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ABSTRACT: The high price of marketing of extra virgin olive oil (EVOO) requires the introduction of cost-effective and
sustainable procedures that facilitate its authentication, avoiding fraud in the sector. Contrary to classical techniques (such as
chromatography), near-infrared (NIR) spectroscopy does not need derivatization of the sample with proper integration of separated
peaks and is more reliable, rapid, and cost-effective. In this work, principal component analysis (PCA) and then redundancy analysis
(RDA)�which can be seen as a constrained version of PCA�are used to summarize the high-dimensional NIR spectral
information. Then PCA and RDA factors are contemplated as explanatory variables in models to authenticate oils from qualitative or
quantitative analysis, in particular, in the prediction of the percentage of EVOO in blended oils or in the classification of EVOO or
other vegetable oils (sunflower, hazelnut, corn, or linseed oil) by the use of some machine learning algorithms. As a conclusion, the
results highlight the potential of RDA factors in prediction and classification because they appreciably improve the results obtained
from PCA factors in calibration and validation.

■ INTRODUCTION
Extra virgin olive oil (EVOO) is an excellent edible oil that is
greatly prized for its taste and its beneficial health properties.1,2

It consists of an Olea europaea juice obtained by mechanical
procedures only, thus maintaining all of their favorable
characteristics. EVOO is formed by a complex matrix of
chemical compounds of two main groups. The saponifiable
fraction or major component consists of fatty acids that usually
form esters, most often with glycerol, to produce glycerides
(mono-, di-, and triacylglycerols) and phosphatides and some
free fatty acids. The fatty acids are classified as saturated fatty
acids (SAFAs), including palmitic, margaric, stearic, and
arachidic acids; monounsaturated fatty acids (MUFAs),
including palmitoleic, margaroleic, oleic, vaccenic, and gadoleic
acids; and polyunsaturated fatty acids (PUFAs), including

linoleic and linolenic acid. Oleic acid is the fatty acid present in
the highest percentage (55−85%) and provides EVOO with a
monounsaturated oil character, in contrast with other cheaper
oils extracted from oilseeds that are richer in PUFAs. The
unsaponifiable fraction or minor component consists of a
heterogeneous group of chemicals such as sterols, fatty
alcohols, pigments (chlorophylls and carotenoids), tocopherols
and tocotrienols, and volatile and phenolic compounds.
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Due to its high quality, EVOO is subject to fraud in its
marketing, like adulterations with lower-quality oils (halzenut,
sunflower, linseed, palm, and corn oils, among others). For this
reason, the establishment of procedures to achieve reliable
authentication of EVOO is essential. Classical techniques such
as chromatography (gas and liquid) for separation coupled to
other identification methods are widely used to determine the
traceability of olive oil and provide some well-resolved
information.3−5 Therefore, for instance, the study of the fatty
acid profile (by gas chromatography (GC) as fatty acid methyl
esters (FAMEs)) can lead to the detection of adulterations of
virgin olive oils with deodorized6 and other vegetable3 oils.
However, chromatographic techniques are slow and expensive
and require sample preparation and the use of solvents. On the
other hand, vibrational spectroscopic analytical techniques
(e.g., near-infrared (NIR), mid-infrared (MIR), or Raman
spectroscopy) are also widely used in the determination of
olive oil adulterations.7−12 These techniques are fast, cost-
effective, and on-line and allow comprehensive analysis of the
olive oil since it is formed by a complex matrix of chemicals,
but they provide continuous information with overlapping
bands and signals that are not as clearly resolved as in the case
of conventional techniques. Therefore, the application of
chemometrics tools is required to extract some important
quantitative or qualitative information related to the
authentication of EVOO.11−15

