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Abstract

Neutral theory assumes all species and individuals in a community are ecologically equiva-

lent. This controversial hypothesis has been tested across many taxonomic groups and

environmental contexts, and successfully predicts species abundance distributions across

multiple high-diversity communities. However, it has been critiqued for its failure to predict a

broader range of community properties, particularly regarding community dynamics from

generational to geological timescales. Moreover, it is unclear whether neutrality can ever be

a true description of a community given the ubiquity of interspecific differences, which pre-

sumably lead to ecological inequivalences. Here we derive analytical predictions for when

and why non-neutral communities of consumers and resources may present neutral-like

outcomes, which we verify using numerical simulations. Our results, which span both static

and dynamical community properties, demonstrate the limitations of summarizing distribu-

tions to detect non-neutrality, and provide a potential explanation for the successes of neu-

tral theory as a description of macroecological pattern.

Author summary

The neutral theory of biodiversity assumes that species are ecologically equivalent. Given

the natural history observation of ubiquitous phenotypic differences between species, it is

surprising that neutral theory has successfully predicted a broad range of biodiversity pat-

terns, and simultaneously unsurprising that these results have not convinced ecologists

that the natural world is neutral. However, we have lacked a description of how neutrality

can emerge in a natural way from ecological mechanisms and species differences. Our

study sheds light on this question, providing a theoretical backdrop for the success of neu-

tral theory as a description of macroecological pattern. We derive a prediction for the

degree to which consumers must differ in preferences for different resources before the

resulting biodiversity patterns become distinguishable from neutrality. These predictions,

which we confirm using simulations, show that neutral-like outcomes are possible even

when resource requirements across consumers are very far from neutral. Our results can

be tested in experimental microbial communities, where, equipped with an inferred
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consumption network, our analysis can yield predictions for biodiversity patterns and

community turnover at different taxonomic levels.

Introduction

One of the central questions in community ecology is how species interactions affect commu-

nity structure and ecological dynamics, and conversely whether summarized representations

of the latter can be used to make inferences about the former. Macroecological patterns such

as species abundance distributions in particular have been extensively studied, and often used

in inference approaches [1–3].

However, these inference approaches have been called into question, especially following

intense debate over the merits of the neutral theory of biodiversity [1, 4–10]. Neutral theory

assumes that all species and individuals in a community are ecologically equivalent, and there-

fore community assembly is a purely stochastic process, with differences in species abundances

resulting from demographic noise [11, 12]. This hypothesis has been heavily tested across

many taxonomic groups and environmental contexts [13–16], and despite its radical assump-

tions, has had some success in describing macroecological patterns. Prominent among these

successes is the prediction of a broad range of species abundances, matching the functional

form for the species abundance distribution observed in multiple high-diversity communities

[12, 16–18]. On the other hand, the theory has been criticized on two fronts: first, it is unclear

whether neutral theory could successfully predict a broader range of community properties,

particularly regarding community dynamics from generational to geological timescales [19–

27]. Second, it has been argued that the patterns that neutral theory successfully fits do not

uniquely reflect the underlying ecological properties of the species involved; in particular, it

is possible that summarized indices of community structure and dynamics may look neutral

even when species are not ecologically equivalent [2, 27–31].

Some previous studies of neutral outcomes in non-neutral dynamics have focused on

phenomenological models of species interactions, such as Lotka-Volterra competition [32, 33].

One drawback of this approach is that the influence of demographic noise relative to ecological

selection can be tuned as a free parameter, rather than resulting endogenously from the inter-

actions between species and the resources they compete for. A study of consumer-resource

dynamics has shown that neutral behavior may result from metabolic tradeoffs guaranteeing

ecological equivalence between consumers [34]. However, consumers vastly outnumber

resources in those ecosystems, and therefore coexistence—and the accompanying neutrality—

requires those tradeoffs to be exact. It remains an open question whether species competing

for resources may appear neutral when their resource requirements are not fine tuned, and we

still lack a quantitative prediction for how large niche differences between consumers must be

in order for those differences to be reflected at the community scale.

Here we present a model of stochastic, non-neutral consumer-resource dynamics, with

which we investigate the potential for neutral-like outcomes from two perspectives: snapshots

of community structure, and dynamics over multiple timescales. Using a deterministic version

of our model, we derive predictions for a threshold between neutral and non-neutral behavior,

which we test against numerical simulations of the full model. Specifically, we hypothesize that

when the timescales of relaxation to equilibrium under non-neutral dynamics are commensu-

rate with the timescales of drift to extinction under neutral dynamics, the system will appear

neutral. We investigate two qualitatively different departures from neutrality to test this

hypothesis: a generalist scenario, where consumers have different preferences for resources
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but without a marked preferences for any one resource over others; and a specialist scenario,

where each consumer has its own preferred resource, while consuming all other resources at a

lower rate. Our analysis is based on these two particular ways to ‘break’ neutrality, but is not

confined to them. However, we demonstrate that these cases support our hypotheses: con-

sumer resource models with a degree of non-neutrality anywhere below our predicted thresh-

old display neutral-like dynamics and patterns.

