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Abstract

Autism Spectrum Disorder (ASD) is a heterogeneous disorder that is often accompanied

with many co-morbidities. Recent genetic studies have identified various pathways from

hundreds of candidate risk genes with varying levels of association to ASD. However, it is

unknown which pathways are specific to the core symptoms or which are shared by the co-

morbidities. We hypothesised that critical ASD candidates should appear widely across dif-

ferent scoring systems, and that comorbidity pathways should be constituted by genes

expressed in the relevant tissues. We analysed the Simons Foundation for Autism

Research Initiative (SFARI) database and four independently published scoring systems

and identified 292 overlapping genes. We examined their mRNA expression using the

Genotype-Tissue Expression (GTEx) database and validated protein expression levels

using the human protein atlas (HPA) dataset. This led to clustering of the overlapping ASD

genes into 2 groups; one with 91 genes primarily expressed in the central nervous system

(CNS geneset) and another with 201 genes expressed in both CNS and peripheral tissues

(CNS+PT geneset). Bioinformatic analyses showed a high enrichment of CNS development

and synaptic transmission in the CNS geneset, and an enrichment of synapse, chromatin

remodelling, gene regulation and endocrine signalling in the CNS+PT geneset. Calcium sig-

nalling and the glutamatergic synapse were found to be highly interconnected among path-

ways in the combined geneset. Our analyses demonstrate that 2/3 of ASD genes are

expressed beyond the brain, which may impact peripheral function and involve in ASD co-

morbidities, and relevant pathways may be explored for the treatment of ASD co-

morbidities.
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Introduction

Autism Spectrum Disorder (ASD) is a heterogeneous and complex neurodevelopmental disor-

der [1], with core features including stereotypical behaviours and impaired social and commu-

nication skills, and with various comorbidity. The CNS comorbidity of ASD includes epilepsy,

sleeping disorders [2], intellectual disabilities, language delay, anxiety and hyperactivity [3, 4],

and the peripheral comorbidity includes gastrointestinal, metabolic disorders, auto-immune

disorders, tuberous sclerosis, attention-deficit hyperactivity disorder, and sensory problems

associated motor problems [2, 5–8]. It appears that genetic heterogeneity and environmental

factors impact not only the severity of ASD, but also the presence and severity of comorbid dis-

orders [9]. However, it is unknown why different individuals display overlapping core symp-

toms and/or different comorbidities.

With the advent and increasing availability of DNA sequencing over the past decade, much

has been uncovered about the genetics of ASD [10], which include de novo events [11–17],

mosaic mutations [18] and gene dosage changes resulted from copy number variations [19–

25], as well as epigenetic/transcriptome changes with no apparent genetic alterations [26]. As a

result, hundreds to thousands of ASD risk factors have been identified by different studies,

suggesting that ASD is a multi-genetic disorder and each has small effects in terms of ASD

population. This presents a huge challenge to develop ASD diagnosis or treatment. Meanwhile,

little is known about which set of genetic factors links to peripheral comorbidity, and it is

therefore crucial to decipher factors/pathways which are associated with the comorbidities.

The genetic studies have allowed formation of ASD databases for investigations [27, 28].

The early network analyses using the SFARI database have identified ASD pathways of abnor-

mal synaptic function, chromatin remodelling and ion channel activity [29] which are highly

connected by MAPK signalling and calcium channels, with some genes associated with cardiac

and neurodegenerative disorders [30]. This was carried out before the scoring system from

SFARI became available. In addition, the SFARI list of ASD genes has risen from 680 in 2016

to 1053 in January 2019. Furthermore, independent scoring systems have become available

and suggested additional genes with significance to ASD, from either sequencing thousands of

individuals across the globe [31], or using existing interaction databases in conjunction with

SFARI database [32, 33], or employing machine learning on datasets [32, 34]. This suggests

that another round of ASD pathway analysis is due.

