in the initial segment [and therefore

D2 = (D - D1) 1s in the terminal segment] is then given by

f (D1) =
1

Z

kD1

1 e - k1

D1!

kD2

2 e - k2

D2!
‚ (5)

where k1 and k2 are the Poisson parameters associated, respectively, with the initial and terminal segments,

and Z is a normalization constant. Our assumption is that there are different probability densities L1 and L2

for the occurrences of 1s in the initial and terminal segments, so that when we vary x we can write

k1 =L1x and k2 =L2y‚ (6)

for constant L1 and L2. Combining Eqs. (5) and (6), we can view f (D1) as a function of x, and derive the

Fisher information for the parameter x (Grünwald, 2007) from

JX = - E
d2

dx2
ln f (D1)jx = X

� �
‚ (7)

where E[:] denotes the expected value. We begin by observing that

ln f (D1) = D1 ln x -L1x + D2 ln y -L2y + C‚ (8)

where C is a constant, so that

JX = E
D1

x2
+

D2

y2
jx = X

� �
=

E[D1jx = X]

X2
+

E[D2jx = X]

Y2
‚ (9)

where Y = L - X. From Eq. (5), one obtains E[D1] = e - D

Z

PD
i = 0

ii + 1jj

i! j! and E[D2] = e - D

Z

PD
i = 0

iijj + 1

i! j! , where j = D - i

and 00 is defined as 1 by continuity. A shortcut arises by observing that the expressions for E[D1] and E[D2]

are equal. Therefore, since D1 + D2 = D, we must have E[D1] = E[D2] = D=2, which then yields

JX =
D

2

1

X2
+

1

Y2

� �
: (10)

Our primary use for JX is to calculate the number I of effectively independent values of x. Substituting Jx

from Eq. (10) into Eq. (4), but returning to discrete x to obtain a sum, we get
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I � 1

2

ffiffiffiffi
D

p

r XL - 1

x = 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

x2
+

1

y2

s
: (11)

It is simple enough to calculate the sum. However, since the sum’s terms approach 1=x and 1=y for small

x and small y, respectively, for large L the sum itself should approach 2 ln (L) + C, or alternatively 2 ln (KL),

for some constants C and K. Computation shows that even for quite small L the sum may be very closely

approximated by 2 ln (1:024L), yielding

I �
ffiffiffiffi
D

p

r
ln (1:024 L): (12)

In the above analysis, we have made no distinction between cuts for which the initial segment has a

greater density of 1s than the terminal segment, and those for which it has a lesser density. For the

applications we envision, however, the latter case has no ready biological interpretation, so we wish to limit

H1 to the former case. Over the space of sequences, this discards half of all cuts H1 allows, so when we

impose this restriction we can effectively write COMP(H1) = log (I=2).

2.4. Flattening Jeffreys’ priors

One subtlety is that the approach we have taken above is essentially equivalent to a Bayesian approach,

in which Jeffreys’ priors are assigned to parameter x ( Jeffreys, 1946; Grünwald, 2007). Jeffreys’ priors are

proportional to the square root of the Fisher information, or in our case to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=x2 + 1=y2

p
. Inspection shows

this function to be U-shaped, diverging as x or y approaches 0, and with a minimum at x = L=2. However,

there is no biological reason to expect the location of real cut-points to follow such a prior. Indeed, as we

will illustrate below, the approach so far described has a tendency to trim or extend biologically significant

clusters unduly. For most applications it would be much more appropriate to specify flat or uniform priors

for x in place of Jeffreys’. We may attempt to do this by maximizing not Px(S) of Eq. (3), but rather

Rx(S) =
Px(S)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=x2 + 1=y2
p : (13)

This evidently favors intermediate values of x at the expense of extreme values and is a move toward

rendering the density of independent theories flat in x. (Although this approach does not have rigorous

theoretical support, we will show below, by random simulation, that it is reasonably effective.) Following

through, we define the ‘‘generalized description length of the data’’ as

DL�(SjH1) = - log [ max
x

Rx(S)]: (14)

When this is done, we conjecture that the corresponding formula for the ‘‘generalized number of

independent theories’’ is given by

I� �
ffiffiffiffi
D

p

r
(L - 1): (15)

As before, because we restrict H1 to initial segments with a greater density of 1s than terminal segments,

we get a generalized complexity COMP�(H1) = log (I�=2). We will refer to this somewhat heuristic approach

as using ‘‘Flattened’’ as opposed to Jeffreys’ priors, and explore its potential advantages below.