Moreover, principal component analysis (PCA) is used in
linear modeling to synthesize high-dimensional information.
This is the case for NIR spectra of oils, where the number of
explanatory variables greatly exceeds the number of observa-
tions. PCA calculates linear combinations of the explanatory
variables by maximizing their variability. Redundancy analysis
(RDA) can be seen as a constrained version of PCA: given two
groups of variables, RDA searches for linear combinations of
variables in one group that maximize the variance of the other
group that is explained by each one of the linear combinations.
RDA has been recently applied and developed in works on
different issues such as health,16,17 biology,18 and the
environment.19 Moreover, some recent works9,12,20,21 have
used PCA to reduce NIR spectral information to classify oils
from different machine learning algorithms (e.g., linear
discriminant analysis (LDA) or support vector machine
(SVM)). However, the literature does not include applications
of RDA to reduce the high dimensionality of NIR spectra with
the objective of predicting a numerical or non-numerical
variable (e.g., the content of any compound or the type of
vegetable oil, respectively) to improve the authentication of
EVOO.

Therefore, the aim of this study is to use both PCA and
RDA to reduce the high-dimensional NIR spectral information
on oils. The corresponding PCA and RDA factors are included
as explanatory variables, first in regression models to predict
the percentage of EVOO in blended oils and second in
machine learning classification models to estimate the type of
pure vegetable oil or the class of adulterated mixture. The
quantitative and qualitative results are compared in terms of
calibration and validation, that is, taking into account
estimation errors from data used or not used in the modeling.
As a conclusion, RDA factors provide the best results in
regression and classification, and therefore, their potential in
the authentication of EVOO is highlighted.

In particular, the structure of the paper is the following. The
next section describes the data acquisition process (for GC and

NIR data) and the statistical methodology. Next, the results are
presented and discussed: first, PCA and RDA are used for NIR
dimensionality reduction; second, PCA and RDA factors are
considered as explanatory variables in quantitative models for
EVOO percentage estimation and in qualitative models for
predicting the pure vegetable oil or, for a certain vegetable oil,
the type of mixture with EVOO. Finally, the last section
includes the main conclusions of the work and some future
research lines.

■ MATERIALS AND METHODS
Samples. The study includes 30 EVOO samples with a

Protected Designation of Origin (PDO)�particularly, from
the Andalusian Estepa (Sevilla) PDO�with the aim to ensure
its purity. In addition, 480 oils were obtained from adulteration
or mixture of EVOO with four lower-quality vegetable oils
(refined hazelnut, sunflower, linseed, or corn oil purchased
from stores) at six levels: 2, 10, 15, 25, 50, and 75 wt % (20
samples of each vegetable oil and percentage of adulteration).
The low percentages of adulteration were selected to represent
the type of real adulteration found in the market. All levels of
adulteration discussed are listed as weight percentages as
described in the following equation:

adulteration
mass of adulterant

total mass of sample
100= ×

where the total mass of sample was 5 g.
The mixtures were shaken vigorously to ensure complete

homogenization, and all of the samples were bottled in amber
glass flasks and maintained in the dark at 2 °C until analysis.
Finally, 80 samples corresponded to pure refined hazelnut,
sunflower, linseed, or corn oil (20 samples of each type).

Gas Chromatography. The determination of fatty acid
composition by GC was carried out according to official
methods for controlling olive and pomace oil stabilized by the
European Union Commission22 and the International Olive
Oil Council.23,24 An Agilent 7890A gas chromatograph with a
capillary column (SGE BPX-70 FORTE 50 m × 220 μm ×
0.25 μm) was used. A flame ionization detector (FID) was
used, as it is one of the most used and versatile. The analysis
conditions were as follows: the inlet temperature was 250 °C;
the injection volume was 2 μL; the detector temperature was
260 °C; and the oven temperature was programmed to remain
at 180 °C for 15 min and then raised to 240 °C at a rate of 4
°C/min and maintained at this temperature for 5 min.
Analyses were carried out in triplicate using the average values
in the statistical study. Oil samples were initially subjected to a
cold transesterification process to convert triacylglycerols into
FAMEs. This method is intended for edible oils with acidity
index lower than 3.3°. In this process, 0.1 g of oil was
transferred to a 5 mL volumetric flask, and then 2 mL of n-
heptane and 0.2 mL of 2 N KOH in methanol were added. The
mixture was vigorously stirred, and then the methyl esters were
extracted and subjected to analysis by GC. The oil
composition in terms of SAFAs, MUFAs, and PUFAs was
determined from the corresponding GC chromatogram. These
values were considered as a reference for statistical studies.