Our hypotheses were that the high ASD candidates would recur in different scoring sys-

tems, and that comorbidities in ASD would involve expression of risk genes in relevant tis-

sues/organs. Therefore, in this study, we focused on the identification of the overlapping genes

in the updated SFARI database and autistic genes shortlisted by the majority of the third-party

scoring systems as summarised in Table 1. To explore the biological context of these genes, we

first examined their expression using the GTEx database to find out if they were transcribed

not only in the brain but also in other peripheral tissues, and then used the human protein

atlas (HPA) dataset to verify protein expression levels. We also explored tissue specific net-

works from human reference interactome (Huri) [35] to see if any ASD candidates interacted

with genes in these networks.

Our analyses suggest that a third of ASD risk genes (CNS geneset) is specifically expressed

in the CNS, which are involved in brain development, synaptic function and ion transport,

whereas the majority of ASD factors are highly expressed in both CNS and peripheral tissues

(CNS+PT geneset), with pathways of brain development, chromatin organisation and gene

regulation, which may account for ASD peripheral comorbidity.
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can be accessed via Bioconductor in R, using the

code provided in the supplementary information.

The networks from Huri can be accessed from

NDEX (http://www.ndexbio.org/#/user/69e7b21d-

8981-11ea-aaef-0ac135e8bacf) Information from

the scoring systems used can be found in the

supplementary information sections of their

respective publications. Differentially Expressed

genes can be found in supporting information from

respective publications and in Geo2r (GSE42133

for Pramparo, GSE28521 for Voineagu). Code is

provided for data access to HPA and GeneOverlap

and generating figures. Genelists were obtained

from pysgenet(http://www.psygenet.org/web/

PsyGeNET/menu), Harmonizome(https://

maayanlab.cloud/Harmonizome/dataset/GWASdb

+SNP-Disease+Associations) and the

supplementary information from respective

publications.
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Methods

Datasets and shortlisting of the ASD risk factors

Five datasets were chosen as the starting point of this study [28, 31–34], and high-ranking

genes were shortlisted from each dataset with defined criteria (Table 1, Fig 1). For the Exome

Aggregation Consortium (EXAC) with exome sequencing data from ~60,000 cases (S1 Table),

a high intolerance to mutation of pLi� 0.9 was applied, where pLi indicated the level of intol-

erance to mutations in a given gene, with many containing loss of function variants. In the

Krishnan’s geneset (S2 Table) created using human disease databases of GAD, OMIN, HUGE

and SFARI in December 2013, along with a brain-specific functional interaction network, a q-

value of�0.05 was used, where q-value was the probability of the gene being an ASD risk

Table 1. Overview of five datasets and the independent scoring systems used to shortlist ASD genes for overlapping analysis.

Score

name

Data Source Starting

genes

Score Threshold Shortlisted

genes

References

EXAC Exome sequences from 60,706 individuals 15735 pLi >0.9 with >90% negative

effect upon mutation

3126 Lek et al. [31]

SFARI SFARI GENE (Jan 2019) 1053 All genes recorded in Jan 2019 1053 Gene.SFARI.org

(Jan 2019)

Krishnan SFARI, OMIM, GAD, HUGE (up to 2013) 25825 q value < 0.05 3225 Krishnan et al. [32]

Duda Microarray data from human, mouse and rat. Protein interaction

databases (MIPS, BIOGRID, MINT, IntAct)

21115 Top 10th percentile 2111 Duda et al. [34]

Zhang Mouse CNS Microarray Data, Genes homologous to human 15950 Positive DAMAGE score (D>0) 7189 Zhang et al. 2017

https://doi.org/10.1371/journal.pone.0242773.t001

Fig 1. Flowchart of the analysis for the paper: Arrow indicates the steps of each analysis.

https://doi.org/10.1371/journal.pone.0242773.g001
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candidate after multiple testing for false positivity. For the Zhang’s geneset (S3 Table) made

using CNS microarray expression data from six brain regions derived from mice and validated

using data from exome sequencing studies [11, 14, 17, 29, 36, 37], mutations of the human

homologues with a (DAMAGE) score of D�0 were shortlisted, where positive D-score was a

measure of a mutation’s likeliness to be associated with ASD. For the Duda’s list (S4 Table)

which was created from de novo mutation analysis, protein-protein interaction and phenotype

information, the top 10% of genes in the list were selected, as this was used as a cut off in the

original publication. Finally, for the SFARI collection, all genes up to January 2019 were

included (S5 Table).