Methods

Consumer-resource model

We base our analysis on a stochastic model of S consumers, whose abundances we denote by

Ni for i 2 {1, . . ., S}, that compete for K abiotic, substitutable resources, whose concentrations

are Rk for k 2 {1, . . ., K}. Resources are externally supplied, and depleted only by consumption.

Consumers grow purely through the consumption of these resources, and also undergo den-

sity-dependent mortality. While this is a challenging model to solve exactly, we can straightfor-

wardly simulate a stochastic process with these three event types: resource inflow, consumer

mortality, and consumption which may or may not lead to consumer reproduction. Let

T(X! Y) be the rate at which the species or resource with abundance X transitions to abun-

dance Y, while all others stay the same. Then the following events define our stochastic pro-

cess:

TðRk ! Rk þ 1Þ ¼ rk

TðNi ! Ni � 1Þ ¼ ZiNi

TðRk ! Rk � 1Þ ¼ ð1 � �ÞRk

P
jCkjNj

TðRk ! Rk � 1; Ni ! Ni þ 1Þ ¼ �RkCkiNi:

ð1Þ

The model in Eq 1 is conceptually represented in Fig 1. ρk is the inflow rate of the k-th

resource. Cij are non-negative coefficients which measure the rate of consumption of resource

i by consumer j, forming a K × S matrix, C. In this study we set K = S for simplicity of the anal-

ysis, but our main mathematical results hold in general (see S1 Appendix Section 3). �mea-

sures the consumers’ efficiency in converting resources into consumer biomass, being the

probability that a consumption event between resource k and consumer i results in a new indi-

vidual of consumer i (in other words, every consumption event results in a loss of one resource

unit, and a fraction � of them also result in a gain of one consumer). We originally set � to a

small fraction, reflecting a need for many resource units to be consumed before each reproduc-

tion event, but this had no effect on outcomes other than to slow down the dynamics. Thus we

set � = 1 for expediency. ηi is the per capita mortality rate for the i-th consumer.

Every consumer goes extinct over long enough time scales, but in any real ecological sys-

tem, speciation will tend to maintain species richness. Here we represent this balance in a sim-

ple way: every time a species with abundance Ni = 1 is selected for a death event (extinction),

we keep it at Ni = 1, while logging the time it took for the death event to occur. This is akin to

point speciation [35], although for simplicity we introduce the ‘new’ species with the same

resource profile as the ‘extinct’ species. Alternatively, this process could be interpreted as very

rare immigration events for that same species. While speciation and/or immigration can be

modeled at increasing levels of realism (e.g. [36, 37]), our results are primarily based on the

dynamics of extant species, and hence are largely insensitive to the details of this process. We

confirmed this robustness for the specialists scenario under an alternative speciation/immigra-

tion scheme (Figure K in S1 Appendix).
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In parallel, we consider a deterministic version of the same model:

_Rk ¼ rk � Rk

P
jCkjNj

_Ni ¼ �Ni

P
jCjiRj � ZiNi :

ð2Þ

This model represents a mean field approximation of the stochastic model in Eq 1, where we

drop moments of second order or higher—see S1 Appendix. Using this deterministic model,

we can calculate consumer and resource abundances at equilibrium. We will focus on coexis-

tence solutions, i.e. equilibria of Eq 2 where all resources and consumers have positive equilib-

rium abundances [38]. While ecological disturbance or other perturbations can lead to

important transient or cyclic behavior [39, 40], stable equilibria attract all nearby transient

states, and therefore have a special role in determining the behavior of a dynamical system.

Accordingly, they have been studied extensively in community ecology [41–43]. Let’s denote

the abundances by vectors~R ¼ R1 . . . RK �
T�

and ~N ¼ N1 . . . NS �
T�

and the inflow

and mortality rates by vectors~r ¼ r1 . . . rK �
T�

and~Z ¼ Z1 . . . ZS �
T�
. Then, given an

invertible matrix C, we can choose positive inflow and mortality vectors~r and~Z that lead to

any positive abundance vectors (~R� and ~N �) as equilibrium solutions of Eq 2. For simplicity,

Fig 1. Model scheme. The left panel is a schematic of the models in Eqs 1 and 2. Resources flow into the system at fixed rate ρi,
while consumers die at rates ηi Ni. The arrows connecting resources to consumers represent non-zero consumption coefficients