3. RANDOM SIMULATION

The MDL principle says that we should prefer H1 to H0 when DL(SjH1) + COMP(H1) <DL(SjH0) +
COMP(H0). Treating each hypothesis as equally likely a priori, we may view the difference D between

the two sides of this inequality as a log-odds ratio, and use the logistic function eD

1 + eD
to convert this into a

p-value; see p. 37 of Durbin et al. (1998). For any S for which H1 is preferred, there is a particular X that

optimizes Eq. (3), and a corresponding number D1 of 1s in the initial segment. To elucidate the effect of

Jeffreys’ priors, we generated 106 random sequences of length L = 601 (thus allowing X to range from 1 to
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600), each having D = 75 1s, and recorded the optimal X for all sequences for which H1 was preferred to H0.

We present in Panel A of Figure 1 a histogram (light bars) of the percentage of these Xs falling into each of

20 bins (i.e., 1–30, 31–60, etc.). Due to the shape of Jeffreys’ priors, bins with X near the extremes are

strongly preferred. The asymmetry arises from our requirement that the initial segment have a greater

density of 1s than the terminal. Applying Flattened rather than Jeffreys’ priors to the identical sequences

yields the alternative histogram (black bars). Although not flat, this histogram diverges, on average, much

less from a uniform 5% in each bin (indicated by the dotted horizontal line) than does the Jeffreys’

histogram.

In general, the choice of particular Bayesian priors becomes irrelevant for strong data, but can have a

noticeable effect when data are weaker. For illustrative purposes, we consider artificially skewed se-

quences, also with L = 601 and D = 75, but with 35 1s placed randomly within an initial segment of length

200, and 40 1s placed randomly within a terminal segment of length 401. Generating 106 such sequences,

we used alternatively Jeffreys’ and Flattened priors to find optimal Xs and D1s; panels B and C of Figure 1

show the distributions of observed Xs and D1s, respectively. Both Jeffreys’ and Flattened priors are most

likely to return an X within bin 7 (i.e., from 181 to 210) (Fig. 1B), which contains the ‘‘true’’ X = 200, as

well as to return the ‘‘true’’ D1 = 35 (Fig. 1C). However, Jeffreys’ priors have a marked tendency to trim or

extend the ‘‘true’’ result. For 13.3% of sequences it returns an X � 60 and for 3.4% an X � 541, compared

to 2.1% and 0.7% for Flattened priors. Relatedly, for 7.5% of sequences it returns D1 � 5 and for 4.6%

D1 � 71, compared to 0.2% and 1.5% for Flattened priors. In addition, for this example Jeffreys’ priors

return, on average, somewhat less significant results: 62.5% of sequences with a p-value � 0:1, as opposed

to 86.4%, and 8.6% with a p-value � 0:01, as opposed to 11.4%. For ‘‘true’’ cuts quite close to the

sequence boundaries, however, Jeffreys’ priors should have an advantage.

Given that Eq. (4) for I is an approximation, that we have made a further approximation in passing to a

continuous analog of our problem to calculate Jx, and that Eq. (15) for I� is conjectural, it is worth testing the

FIG. 1. The optimization of X and D1 using Jeffreys’ and Flattened priors. (A) Histogram for the optimal cut point X

from 106 random sequences with L = 601 and D = 75. Bins collect results for X from 1 to 30, 31 to 60, and so on.