Overlap of shortlisted genes with SFARI

After shortlisting of high-ranking genes from each dataset, the Jvenn program was applied to

identify the common ASD risk genes among the 5 sources [38]. A list of 519 genes, which were

overlapped among 4 of 5 sources, was extracted (Table 1, Fig 1). Among them, 319 genes

appeared in the SFARI database were taken forward for expression and enrichment analyses.

Filtering using gene expression analysis data

Since ASD has a wide array of peripheral co-morbidities, we believe that some ASD genes are

expressed in peripheral tissues. To explore this possibility, mRNA expression data were down-

loaded from the GTEx consortium (v7) in the form of median TPM (Transcripts Per Million)

values from all tissues [39]. We excluded low expression genes based on the average of the

median (TPM<3) in both CNS and PT groups. Additionally, we removed genes with a SFARI

score of 6, which were not likely to be associated with ASD. The expression data was applied to

the 319 selected genes and uploaded to Morpheus (https://software.broadinstitute.org/

morpheus) to generate heatmap (with settings for clustering: hierarchical, euclidean distance,

linkage method complete, clustering based on columns). Genes with extremely low levels of

mRNA expression, at an average TPM�3 in both the brain and peripheral tissues, were

excluded from the subsequent analyses (S8 Table).

Overview of protein expression levels

As an additional level of verification, we used HPA data (v19.3) obtained via HPA analyze

[40], a Bioconductor program that runs in R, to assess protein expression levels across multiple

tissues among the two genesets, and used ggplot2 [41] to visualise the data.

Tissue specific interaction networks

The expression of ASD genes in other tissues indicates that they may interact with other factors

in tissue-specific networks. To explore this, we used tissue-specific networks generated from

Huri to see if ASD candidate genes were present in other networks, and if they had any inter-

acting partners within these networks.

Functional enrichment analysis of the final geneset

The final list of ASD common risk factors was analyzed through STRING program for path-

way analyses, except for SHANK3 that was misidentified as HOMER2 in the current human

database of STRING v11. The resulting GO Terms (Biological Processes, Cellular Compo-

nents, and Molecular Function) and KEGG pathways were downloaded. The same list was also

loaded into Cytoscape [42] to identify sub-clusters of genes in interaction network.
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Analysis of genesets for co-morbid phenotypes

To examine potential association of the ASD genesets with occurring co-morbidities, an over-

representation analysis (ORA) was carried out using the tool WebGestalt [43] to assess other

co-morbid conditions linking to the ASD genesets. The Human Phenotype Ontology database

was used for the analysis [44]. The top 50 terms were used as a cut off to balance between the

co-morbidities reported in ASD and to ensure that the final lists are not too broad and overly

diluted.

Comparison of shortlisted ASD geneset with ASD expression studies

To examine the utility of the ASD geneset in the literature of ASD gene expression studies, we

compared the ASD geneset with DEGs reported from post-mortem brain [45], blood [46–48]

and GI tissue [46, 49], as well as iPSC-derived cell models [50–55], to see if any of the ASD

genes were significantly up or downregulated. The DEGs were obtained using autism versus

control group with FDR (adj p-value) at 0.05, except for Voineagu [56] and Pramparo [47],

which we used Geo2R [57] using autism versus controls as groups to obtain DEGS at 0.05 FDR

(adj p-value).

Expression of genes across brain development and sex-bias

We used CSEA [58] tool to check for enrichment of our genes for human gene expression

across developmental periods and brain tissues in the Brainspan dataset. We also used the gen-

esets from the publications [59, 60] to see if any of our shortlisted genes had sex-bias expres-

sion in prenatal stages [59], or if there was sex-specific splicing in our geneset [60] using the

bioconductor package GeneOverlap [61].