NIR Spectra. Transflectance NIR spectra were collected
with a NTS Spectrum One FT-NIR spectrophotometer
(PerkinElmer LLC, Shelton, CT, USA) equipped with an
integrating sphere module, available at the Central Service of
Research Support (SCAI) of the University of Cordoba. The
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analysis was carried out not later than 15 days from the date of
receipt of samples, which were stored in the refrigerator at 4
°C so that their properties were not altered.25 Spectra were
obtained using Spectrum Software 5.0.1 (PerkinElmer LLC).
The reflectance (log 1/R) spectra were collected with two
different reflectors with the same material and shape to avoid
measurement errors and rule out variability. Besides, spectra
were smoothed by the technique of Savitzky and Golay,26

which applies local polynomial least-squares regression to
avoid instrumental random noise. Finally, the first derivatives
of the spectra were obtained to avoid the effect of baseline
deviation. Once pretreated, 1237 NIR data associated with
measurements for each case (which represent the energy
absorbed by each sample for each of the 1237 wavelengths
from 800.62 to 2499.64 nm) were provided. Typical NIR
spectra of an EVOO and other vegetable oils are depicted in
Figure 1.

Statistical Methodology. As stated above, principal
component analysis is a widely used in statistical linear models
with a number of explanatory variables that greatly exceeds the
number of observations (as in the case of spectral NIR data).
From the explanatory variables, PCA calculates a reduced
number of orthogonal components or latent factors that
summarize the information in the data. These PCA factors
maximize the variance among the explanatory variables.
Usually, a reduced number of PCA factors are enough to
explain a high percentage of the variability of the data and thus
prevent overfitting of the model. The objective is not only to
summarize the information in a few components but
fundamentally to use those components as explanatory
variables in quantitative or qualitative statistical models.

Moreover, let y1, y2, ..., yn and let ŷ1, ŷ2, ..., ŷn be the
observations of a numerical dependent variable Y and the
predictions from a regression model, respectively, and let sY

2

and sŶ
2 be the corresponding variances. The coefficient of

determination, R2 = sŶ
2/sY

2, ranges in the interval [0, 1] and
evaluates the goodness of fit of the model, which is better as R2

approaches 1. Specifically, this coefficient measures the
calibration or training capability of the model, as it is
calculated from data used for the estimation of the model.
Given the predictions for the future t observations of the
regression model, ŷn+1, ŷn+2, ..., ŷn+t, the mean square error of

the prediction, MSEP = ∑j=1
t (yn+j − ŷn+j)2/t, evaluates its

prediction (test or validation) capability. As the MSEP
depends on the squared measurement units of Y, the following
dimensionless expression is defined: DRMSEP = RMSEP/y ,
where RMSEP is the square root of the MSEP and y is the
average of the observations ŷn+1, ŷn+2, ..., ŷn+t. The test capability
of a model is obviously better as DRMSEP approaches 0.
Besides, R2 and DRMSEP can be cross-validated by simulation,
that is, by the design of an algorithm that modifies the partition
of the original data set into calibration and validation data
subsets at each iteration.

Furthermore, canonical redundancy analysis (RDA) is a
technique of multivariate analysis where a matrix of response
variables Y is explained by a matrix of explanatory variables X.
Linearity and variance homogeneity between the variables of
matrices X and Y are the main assumptions. Once X and Y are
standardized to avoid the effect of the measurement units,
RDA is developed in two steps: (i) multivariate regression of Y
on X, which produces a matrix of fitted values Ŷ, and (ii) PCA
of Ŷ to reduce its dimension in the called RDA components or
redundancy axes. Each eigenvalue of the correlation matrix of
the variables of Ŷ, λj for j = 1, ..., g, represents the variance of
the corresponding redundancy axis. The goodness of fit of the
technique is measured by the following quotient, called the
redundancy index:

Rm
j
m

j

j
g

j

2 1

1

= =

=

where m is the number of the first redundancy axes (among the
possible g RDA components) to retain.a The interpretation of
the redundancy index is similar to that of a coefficient of
determination: the reliability of the analysis is higher as the
redundancy index approaches 1. As a result, matrices X and Y
are represented in the two- or three-dimensional space formed
by the first RDA factors. In this representation, the variables or
cases with the highest scores (coordinates) are used to
interpret the axes and show which variables or cases are
discriminated by RDA. On the contrary, the proximity between
variables or cases represents the high association between
them. RDA is an alternative to canonical correlation analysis
(CCA) presented by authors such as Rao27 and Van de
Wollenberg;28 more recently, Legendre et al.29 tested the
significance of the redundancy axes in RDA.

Among the machine learning classification procedures (i.e.,
in the case in which the dependent variable is qualitative or
non-numeric) from chemical data,30,31 this study applies
supervised classification, as the grouping into classes is
previously known. First, linear discriminant analysis (LDA)
predicts the membership of data to several a priori-defined
classes. The discriminant functions are given as linear
combinations of the explanatory variables, and their discrim-
ination power can be measured by their corresponding
canonical correlation, that is, the square root of the ratio
between the intergroup sum of squares and the total sum of
squares. Second, in classif ication and regression trees (CARTs),
the task of data mining for the class estimation is built on
particular characteristics of the data set. The procedure
recursively partitions the data set and fits a simple prediction
model within each partition with the aim of detecting what
attribute or characteristic is the best forecaster for the accurate
calculation of the problem, with prediction error measured in

Figure 1. NIR spectra of EVOO and other vegetable oils.
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terms of misclassification cost. In the third place, k nearest
neighbor (KNN) is a nonparametric and nonlinear technique
for pattern recognition statistical estimation. The algorithm
assigns each new case to the class most common among the
plurality vote of its k nearest neighbors. The assignment is
based on a distance function. The appropriate distance to use
depends on the type of the classified variable, with the
Hamming distance being the one used for non-numerical
variables. Then, in support vector machine (SVM), each data
point is viewed as a p-dimensional vector, and the aim is to
separate such points with a (p − 1)-dimensional hyperplane.
The best separation is achieved by the hyperplane that has the
largest distance to the nearest training data point of any class
and is associated in general with the lowest global error of
classification. Finally, random forest (RF) is a combination of
tree predictors such that each tree depends on the values of a
random vector sampled independently and with the same
distribution. The generalization error depends on the strength
of the individual trees in the forest and the correlation between
them. Internal estimates are also used to measure variable
importance.

All of the previous machine learning classification algorithms
are evaluated by using the accuracy, that is, the percentage of
correctly classified instances out of all instances. Besides,
another metric is also considered, Kappa, a measure similar to
classification accuracy except that it is normalized at the
baseline of random chance on the data set and it is more
appropriate for problems with an imbalance in the classes.
Accuracy and Kappab were calculated for calibration and
validation, that is, taking into account data used or not used in
the modeling.

As for the software, the R packages “pls”,32 “vegan”,33 and
“caret”34 were used to obtain the PCA factors from NIR
spectra and develop the multivariate analysis of RDA and
machine learning classification. Detailed information on the
code of the programs can be seen in the Supporting
Information.

■ RESULTS AND DISCUSSION
The authentication of EVOO requires the application of fast,
reliable, and cost-effective analytical procedures with no or
little sample manipulation, such as NIR spectroscopy. Besides,
NIR spectroscopy can be considered a green technology
because it involves a low environmental impact.35 The
assignment of bands in the NIR spectrum is straightforward,
but the application of chemometrics is required to extract the
maximum relevant information from the spectrum.

PCA for NIR Dimensionality Reduction. First, the large
amount of information contained in the NIR spectra is
summarized by the use of PCA analysis. To prevent overfitting
and to take into account some recommendations in the
literature, such as the usual Kaiser criterion, three PCA factors
were retained in this study: the proportions of explained
variance for PCA1, PCA2, and PCA3 were 61.82, 30.32, and
6.26%, respectively (98.40% in total), and the eigenvalue
associated with PCA4 was less than 1. Besides, as has been
proved, the capability of the following analyses was not
improved increasing the number of retained factors.