(B) Histogram for the optimal cut point X from 106 random sequences with L = 601, 35 1s within the initial 200 positions,

and 40 1s within the terminal 401 positions. (C) Histogram for the optimal D1 from the same experiment as for (B).
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accuracy of our analysis by random simulation. For L = 250 and L = 500, and for each of D = 12, D = 25, and

D = 50, we generated 108 random sequences, and maximized alternatively Px ( Jeffreys’ priors) and Rx

(Flattened priors). In Figure 2 we plot, for P from 1 to 10 - 7, the observed proportion P� of sequences with

nominal p-value � P. In these log–log graphs, theory is represented by the dotted lines with slope 1. The

calculated p values tend to be somewhat conservative, that is, larger than the experimental ones. However, for

L = 500, P� differs from P, within statistical error, by � 33% when P � 0:001, and for L = 250 by � 39%.

The conservative nature of our calculated p-values can be partially understood by noticing that the

Poisson model we use to derive the Fisher information, and thus to calculate I, allows an arbitrary number

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P*

L=250

D=12

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P*

L=500

D=12

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
*

L=250

D=25

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
*

L=500

D=25

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P*

L=250

D=50

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

P*

L=500

D=50

FIG. 2. Observed p values P� as a function of calculated p values P. 108 random sequences were generated for each

of L = 250 and L = 500, and D = 12, D = 25, and D = 50. Jeffreys’ and Flattened prior optimizations are represented by

circles and crosses, respectively.
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of the D 1s to occur before any cut, whereas in fact at most X 1s may occur before the cut X, and symmetrically

at most Y 1s may occur after such a cut. This aspect of our approximation should on average yield a greater

error the larger D is with respect to L, as we observe in the examples here, as well as in others not shown. A

simple heuristic correction that renders the calculated P on average in closer agreement with P� is to multiply

either I or I� of Eqs. (4) and (15) by 1 - r, where r � D=L is the proportion of (D1‚ X) pairs allowed by the

Poisson model but excluded by the discrete considerations that D1 � X and D2 � Y . The resulting corrected

values of P remain on average conservative but, in all cases considered, now differ from experiment by�28%

when P � 0:001. We use this correction when calculating p values in the following section.

4. APPLICATION

To apply our theory to a particular protein we require, (a) a criterion for ‘‘distinguishing’’ particular

amino acid residues, which we then represent as 1s, with all others represented as 0s, and (b) a criterion for

ordering these residues, which in general does not correspond to the order imposed by the protein’s

backbone. Typically we distinguish residues based on a prediction of their importance or relevance, which

may arise from the analysis of a multiple alignment, and we order residues based on some definition of

structural distance, possibly from a fixed point in space. We may allow a particular, selected residue to

provide such a point, in which case this ‘‘index’’ residue is omitted from the sequence.

As an illustration, we here analyze the P-loop GTPase domain (Hall, 2000) of the elongation factor

eEF1A. GTPases constitute a large, functionally diverse protein superfamily (Leipe et al., 2002), for which

hundreds of thousands of sequences are currently available. We aligned 127,418 GTPase domain sequences

that were < 95% identical and partitioned these sequences into subgroups, based on the particular patterns

of residues characteristic of each subgroup (Neuwald, 2011, 2014). eEF1A was assigned to a set of

translation initiation and elongation factors (TIEFs), and we used this subgroup’s pattern of characteristic

residues to distinguish D = 20 of eEF1A’s L = 158 residues. Next, we used the structure of yeast eEF1A

bound to the guanine nucleotide exchange factor (GEF) eEF1Ba (pdb: 1g7c) (Andersen et al., 2001) to

order eEF1A’s residues, as follows. GEFs catalyze the exchange of guanosine diphosphate (GDP) bound to

the GTPase domain, a process for which disruption of the GTPase Mg + + binding site is believed to play a

critical role. A lysine residue (K205) in eEF1Ba appears to play a critical role in nucleotide exchange:

K205 inserts into the Mg + + binding site of eEF1A and is lethal when mutated. For this reason, we ordered

eEF1A’s residues by their distance from K205 of eEF1Ba.