Comparison with psychiatric and peripheral diseases

Our functional analyses of the ASD genesets showed enrichment for processes in areas relating

to cardiac function and insulin. In addition, it is known that many ASD risk genetic factors

share molecular pathways with other psychiatric conditions. To future explore this, we down-

loaded genesets for schizophrenia (SCZ), bipolar disorder (BP), and major depressive disorder

(MDD) from Psygenet [62]. We also downloaded genelists from Harmonizome database [63,

64] for 4 peripheral conditions of arrythmia (ARY), type 1 (T1D) and type 2 (T2D) diabetes

based on our results, and inflammatory bowel disease (IBD) based on co-morbidity of gastro-

intestinal issues with ASD for comparison of ASD risk factors in the current study.

Results

To explore the hypothesis that ASD candidate genes were recurrent across different scoring

systems, we selected the SFARI dataset and four other published scoring systems for the cur-

rent study (Table 1, Fig 1). Consequently, we selected 3126 genes out of 15735 from the EXAC

dataset with pLi� 90% chance of intolerance to loss of function [31], 3225 genes from Krish-

nan’s data [32] based on q<0.05, 7189 genes out of 15950 from Zhang’s data [33] with a posi-

tive DAMAGE score (D>0), and 2111 genes from the top 10% of the 21115 genes in the

Duda’s data [34], and all 1053 SFARI genes as of Jan 2019 [28].

These shortlists were subsequently analysed by Jvenn web tool for overlapping ASD genes

[38], and 114 genes were found to be shared by all five shortlists (Fig 2, S6 Table). Considering

that some well-known ASD genes such as SHANK3 and CHD8 were excluded from the 114

geneset, we adjusted to include the genes that were overlapped in 4 of the 5 scoring systems,

which resulted in a total to 519 ASD risk genes. Further examination of the 519 genes for the
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presence in the SFARI dataset has narrowed down the list to 319 SFARI genes, which were

highly ranked in>3 of 4 other independent studies besides the SFARI dataset (Table 1, Fig 1).

Expression pattern of ASD genes

To assess the gene expression across different tissues, we next examined body-wide expression

of the 319 genes using the GTEx dataset containing standardized mRNA expression in units of

TPM. This further reduced the ASD genes to 292 genes to filter out low abundance genes with

TMP�3 in both CNS and PT (S7 Table).

The expression levels of the 292 genes were presented in the Heatmap, with high expression

coloured in red, low expression in green and no expression in grey. Analysis of the 292 genes

with GTEx (S8 Table) showed that the ASD genes were clustered into 2 groups (Fig 3); 91

genes were mainly expressed in the CNS with TMP<3 in PT, whereas the remaining 201 genes

were ubiquitously expressed in both the CNS and PT.

A similar expression profile for proteins was observed in HPA data (Figs 4 and 5), whereas

CNS geneset showed protein expression mostly in the CNS (Fig 4), the CNS+PT geneset

showed protein expression in both the CNS and other tissue types (Fig 5). We also identified

that some of the ASD factors in the CNS+PT geneset (S1–S19 Figs) were indeed interacting

with other proteins in tissue-specific networks (Table 2). Interestingly HDAC4 (S6) in the

colon and STX1A (S15) in the pituitary gland were found to be tissue-specific genes in these

organs.

Enriched neurodevelopment, synaptic function, and ion transport in the

CNS geneset

To assess the biological context of ASD factor, the STRING (v 11) program was used to analyse

two groups of the ASD factors, respectively [65]. The 91 CNS-specific geneset gave rise to 305

“Biological Processes” (S10 Table), 73 “Cellular Components” (S11 Table) and 62 “Molecular
Function” (S12 Table). Go term results revealed an enrichment for neuronal development and

synaptic function in the CNS geneset (Fig 6A).