RDA for Visualization and NIR Dimensionality
Reduction. As mentioned above, RDA is a constrained
version of PCA, as it can reduce the high dimensionality of
NIR spectra by taking into account the cause−effect

Figure 2. RDA representation from PCA factors.
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relationship with the fatty acid profile obtained from GC,
which is used as reference classical tecnique. Figure 2 shows
the results of the application of RDA in the two-dimensional
space formed by the first RDA components (RDA1 and RDA2,
the ones explaining the highest percentage of variability of
data) and containing (a) the fatty acid profile in SAFAs,
MUFAs, and PUFAs (in orange); (b) the PCA factors
summarizing the NIR spectral information (in gray); (c) the
cases, using different colors for each oil (black, red, green, blue,
and pink for Estepa PDO oil and mixtures with sunflower,
hazelnut, corn, and linseed oils, respectively) and distinct

symbols for the percentage of adulteration in mixtures (solid
circles, solid triangles, solid squares, asterisks, crossed
diamonds, open triangles, open diamonds, and open circles
for EVOO and mixtures with 2, 10, 15, 25, 50, 75, and 100
percent adulteration, respectively). The RDA index is very
close to 1, which indicates that the percentage of the total
variance of Y (fatty acid content) explained by the two first
RDA components is very close to 100% and thus highlights the
excellent result in the goodness of fit of the procedure.

In the analysis of the RDA visualization of the data, the
interpretation of the axes can be done by taking into account

Figure 3. Cross-validated R2 and DRMSEP for EVOO percentage prediction from PCA and RDA factors.

Figure 4. Accuracy and Kappa for calibration and validation in classification of pure oils from PCA and RDA factors and different algorithms.
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the points with the highest scores in absolute value. Besides,
the proximity between cases and variables represents their
association. Therefore, in this case, Figure 2 shows that RDA1
discriminates between oils as a function of their content in
PUFA and SAFA−MUFA, while RDA2 to a lesser extent
discriminates between the content of SAFA and MUFA. Thus,
more in particular, (i) linseed oil (pink), corn oil (blue), and
sunflower oil (red) show a high percentage in PUFA and a low
percentage in MUFA; (ii) hazelnut oil (green) has a low
percentage in SAFA and a high content in MUFA; and (iii)
EVOO has a low percentage in PUFA and high content in
MUFA and SAFA. These results are similar to the ones
obtained in other studies.36−38

Moreover, RDA, considered as constrained form of PCA,
provides a procedure for reducing the high-dimensional NIR
spectral information, and the scores of cases in RDA1, RDA2,
and RDA3 will be considered as explanatory variables in the
following sections, where quantitative and qualitative models
for authenticating vegetable oils are presented. Besides, the
results will be compared with the ones obtained for the scores
in PCA1, PCA2, and PCA3.

Quantitative Analysis from PCA and RDA Factors:
EVOO Percentage Prediction. This section evaluates
regression models predicting the percentage of EVOO of
every oil mixture and considering as explanatory variables the
factors previously obtained by PCA and RDA analysis. The

reliable estimation of this percentage is very important in the
authentication of oils.7 The results of calibration (R2) and
validation (DRMSEP) are presented in Figure 3, which
simulates 100 different selections in the training and test
subsets in order to cross-validate the results. Besides, the
corresponding average values are included in the legends at the
bottom left in the figures: R2 shows values closer to 1 and
DRMSEP closer to 0 when RDA factors are used instead of
PCA factors (see the solid green lines vs dashed red lines,
respectively). Therefore, RDA factors are the best ones in the
estimation of calibration and validation.