Cij. In this example, all consumers are capable of consuming resource 2, so there is community-wide competition for it. At the

same time, consumer 1 is the only consumer that can utilize resource 1 and, similarly, consumer 3 is the only consumer that can

deplete resource 3. The right panels are examples of the C matrices resulting from our two different parametrizations. In the

generalist case, each entry is an independent sample from the same probability distribution with positive support. In the

specialist case, consumer i can consumer resource i more quickly than any other resource. Other than this special resource,

consumers consume every other resource at the same rate.

https://doi.org/10.1371/journal.pcbi.1008102.g001
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we will choose~r and~Z so that all resources converge to a single value r and all consumers con-

verge to a value n. The values of the fixed points of Eq 2 correspond approximately to the aver-

age values of the abundances in Eq 1, so the stationary distribution for each consumer and

resource will have a mean of n and r respectively.

In both Eqs 1 and 2, consumer i is determined by its consumption preferences (the i-th col-

umn of C) and mortality rate ηi. Fixing a given set of equilibrium abundances determines~Z,

leaving the principal object of biological interest as the set of consumption preferences in C.

For example, if all entries in C are identical, we recover a neutral limit where all consumer spe-

cies have the same resource preferences. In this study we consider two different ways to move

away from this neutral limit, shown in Fig 1. The first, which we call the specialist scenario, is

when C has all diagonal entries equal to one value Cd, while all off-diagonal entries are equal to

another value Co, where Cd> Co. In this case, each consumer has a unique preferred resource

that they consume more quickly than all others. Other than this special resource, each species

consumes all other resources at the same rate. If Cd = Co, then all species are equivalent and we

expect the stochastic version of this model to behave neutrally. In our second parametrization,

called the generalist scenario, we sample each entry of C independently from a uniform distri-

bution with mean μ and variance σ2. When σ2 = 0, the entries of C are simply μ and we expect

the system to behave neutrally. As such, the magnitude of the ratio Cd/Co in the specialists sce-

nario, and the coefficient of variation CV = σ/μ of the matrix in the generalists scenario quan-

tify the system’s departure from neutral consumption preferences. Note that when CV = 0 in

the generalist scenario and Cd/Co = 1 in the specialist scenario, the species abundance distribu-

tion (SAD) can be shown analytically to be a log-series (see S1 Appendix Section 2).

In the next section, we predict the threshold values of these two measures of non-neutrality,

below which we predict the community dynamics will look neutral. In other words, we predict

how far from neutrality the model can be and still display neutral outcomes.

Neutral-niche threshold

In our stochastic process. demographic noise constantly perturbs species abundances away

from their deterministic equilibrium. At the same time, consumer-resource feedbacks push

those abundances back to equilibrium. The community may therefore display neutral- or

niche-like dynamics depending on the balance of influence between these forces. Because it is

difficult to calculate the rates at which the abundances return to equilibrium in the stochastic

model, we use the dynamics of the deterministic model near equilibrium as a proxy for the sta-

bilizing force that the consumers experience in the stochastic system. In S1 Appendix, we

show that in the neutral limit, the timescales of the dynamics of resources and consumers are

naturally quite different, such that resources reach equilibrium and respond to perturbations

much faster than consumers. Mathematically, this is reflected as a separation of the Jacobian

eigenvalues associated with resources and consumers. In particular, the characteristic time-

scales of resource dynamics are always much shorter than those of stochastic drift, and as a

result, resource abundances quickly converge to Poisson distributions (see Figures C and D in

S1 Appendix). This timescale separation is not an artifact of parameter choice; rather, it is a

structural feature of the model (see S1 Appendix Section 9). This phenomenon recapitulates

the classic expectation of fast resource dynamics relative to consumer dynamics, but does not

alone tell us whether or not the consumer system will be neutral-like. We thus turn our atten-

tion to consumer behavior for the remainder of this paper.

In order to identify a transition between niche and neutral dynamics, we consider a neu-

tral community where the average species abundance is n. Let �Z be the average consumer

mortality rate (such that 1=�Z is the expected lifespan of an individual) and let Tn be the
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expected time to extinction (measured in individual lifespans) for a species undergoing drift

from its mean abundance. We then use Tn=�Z as a characteristic timescale for drift in our

model—i.e. Tn=�Z is the timescale over which drift takes a species with average abundance all

the way to extinction. On the other hand, we use 1/|λ+| as the timescale for the stabilizing

mechanism, where λ+ is the most negative eigenvalue corresponding to consumer dynamics

in the deterministic model (i.e. λ+ determines the fastest timescale among the consumer

dynamics). If the characteristic time for consumer abundances to deterministically return to

equilibrium is much longer than the timescale for drift to cause large abundance fluctuations

(ie. if 1=jlþj � Tn=�Z), then drift should dominate consumer dynamics. This inequality also

suggests a threshold at which drift ceases to be a good description of the abundance patterns,

namely when 1=jlþj � Tn=�Z.