We also visualized the interaction network using Cytoscape (V3.7). Among the 91 CNS

genes (Table 3), 47 (colored in blue) were involved in “Nervous system development”

(FDR = 1.39E-18), 31 (colored in red) were linked to “Trans-synaptic signalling”

(FDR = 2.41E-25), and 30 were associated with “Ion transmembrane transport” (colored in

yellow, FDR = 1.55E-14, Fig 6A), which included 6 calcium channels (ATP2B2, CACNA1A,

Fig 2. Shortlisting of common ASD factors. (A) JVenn Diagram of all overlapping genes from the scoring systems

used. Underlined numbers indicate sets overlapped with SFARI. (B) Size of each set of shortlisted genes. (C) The

number of genes that are shared by or specific to the lists.

https://doi.org/10.1371/journal.pone.0242773.g002
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CACNA1B, CACNA1D, CACNA1G, CACNA2D3), 3 sodium channels (SCN1A, SCN2A,

SCN8A), 4 potassium (HCN1, KCND2, KCNQ2, KCNQ3) channels, 6 glutamatergic receptors

(GRIA1, GRID1, GRIK2, GRIN1, GRIN2A, GRIN2B), 5 GABAergic receptors (GABRA1,

GABRA3, GABRA4, GABRA5, GABRB3) and 5 transporters (SLC12A5, SLC1A2, SLC24A2,

SLC30A3, SLC4A10).

Consistently, the synapses (42/91 genes, FDR = 4.06E-30), neuronal projection (44/91,

FDR = 9.54E-28) and ion channel complex (24/91, FDR = 7.59E-22, Table 3) were enriched in

“Cell Components”. The ion-gated channel activity (24/91, FDR = 5.78E-19) and neurotrans-

mitter receptor activity (13/91, FDR = 3.60E-13) including glutamate (7/91, 2.95E-09, GRIA1,

GRID1, GRIK2, GRIN1, GRIN2A, GRIN2B, GRM1) and GABA receptor activity (6/91, 4.12E-

08, GABBR2, GABRA1, GABRA3, GABRA4, GABRA5, GABRB3), were the most significant

“Molecular Functions”. The “KEGG pathway” analyses (S13 Table) demonstrated that Gluta-

matergic synapse (12/91, 2.46E-11, CACNA1A, CACNA1D, DLGAP1, GRIA1, GRIK2, GRIN1,

GRIN2A, GRIN2B, GRM1, HOMER1, SHANK2, SLC1A2), GABAergic synapse (11/91, 3.44E-

11, CACNA1A, CACNA1B, CACNA1D, GABBR2, GABRA1, GABRA3, GABRA4, GABRA5,

GABRB3, GAD1, SLC12A5), Calcium signalling pathway (11/91, 1.80E-08, ATP2B2, CAC-
NA1A, CACNA1B, CACNA1D, CACNA1G, CAMK2A, ERBB4, GRIN1, GRIN2A, GRM1,

NOS1) and Circadian entrainment (9/91, 1.74E-08, CACNA1D, CACNA1G, CAMK2A,

Fig 3. Heatmap of 292 genes after filtering for low expressed genes (TPM<3). The tissues were indicated on the

top. Scale bar on top right corner showed the scale of mRNA expression for each gene: grey is TPM = 0, green is 0–3,

yellow is 9–31, orange is 31–99, red is> 99. (A) The 91 genes in the CNS geneset have an average median of TMP<3

in the peripheral tissues. (B) The 201 CNS+PT genes were expressed both CNS and peripheral tissues with TMP>3.

https://doi.org/10.1371/journal.pone.0242773.g003
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GRIA1, GRIN1, GRIN2A, GRIN2B, NOS1, NOS1AP) were the top pathways in the CNS geneset

(Table 3). Together, these data suggest that the 91 CNS-specific ASD risk factors are involved

in regulation of brain development, E/I balance and calcium signalling, which are closely

related to the ASD core features, and to the CNS comorbidity such as epilepsy, intellectual dis-

ability and sleeping disorders.