Qualitative Analysis from PCA and RDA Factors:
Classification of Oils. In this section, PCA and RDA factors
are used as explanatory variables in machine learning
classification models. First, the type of pure oil (distinguishing
among Estepa PDO, sunflower, hazelnut, corn, and linseed
oils) is considered as response variable. Then the classes of the
dependent variable are defined, for every mixture of EVOO
and another vegetable oil, as a function of the blend percentage
(2, 10, 15, 25, 50, 75, 100%).

Figure 4 compares the results in calibration and validation
(Y axis) in the classification of the pure (not-blended) oils for
the cases in which the NIR spectral information is summarized
in PCA (dashed red lines) and RDA (solid green lines) factors.
The machine learning classification algorithm (LDA, CART,
KNN, SVM, or RF) is indicated on the X axis. The results are

Table 1. Accuracy for Calibration in Classification of Blended Oils from PCA and RDA Factors and Different Algorithmsa

correct classification (%)

sunflower hazelnut corn linseed

PCA RDA Dif PCA RDA Dif PCA RDA Dif PCA RDA Dif

LDA 81.601 96.258 ↑ 76.823 80.788 ↑ 90.050 85.828 ↓ 74.151 95.364 ↑
CART 59.222 75.359 ↑ 56.040 58.318 ↑ 47.681 76.192 ↑ 53.500 84.080 ↑
KNN 82.677 94.591 ↑ 85.848 85.767 ↓ 91.348 86.828 ↓ 77.060 86.419 ↑
SVM 69.505 95.348 ↑ 75.752 89.510 ↑ 90.070 94.313 ↑ 63.515 96.182 ↑
RF 78.859 98.258 ↑ 85.843 92.328 ↑ 86.864 97.182 ↑ 70.333 98.182 ↑

aDif indicates ↑ or ↓ if the sign of RDA − PCA is positive or negative, respectively.

Table 2. Kappa for Calibration in Classification of Blended Oils from PCA and RDA Factors and Different Algorithmsa

correct classification (%)

sunflower hazelnut corn linseed

PCA RDA Dif PCA RDA Dif PCA RDA Dif PCA RDA Dif

LDA 78.248 95.532 ↑ 72.465 77.122 ↑ 88.214 83.241 ↓ 69.426 94.496 ↑
CART 52.380 71.674 ↑ 49.132 51.321 ↑ 38.322 72.515 ↑ 46.350 81.602 ↑
KNN 79.626 93.579 ↑ 83.259 83.055 ↓ 89.778 84.452 ↓ 72.912 83.759 ↑
SVM 64.244 94.479 ↑ 71.317 87.625 ↑ 88.250 93.280 ↑ 56.965 95.458 ↑
RF 74.972 97.927 ↑ 83.285 90.890 ↑ 84.426 96.645 ↑ 65.174 97.843 ↑

aDif indicates ↑ or ↓ if the sign of RDA − PCA is positive or negative, respectively.

Table 3. Accuracy for Validation in Classification of Blended Oils from PCA and RDA Factors and Different Algorithmsa

correct classification (%)

sunflower hazelnut corn linseed

PCA RDA Dif PCA RDA Dif PCA RDA Dif PCA RDA Dif

LDA 82.857 97.143 ↑ 80.000 74.286 ↓ 88.571 88.571 ↑ 80.000 100.00 ↑
CART 42.857 51.429 ↑ 51.429 51.429 ↑ 37.143 51.429 ↑ 37.143 65.714 ↑
KNN 80.000 88.571 ↑ 82.857 85.714 ↑ 85.714 85.714 ↔ 74.285 88.571 ↑
SVM 80.000 94.286 ↑ 65.714 88.571 ↑ 80.000 91.429 ↑ 74.285 97.142 ↑
RF 74.286 97.143 ↑ 82.857 88.571 ↑ 88.571 94.285 ↑ 71.428 100.00 ↑

aDif indicates ↑ or ↓ if the sign of RDA − PCA is positive or negative, respectively, and ↔ if RDA − PCA is zero.
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evaluated using accuracy and Kappa measures. The random
number seed was reset before each iteration to ensure that the
evaluation of each algorithm was performed using exactly the
same calibration and validation subsets of data, so the results
are directly comparable. Definitively, Figure 4 shows that the
results in calibration and validation for accuracy and Kappa
and every classification algorithm are better when RDA factors
are used, as the correct classification rate is higher than the one
obtained for PCA factors.