We should note here that our estimate of the characteristic timescale of the stabilizing

mechanism assumes that the linearized system is a good approximation to the actual dynamics

throughout a large range of abundances. In fact, the linearized system is only guaranteed to be

a good description in the neighborhood of the fixed point, but we hypothesize that it yields a

good order-of-magnitude estimate for this transition more generally (for another example of

this approach, see [44]).

In S1 Appendix, we derive λ+ in both of our parametrizations of C, and from it obtain ana-

lytical expressions for when drift should be a good description of abundance patterns at equi-

librium as a function of the other parameters in the model. For the generalist parametrization,

we find that the threshold for the coefficient of variation CV = σ/μ is

CV �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S

4n
1 �

�r
n2

� �
r

ð3Þ

so the square of the threshold CV value should inversely depend on the mean consumer abun-

dance n, if we disregard the second term in the parenthesis, which is small for our parameter

choices. For the specialist parametrization, we derive a threshold scaling for the ratio between

diagonal and off-diagonal elements of the consumption matrix, and find that

Cd

Co
�

1þ
ffiffiffi
g
p
ðS � 1Þ

1 �
ffiffiffi
g
p ð4Þ

where g ¼ 1

n 1 � �r
n2

� �
. So, the specialist threshold is linear with the number of consumers in the

community.

Testing for neutrality

We now test our predicted threshold by comparing our observations to neutral predictions

using both static and dynamical properties of the community. Neutrality can be generally

understood as symmetry at the species level, which corresponds to indifference in the fate of

individuals upon changing species labels among populations [45]. This can be achieved in

several ways [45–47]. Here we take the definition of [12], whereby neutrality occurs when

all individuals have the same probability of death and birth events regardless of species iden-

tity and abundance. This definition serves our purpose of showing that non-neutral species

may display neutral behavior at the community level when niche differentiation is not suffi-

ciently large.

Under neutrality, species abundances follow a distribution which, in high-diversity com-

munities, converges to Fisher’s log-series [48, 49]. The probability that a species has abundance
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k in this case is

Pk ¼ a
pk

k
; ð5Þ

where α = −1/log(1 − p), and the parameter p can be estimated from the mean abundance n by

solving the equation αp/(1 − p) = n. We fit the log-series distribution to our simulated commu-

nities using the discrete Cramér-von Mises goodness-of-fit test [50], and consider the fit suc-

cessful if the p-value exceeds 0.05.

To test our analytical predictions from the previous section, we define the neutrality thresh-

old as the point of departure from neutral resource preferences at which the probability of

a successful log-series fit drops below 50% (other choices for this probability cutoff do not

change results qualitatively, see S1 Appendix). We determine this probability by fitting the log-

series distribution onto ensembles of simulated communities, and running a logistic regression

of the successful and rejected fits against the neutrality index of the different ensembles. In

the generalist scenario, the neutrality index is the coefficient of variation in the consumption

matrix, while in the specialist scenario it is the ratio between on- and off-diagonal entries.

We next define a test for whether long-timescale neutral dynamics fail to hold when the

degree of non-neutrality of the consumer model passes through our predicted transition.

Given a species current abundance k, its life expectancy (i.e. time to extinction) Tk under neu-

tral dynamics has been shown to be [51]

Tk ¼
1

1 � p
p� kBðp; 1þ k; 0Þ þ Hk þ logð1 � pÞ
� �

; ð6Þ

where Hk is the k-th harmonic number [52], B(z;a, b) is the incomplete beta function, and p is

the log-series parameter (related to the speciation rate in neutral metacommunity models with

speciation events). The extinction time in Eq 6 is given in generation units, with a generation

time defined as the inverse of the mean mortality rate of consumers, 1=�Z, i.e. the expected

lifetime of an individual. In our numerical simulations, we obtain life expectancy estimates as

follows. Over the course of one simulation, after a burn-in period to ensure stationarity, we

record all species abundances every 30 minutes of simulation time, corresponding to roughly

54 (212) generations in the generalists (specialists) scenario, for a total of 30,000 generations of

simulation runtime in either scenario. An extinction event occurs when a species with abun-

dance 1 is chosen for a death event. Because in our model the state Ni = 0 is not allowed, multi-

ple extinction events may occur to the same species. Also, multiple abundance recordings may

occur between successive extinction events, such that when an extinction eventually occurs, it

will be linked to all previously recorded abundances since the last extinction. The time inter-

vals between abundance recordings were sufficiently large to ensure independent data points,

and the total runtime was long enough to observe extinctions in species with a wide range of

initial abundances.