Enriched chromatin organisation and gene regulation in CNS+PT geneset

Analyses of the 200 CNS+PT genes resulted in 546 “Biological Processes” (S14 Table), 127 “Cel-
lular Components” (S15 Table), and 123 “Molecular Function” (S16 Table). Like the CNS gene-

set, CNS development and synapse are the top pathways in the CNS+PT ASD geneset. This

included Nervous system development (72/200 genes in blue, FDR = 7.50E-17, Fig 6B), Modu-

lation of chemical synaptic transmission (20/200, FDR = 1.74E-08) and Trans-synaptic signal-

ling (22/200, FDR = 3.16E-08) as top “Biological Processes”, Synapse (46/200 in red, FDR =

6.44E-18, Fig 6B) as the most significant “Cellular Components”, Ion binding (106/200, FDR =

2.09E-08) in the “Molecular Function” (Table 3), and Long-term potentiation (6/200, FDR =

0.003), Glutamatergic (7/200, FDR = 0.006), and Dopaminergic synapse (7/200, FDR = 0.011)

identified in the “KEGG” pathways (Table 3, S17 Table).

However, the most prominent feature of the CNS+PT ASD geneset was transcription regu-

lation, and this included Nucleus (128/200, FDR = 1.73E-14) in the “Cellular Components”,

Fig 4. Protein expression of CNS geneset from HPA across tissues. Genes are displayed in order of decreasing protein expression.

https://doi.org/10.1371/journal.pone.0242773.g004

PLOS ONE Coupling of autism genes to tissue-wide expression and dysfunction of synapse, signalling and gene regulation

PLOS ONE | https://doi.org/10.1371/journal.pone.0242773 December 18, 2020 8 / 37

https://doi.org/10.1371/journal.pone.0242773.g004
https://doi.org/10.1371/journal.pone.0242773


Fig 5. Protein expression of CNS+PT geneset from HPA across tissues. Genes are displayed in order of decreasing expression.

https://doi.org/10.1371/journal.pone.0242773.g005
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Regulation of gene expression (96/200 genes in red, FDR = 4.21E-12, Fig 6B), Chromatin orga-

nization (44/200 in green, FDR = 1.44E-18, Fig 6B) and Histone modification (26/200,

FDR = 2.08E-12) identified in the “Biological Processes”, Chromatin binding (29/200,

FDR = 3.00E-11), Transcription factor binding (24/200, FDR = 2.26E-06), DNA binding (53/

Table 2. Interacting ASD genes in tissue-specific networks. Genes in bold denote ASD genes (POGZ and ANKRD11) present in nearly all networks.

Tissue ASD genes Interacting partners

Heart left ventricle TCF4, RFX3, HDAC4, POGZ, ANKRD11, RERE, YY1, CMIP, QRICH1 MYH7B, TCF24, ASB15, SNRPC, TRIM54, FSD2, FHL2
Heart-left atrial

appendage

HDAC4, ANKRD11, TCF4, CMIP, QRICH1 TRIM54, ASB15, MYH7B, TNNI1, TCF24, FSD2

Artery-tibial ANKRD11 NOV
Small Intestine-

terminal ileum

TCF4, POGZ, CLSTN3, NSD1 A1CF, AOC1, BCL2L15, AGR2, OLFM4

Pancreas MEIS2, DAGLA, STX1A, TSC1, ARNT2, TCF4, POGZ, CLSTN3,

ANKRD11
FAM136A, LHFPL5, PNLIPRP1, SERP1, ENKD1, SIM1, NEUROD,

BCL2L15, BANF2, A1CF, OLFM4, TMEM97
Stomach PRICKLE1, ANKRD11, TCF4, POGZ, NSD1 BCL2L15, ODAM, AGR2, JRK
Esophagus-mucosa DYRK1A, ARNT2, WAC, KATNAL1, TSC1, RNF38, EXOC5, YY1,