Subsequently, Tables 1−4 present the results on calibration
and validation for every type of vegetable oil (sunflower,
hazelnut, corn, and linseed oil) and percentage of mixture with
EVOO. The table rows present the results for the different
machine learning procedures (LDA, CART, KNN, SVM, and
RF), and the table columns compare the percentages of correct
classification obtained from PCA and RDA factors for each
vegetable oil. In most of the classification algorithms, as
marked by the up arrows, the results provided from RDA
factors significantly improve the ones obtained from PCA
factors in calibration and validation (for both accuracy and
Kappa).

■ CONCLUSIONS
In this work, PCA was initially used to summarize the large
NIR spectral information in some components describing a
percentage of variability of data close to 100%. Then RDA, as a
constrained version of PCA, was also considered to reduce the
high-dimensional NIR spectral information. Later, both PCA
and RDA factors were contemplated as explanatory variables in
quantitative and qualitative estimation models useful to the
authentication of EVOO. In particular, a regression model was
considered to predict the numerical percentages of adulter-
ation of mixtures of EVOO and other vegetable oils. The cross-
validated results show that RDA factors provide better
measures of calibration and validation than PCA factors.
Besides, machine learning algorithms (i.e., LDA, CART, KNN,
SVM, and RF) were used to classify in the different pure
vegetables oils and, for a specific vegetable oil, in the class
given by the percentage blended with EVOO. The results,
measured by accuracy and Kappa for calibration and validation,
also highlight the potential of RDA factors versus PCA ones.
The reduction of NIR spectral information by using RDA
factors represents a novelty in this field13,14 that even enables a
percentage of correct classification near 100% for some
machine learning algorithms and types of vegetable oil.

Finally, this work can be extended in some directions. First,
recent works39−41 included relevant agroclimatic information,
besides chemical spectral information, in the regression models
to improve the estimation of the EVOO fatty acid profile. This
aspect could improve the discrimination between pure and

blended EVOO, as the redundancy analysis is based on the
fatty acid profile. Second, a previous study42 achieved better
predictions for the fatty acid content of oil from a functional
approach for the chemical spectral information instead of the
discretization treatment. Therefore, the functional version of
RDA43 could also be proved in the classification of oils. To
conclude, the Bayesian methods for NIR wavelet-based feature
selection44 and the treatment of the fatty acid profile of oils as
compositional data could also be investigated.45
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Table 4. Kappa for Validation in Classification of Blended Oils from PCA and RDA Factors and Different Algorithmsa

correct classification (%)

sunflower hazelnut corn linseed

PCA RDA Dif PCA RDA Dif PCA RDA Dif PCA RDA Dif

LDA 79.904 96.651 ↑ 76.560 70.000 ↓ 86.577 86.667 ↑ 76.644 100.00 ↑
CART 34.272 44.651 ↑ 44.392 44.651 ↑ 28.638 44.651 ↑ 28.704 60.747 ↑
KNN 76.510 86.551 ↑ 79.923 83.333 ↑ 83.205 83.253 ↑ 70.000 86.564 ↑
SVM 76.510 93.288 ↑ 59.801 86.641 ↑ 76.532 89.942 ↑ 69.914 96.647 ↑
RF 69.856 96.650 ↑ 80.000 86.641 ↑ 86.577 93.320 ↑ 66.571 100.00 ↑

aDif indicates ↑ or ↓ if the sign of RDA − PCA is positive or negative, respectively.
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■ ADDITIONAL NOTES
aThe proportion of the total variance of Y explained by each
redundancy axis k (k = 1, ...,g) is given by the quotient k

j
g

j1=
.

This proportion decreases from the first redundancy axis (with
the highest proportion associated) to the last.
bThese metrics have been selected as the usual default ones
provided by R Project software to evaluate and compare
models. However, other measures (e.g., sensitivity and
specificity) were calculated and provided similar results.
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