Applying our approach with Flattened priors to the resulting sequence of 0s and 1s yields a cut at X = 88

with D1 = 20, that is, with all 20 distinguished residues in the initial segment; this division is highly

significant, with p-value 5:4 · 10 - 6. If we distinguish instead the D = 20 residue positions that are most

FIG. 3. Initial cluster analysis of residues within the

yeast elongation factor eEF1A GTPase domain bound to

the nucleotide exchange factor eEF1Ba (pdb_id: 1g7c).

Color scheme: eEF1A GTPase domain, green; eEF1A

switch I and II regions, brown; eEF1A domains II and III,

gray; eEF1Ba, marine blue; GMP, cyan; side chains of

TIEF-specific and GTPase-conserved residues included in

initial clusters, red and yellow, respectively (two side

chains common to both clusters are colored red). K205 of

eEF1Ba and G70 of eEF1A, which were used as (alter-

native) focal points, are indicated. GMP, guanosine-50-
monophosphate; TIEF, translation initiation and elongation

factor.
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distinctive of all P-loop GTPases, we find an optimal cut with X = 66 and D1 = 17, and p-value 1:1 · 10 - 6.

Jeffreys’ priors yield the same cuts in both cases, although with different but still highly significant p

values.

In Figure 3, we show these clusters within the eEF1A-eEF1Ba crystal structure. The 20 TIEF-specific

residues and 17 GTPase-specific residues surround the bound eEF1Ba and map to the P-loop and switch I and

II regions, which undergo functionally relevant conformational changes (Hall, 2000) associated with both

sensing GTP versus GDP and with nucleotide exchange. Both K205 and the bound Mg + + ion are positioned

near both the active site (generally conserved in all GTPases) and the switch I and II regions, which sense and

transmit to other cellular components whether the domain is bound to GDP or to GTP. These facts suggest

why residue sets characteristic for TIEF and for GTPase sequences should cluster near K205 of eEF1Ba.

To illustrate how Flattened and Jeffreys’ priors can yield different results, we performed the same TIEF-

specific analysis, except with residues ordered by their distance from G70 of eEF1A rather than from K205

of eEF1Ba, shifting the focus of analysis to the switch I region. (The index residue G70 is accordingly

ignored, yielding D = 19 and L = 157.) Jeffreys’ priors return a cut with X = 7, D1 = 7, and p = 2:4 · 10 - 7,

whereas Flattened priors return a cut with X = 60, D1 = 18, and p = 3:3 · 10 - 7; see Figure 4. In this case,

Jeffreys’ priors favor a cut near the start of the sequence, but Flattened prior eliminates this bias and,

notably, identifies nearly the same cluster as before. Both cuts and their associated clusters have biolog-

ically relevant interpretations, although with somewhat different focuses.

5. CONCLUSION

Given a string of 0s and 1s, we have developed two methods to divide it into initial and terminal

segments, with high and low concentrations of 1s, respectively, and to assess whether these segments differ

significantly in their concentrations of 1s. The first method finds the maximum-likelihood division, but has

a tendency to cut the sequence near its ends, which arises from the implicit use of Jeffreys’ priors for the cut

location. The second method seeks to counteract this tendency by flattening the implicit priors. C code

implementing these methods is available from the authors on request. We have illustrated these methods by

using them to identify statistically significant spatial clusters among residues that distinguish translational

initiation and elongation factor GTPases from other P-loop GTPases. We will describe extensive appli-

cations elsewhere (Neuwald, Aravind and Altschul, submitted). Potential applications of our approach

extend beyond protein sequence/structural analysis. One such application, for instance, would be to look for

a significant association between a particular human microbiome-associated disease and RNA-Seq ex-

pression levels of a candidate microbial gene postulated to be responsible for the disease symptoms. In this

case, both symptomatic and asymptomatic subjects could be ordered from highest to lowest levels of

microbial gene expression; significant clustering of symptomatic subjects near the start point would in-

dicate an association. Additional biomedical applications may similarly be devised.
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