Finally, we test for neutral behavior at shorter timescales by comparing temporal fluctua-

tions in species abundance against neutral predictions. For a subcritical stochastic birth-death

process representing neutral dynamics, [51] derived an expression for the probability that a

species has abundance n at time t given initial abundance n0 ([51], Eq. 2a). We use that expres-

sion to calculate the expected variance across histories of the stochastic process of the quantity

DðtÞ ¼ nðtÞ� n0ffiffiffin0
p [24], against which we compare our numerical observations. We use an ensemble

of 100 histories, sampling the communities every generation for up to 100 generations. A spe-

cies is considered to have zero abundance upon extinction, and we calculate the ensemble vari-

ance of D(t) across species with the same n0, and then average across all species with n0� 20
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(the cutoff was necessary because low-n0 species displayed noisy behavior at longer timescales,

and would require a larger ensemble).

Results

In the generalist scenario, when the coefficient of variation (CV) in the consumption matrix is

low (reflecting that consumers have similar preferences for all resources), the log-series distri-

bution fits the SAD (Fig 2A). However, as the CV of the consumption matrix increases, the

probability that the SAD conforms to the LS distribution declines (Fig 2B). For a community

with 50 species and 50 resources, where the average species abundance is 245 and the average

resource abundance is 100, a logistic regression indicates that the probability of a successful

log-series fit drops below 50% when the CV of the consumption matrix is higher than 0.23.

Defining this as the threshold for neutral-like patterns in the species abundance distribution,

we note a power law between CVthreshold and the mean species abundance n (Fig 2C), with an

exponent close to our predicted value of -0.5 from Eq 3. A similar agreement occurs when we

Fig 2. SAD results. Species abundance distribution (SAD) results for the generalists scenarios (A-C) and specialist

scenarios (D-F). A: In the generalist scenario, the log-series distribution (black curve) fits the SAD when the coefficient of

variation (CV) in the consumption matrix is sufficiently low (red points; Cramér-von Mises goodness-of-fit test p-value

0.78), but is rejected when the CV is sufficiently high (blue points; CvM test p-value 0.02). B: Probability that the logs-

series distribution fits the SAD decreases with the CV of the consumption matrix. Points and error bars show the mean

and standard error of the count of successful fits, out of an ensemble of 106 communities. Blue curve shows logistic

regression. The threshold CV, defined as the point where the probability falls below 50%, is CVthreshold = 0.23. C: log

(CVthreshold) has a linear relationship with log(n), with slope −0.61 ± 0.09. This indicates a power law between CVthreshold

and n, with an exponent close to our analytic prediction of −0.5. Error bars show uncertainty propagated from the

standard errors of the fitted parameters in the respective logistic regressions. Bands show the 95% CI of the linear

regression. D: In the specialists scenario, communities with low Cd/Co ratio (red points; CvM test p-value 0.267) conform

to the log-series distribution, while communities with sufficiently high Cd/Co (blue points; CvM test p-value<0.001)

reject the LS distribution. E: The probability of the LS distribution fitting the SAD decreases as Cd/Co increases, with the

threshold at Cthreshold
d ¼ 4:0 (we set Co = 1). Each data point summarizes an ensemble of 143 communities. F: Cthreshold

d
increases linearly with the number of species in the community, in qualitative agreement with Eq 4. Parameters: A-B: K =

S = 50, n = 500, r = 100. C: K = S = 50, r = 100. D-F: K = S = 50, n = r = 100.

https://doi.org/10.1371/journal.pcbi.1008102.g002
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draw the consumption rates in the C matrix from a normal distribution rather than a uniform

distribution (Figure N in S1 Appendix), as expected since the random-matrix theory we used

to derive Eqs 3 and 4 is distribution-independent.

Results were analogous in the specialists scenario. Communities with low Cd/Co ratio, indi-

cating a small-magnitude difference between preferences for main and secondary resources,

conform to the log-series distribution, while communities with sufficiently high Cd/Co reject it

(Fig 2D). Indeed, the probability that the log-series distribution fits the SAD decreases as Cd/

Co increases (Fig 2E). In communities with 50 species and 50 resources, with mean species and

resource abundances at 100, the threshold ratio for a successful log-series fit is 4.0. This thresh-

old increases linearly with the number of species in the community (Fig 2F), as predicted by

Eq 4.

Note we cannot use Eq (4) to predict the slope in Fig 2F, as the formula for the threshold is

defined up to a multiplicative constant. The reason for this constant is that we can estimate a

characteristic timescale for relaxation after a perturbation under stabilized dynamics, but the

exact time to relaxation depends on the size of the perturbation. We can always estimate the

time it takes to get some arbitrary percentage of the way back to equilibrium–for example, the

half-life of the decay back to the fixed point, but this introduces a multiplicative constant on

the left side of our Eqs (3) and (4). The results shown herein are as quantitative as our formulas

allow.

To compare the propensity for neutral-like abundance pattern across the generalist and

specialist scenarios, we use a non-neutrality index applicable to both, based on the average

cosine between the vectors representing the resource preference profiles of different species

(i.e. the columns of the consumption matrix). The average cosine across all species pairs repre-

sents the average similarity between resource preference profiles. We therefore define the non-

neutrality index as NNI = 1 − cos. The limit of complete neutrality, i.e. identical resource pref-

erences among all species, corresponds to a cosine of 1, and thus NNI = 0. The opposite limit

of complete niche differentiation, i.e. where each species consumes a single resource with zero

overlap, corresponds to a cosine of 0 (NNI = 1). Fig 3 shows that in both the generalist and spe-

cialist scenarios, the probability of neutral-like abundance distribution is close to 100% in the

neutral limit, as expected, but remains positive as we deviate from neutrality. The probability

of rejecting the log-series only falls below 50% when the NNI is as high as 0.15±0.05 in the spe-

cialist scenario, and 0.22±0.03 in the generalist scenario (Fig 3). For a given NNI, the abun-

dance distribution in the generalist scenario typically appears more neutral-like than in the

specialist scenario.

Extinction time results are shown in Fig 4. As expected, life expectancy increases with spe-

cies abundance. In the generalist scenario, species extinction times in communities with low

CV closely match predictions from the neutral model, whereas communities with sufficiently

high CV depart from neutral predictions (Fig 4A). When there is a poor match, the neutral

model underpredicts the extinction times, especially for species with high abundance (Fig 4A).

Plotting observed extinction times against neutral predictions in communities with different

CV reveals that higher CVs lead to increasingly poor matches to neutrality, especially for high-

abundance species (Fig 4B). Interestingly, observed extinction times seem linearly related to

predictions regardless of the CV. The slope of this relationship increases with the CV (Fig 4C),

being close to 1 at low CV, indicating a perfect match to neutral predictions, and>1 at higher

CV. This indicates that species of high mean abundance have particularly long life expectancy

beyond neutral expectations, suggesting that niche differentiation has a disproportionate stabi-

lizing effect on common species.

The specialist scenarios showed analogous results to the generalist scenarios regarding

matches to neutrality or lack thereof, except that extinction times of high-abundance species
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saturate. This could be because the restoring force in this scenario increases very quickly for

large deviations from equilibrium, so a species that fluctuates to high abundance almost imme-

diately returns to its mean abundance, thus not significantly increasing its life expectancy. By

contrast, the generalist case lacks a strong stabilizing force, so excursions towards high abun-

dance tend to substantially increase time to extinction.

Non-neutral community dynamics also displayed neutral-like behavior at shorter time-

scales (Fig 5). Temporal fluctuations in species abundances in the specialist scenario were

indistinguishable from neutrality for up to 10 generations, even when the non-neutrality index

was as high as 0.5. At longer timescales, niche stabilization tended to reduce the ensemble vari-

ance of DðtÞ ¼ nðtÞ� n0ffiffiffin0
p relative to neutrality, as expected. However, it was only at maximum

non-neutrality (NNI = 1), corresponding to fully specialized and therefore non-interacting

species, that var(D) was immediately distinguishable from neutral, plateauing within a few

generations.

Notably, the neutral-like behavior observed here applies to communities whose resource

preference profiles would be easily distinguishable from true neutrality, if they were directly

measured. In other words, our predictions and results are not solely for “small” departures

from neutrality, and yet we still observe neutral-like static and temporal patterns. To quantify

Fig 3. SAD results: Generalists vs specialists. Probability of log-series SAD plotted against a non-neutrality index

defined as NNI = 1 − cos, where cos is the cosine between vectors representing species resource preferences, averaged

across all species pairs in the community. Complete neutrality would correspond to NNI = 0 (i.e. cos = 1), reflecting

full overlap in resource preferences. For the same NNI value, communities in the generalist scenario are typically more

likely to conform to the log-series distribution than communities in the specialist scenario. Parameters: S = K = 50, n =

r = 100.

https://doi.org/10.1371/journal.pcbi.1008102.g003

PLOS COMPUTATIONAL BIOLOGY Emergent neutrality in consumer-resource dynamics

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008102 July 30, 2020 10 / 17

https://doi.org/10.1371/journal.pcbi.1008102.g003
https://doi.org/10.1371/journal.pcbi.1008102


this, we consider a neutral community of same richness and size as in Fig 3. If all consumption

events under true neutral dynamics are observed over the course of an average species lifetime

(in this case, approximately 250 generations), the 95% confidence interval for the average pair-

wise cosine is estimated to lie between 0.992 and 0.996 (see Figure J in S1 Appendix), well

above the threshold for 50% rejection of the log-series abundance distribution. This means

communities that are unmistakably non-neutral under direct observations of consumption

events would still look neutral under summary distributions like the SAD or extinction times.

Of course, in most if not all cases it is unfeasible to directly observe consumption events, espe-

cially over such long timescales. This impracticality is one reason why ecologists have indeed

tested theories of community assembly using summarizing distributions.

Discussion

We showed that communities of competing species may appear neutral despite differences

in resource preferences that confer niche stabilization, and this behavior is quite predictable

from summarized properties of the consumer-resource network. We provided quantitative

Fig 4. Extinction time results. Extinction time results for the generalist (A-C) and specialist (D-F) scenarios. A: Points and error bars

show average and standard errors of extinction times for species in logarithmically binned abundance categories. Curves show neutral

predictions. In the generalist scenario, species extinction times match predictions from the neutral model in communities with low CV,

but consistently exceed neutral predictions in communities with high CV, especially for high-abundance species. B: Plotting observed

versus predicted extinction times in communities with different CV (colors) reveals that those with low CV conform closely to the

neutral predictions (black line illustrates a perfect match), while higher CVs lead to increasingly poor matches to neutrality, especially for

high-abundance species. Note that extinction times seem linearly related to predictions regardless of the CV. C: The slope of this

relationship increases with the CV, being close to 1 (perfect match to neutral predictions) at low CV and> 1 at higher CV. D-F: Results

in the specialist scenarios are analogous to the generalist scenarios, except that extinction times of high-abundance species saturate.

Parameters: A-C: K = S = 50, n = 500, r = 100. D-F: K = S = 50, n = r = 100. Summary statistics were obtained from ca. 5,000 to 20,000

data points for each abundance bin in the generalists scenario, and 1,000 to 7,000 data points in the specialists scenario.

https://doi.org/10.1371/journal.pcbi.1008102.g004
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underpinnings for why non-neutral dynamics may lead to neutral outcomes, namely because

the niche stabilization provided by species differences in resource use profiles may not be

strong enough to overcome the influence of demographic stochasticity in generating patterns

at the community scale. Formally, this is reflected in the small eigenvalues of the Jacobian of

the deterministic counterpart of our stochastic resource-consumer model.

Our simulation results qualitatively supported our hypothesis that when the relaxation time

to equilibrium in the stabilized resource-consumer system is comparable to the timescales of

drift to extinction under neutral dynamics, one cannot easily reject the log-series abundance

distribution, and species life expectancies match neutral predictions. Furthermore, at genera-

tional timescales, even full knowledge of species abundances over time may not suffice to reject

neutrality. This has implications for inferring niche differentiation in real life systems, such as

distinct metabolic syndromes in microbial communities, where the differences between con-

sumers may not be large enough to overcome the influence of drift.

Our study demonstrates the disconnect between neutrality at the pattern level—i.e. whether

the distribution and temporal variation in species abundances are distinguishable from neutral

predictions, and neutrality at the process level—i.e. whether species differ in resource prefer-

ences. In doing so, it builds on the point made by others that neutral SADs do not imply neu-

tral ecology [1, 2]. Furthermore, our connecting emergent neutrality to stabilization timescales

in a stochastic world provides a mechanistic explanation for the success of neutrality as a

macroecological theory. Our work also naturally raises questions related to the theory of non-

Fig 5. Shorter timescale results. Variance in species abundances over time, for different parametrizations of the

specialist scenario. Vertical axis plots the variance across histories of the stochastic process of DðtÞ ¼ nðtÞ� n0ffiffiffiffin0
p , which is

then averaged across species with different initial abundances n0 (bands show standard error of the mean). Colors

show parametrizations with increasing non-neutrality index (NNI), with lines showing the loess regression with

smoothing parameter set to 1. Black line shows neutral prediction. Inset highlights similarity of all curves except

NNI = 1 at timescales up to 10 generations.

https://doi.org/10.1371/journal.pcbi.1008102.g005
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equilibrium phase transitions [53], and whether this transition falls into a known universality

class. While the transition from the broad spread of the log series to a much narrower, sharply

peaked distribution is reminiscent of some of the transitions observed in other non-equilib-

rium phenomena [54, 55], it is not clear whether this is a phase transition in a strict sense, or if

it maps onto a known universality class. Our simulations indicate that the transition is sharper

under larger community size but seems unaffected by the number of species (S1 Appendix).

Future work will further scrutinize the behavior of the transition in the limit of high diversity,

which currently remains an open question.

Earlier investigations of neutral-like outcomes in non-neutral communities have focused

on phenomenological models of species interactions such as Lotka-Volterra competition [32,

33]. Our approach differs from these studies in two main ways. First, these approaches com-

pare neutral dynamics to niche dynamics combined with exogenous immigration. That

makes it challenging to isolate the stabilizing effects due to niche differentiation from those

arising from immigration. By contrast, we model an essentially closed system and thus com-

pare drift dynamics to stabilization driven almost purely by niche differentiation (strictly

speaking, immigration is present but very low, only affecting the abundances of the rarest

species). Second, in these stochastic Lotka-Volterra approaches, the corresponding deter-

ministic dynamics do not completely determine the stochastic transition rates, leaving the

degree of demographic noise as a free parameter that can be tuned to adjust the balance of

noise relative to deterministic ecological selection. In our stochastic consumer-resource

model, the level of noise is set endogenously by the structure of the Gillespie simulation. Our

finding that neutral dynamics are still possible demonstrates that drift is a natural outcome

of self-contained niche-differentiated ecological dynamics without tuning the degree of

noise. While the previous approaches analytically solve simplified versions of stochastic

Lotka-Volterra dynamics, we derive an analytical prediction for when and why the full sto-

chastic consumer-resource model appears neutral.

In this context of consumer-resource dynamics, neutral behavior has been previously

shown to arise from consumers competing for a small number of resources [34]. In that study,

consumers satisfy fine-tuned metabolic tradeoffs that allow an arbitrarily large number of spe-

cies to coexist on a neutrally stable manifold of fixed points, on which drift fully drives the sta-

tionary distribution. However, if consumers violate the precise metabolic tradeoff constraints,

then only a small number of consumers coexist at one fixed point, and the stationary abun-

dance distribution of these consumers is no longer guaranteed to appear neutral. In contrast,

the numbers of consumers and resources are equal in our modeling framework, so the con-

sumers coexist at a unique fixed point. In our stochastic model, it is the timescale of the stabi-

lizing dynamics, which is determined by the degree of heterogeneity in resource preferences,

that gives rise to neutral dynamics.

The neutrality threshold herein defined is a useful construct for testing our analytical pre-

dictions, not a methodological prescription for field ecologists. Indeed, the threshold’s numeri-

cal value depends on the choice of cutoff for the probability of rejecting the log-series. In

reality, this probability increases gradually rather than abruptly with increasing departures

from neutral resource preferences. Furthermore, one’s ability to reject neutral pattern in a

community of interest depends not only on similarities between neutral and non-neutral out-

comes, but also on the statistical power of goodness-of-fit tests. As such, in order to test our

analytical predictions, the threshold’s numerical value is less meaningful than how it scales

with changes in parameters such as community size and richness. We verified that this scaling

is robust to different cutoff choices, and also to different tests and methodological approaches

for rejecting neutrality (see Figures I and L in S1 Appendix).
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In nature, the consumption matrix could be far more complex than the two cases consid-

ered here, reflecting diverse metabolic strategies of consumers from different environments

and evolutionary histories. For example, groups of the columns of C could be highly correlated

when the corresponding groups of consumers perform similar functional roles in the commu-

nity. The community as a whole could also exhibit a stronger preference for certain resources

over others, introducing correlations between the rows of C. We ignored these complications

for the sake of analytical tractability, but our results are likely generalizable: it is the bipartite

structure of consumer-resource models, and not the specific structure of C, that separates the

spectrum of our deterministic model into consumer and resource bulks. Because it is this sepa-

ration that causes long excursions from the mean abundance in the stochastic model, our

results suggest that a transition from neutral to niche dynamics will be a feature of consumer-

resource models with more complex consumption preferences than considered here.

The fact that abundances in specialist communities are easier to distinguish from neutrality

than in generalist communities with similar niche overlap suggests that specializing towards a

single resource has a stronger niche-like impact on abundance distributions than unstructured

variation in resource preferences. It follows that departures from neutrality are not all equal

with regards to impact on abundances, leaving open the possibility that some special structure

in the consumption matrix may very quickly lead to detectable differences from neutral pat-

tern. One method to test this possibility would be to infer the consumption matrix by fitting

our consumer-resource model to experimental abundance measurements from monoculture

experiments on each resource. Then, different consumption matrix structures could be investi-

gated by choosing which consumers to include in community experiments. Although they did

not infer a consumption network, [56]’s microbial community assembly experiments found

that the resulting community structure was highly variable at the species level, while highly

predictable at the family level. Our theoretical results suggest a possible interpretation of these

findings. When viewed at the species level, consumers do not differ enough to strongly affect

the outcome of community assembly, suggesting that these species differences are below our

analytical threshold and drift is the primary driver of abundance dynamics. On the other

hand, consumer abundances converge to nearly deterministic outcomes at the family level,

suggesting that between-family differences in resource profiles are well above our threshold.

Supporting information

S1 Appendix. Characterizing the spectrum of the deterministic model; Master equations

for our stochastic model; Discussion of abundance distributions in the neutral and niche

limits; Fitting outcomes using different cutoff values.

(PDF)
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