HDAC4, MEIS2, POGZ, ANKRD11
DTX2, BICD2, USH1G, TXN, CYSRT1, LGALS7B, LGALS7

Esophagus-

muscularis

USP7 ANKS1A

Muscle-skeletal NPAS2, TSC1, MEIS2, TCF4, CMIP, POGZ, ANKRD11, SRSF11,

HDAC4, STX1A, QRICH1, CACNB2
KRT31, ATG9A, CDR2L, TRIB3, MYF5, FAM222B, FAM166B, BICD2,

MEF2A, MEF2C, GOLGA2, SSX2IP, AES, NGLY1, YWHAE, DUPD1,

FHL3, TADA2B, TRIM27, CALCOCO2, INCA1, OIP5, LBX1, NFKBID,

ASB15, CEP70, USP6, ZMYND12, VPS52, HEXIM2, TRIM54, FSD2,

FCHSD2, KLHL38, HOOK2
Colon-sigmoid TCF4, POGZ, QRICH1, TSC1, YY1, SAE1 MEF2C, MEOX2, CCNDBP1, TRIM27, ODAM, INCA1, CDPF1, PAX8,

FCHSD2, CCDC136, NFKBID, CDR2L, HOOK2, CDR2, NFYC,

GOLGA2, VPS52, BICD2, TFIP11, BLZF1, CALCOCO2, PICK1,

CCDC125, CADPS, MTUS2, YWHAE, AES, SSX2IP, BEGAIN, CEP70,

MEF2A, TRIB3, FSD2, ZMYND12, TSGA10, HAP1,

Colon-transverse HDAC4, SAE1, POGZ, ANKRD11, CLSTN3, EXOC5, KATNAL1,

MEIS2, NSD1, SATB2, TCF4
SATB2, BCL2L15, KLC4, PTK6, A1CF, ABHD11, AGR2, NXPE2, AOC1

Kidney CACNB2, TCF4, SAE1, POGZ, MEIS2, PHF12 MCCD1, AOC1, ATP6V0D2, CLCNKA, TMEM174, PAX8, A1CF
Pituitary QRICH1, CIC, YY1, BAZ2B, USP7, USP15, HDAC4, ANKRD11,

EP400, STXBP1, STX1A, MBD5, DPYSL2, WASF1, POGZ, DPYSL3,

DAGLA, TCF4, MEIS2, DYNC1H1, NPAS2, EXOC5

RAB3IL1, BLOC1S6, ZNF696, ZNF440, PLN, SEC22A, TMEM254,

KRT40, RMDN2, C1GALT1, NAPB, ZNF76, ZNF250, APOL2, STX12,

VSTM4, BRD8, NEUROD4, AOC3, CENPP, CASC4, NINJ2, VAMP1,

CLCNKA, TMEM41A, ZNF136, ABI3, STX7, STX2, VTI1B, STX4,

CD81, EXOC5, APOL3, RHBDD2, ARL13B, VAMP4, STX3, BET1,

ZNF12, TRAF3IP3, UBE2I, MAPK1, PGAP2, EBAG9, ZNF785, SMIM1,

DEUP1, DDX49, STX10, ANKRD46, TRIM38, EFHC1, SERP1, C2orf82,

CLEC1A, AIG1, CLN6, TXLNA, SERP2, VAMP5, JAGN1, TMEM120A,

TSNARE1, MALL, TMEM199, C4orf3, ERG28, HMOX1, AGTRAP,

SNAP47, STX16, USE1, CXCL16, BTN2A2, MAL, ZFPL1, TMEM222,

FAM3C, BPIFA1, SPICE1, GOLGA2, CYB5B, GIMAP5, TMEM128,

STX11, NKG7, STX6, LHFPL5, CMTM7, STX5, NRM, AQP3, VAMP3,

BNIP1, LHX3, ETNK2, RNF4, TBX19, ZNF835, CDC37, ZNF441,

KIFC3, STX8, TMEM100, ZNF707, TMEM60
Lung PHF12, ATP6V0D2
Artery coronary ANKRD11 NOV
Artery aorta ANKRD11 NOV
Adipose

subcutaneous

ARNT2 SIM1

Spleen SAE1, ANKRD11, TCF4, WASF1, CLSTN3, POGZ, STX1A, MEIS2,

CAMK2B, TLK2, KHDRBS3, MARK1
POU2AF1, INPP5D, PAX5, DOCK2, NFAM1, GRB2, CCM2L, TCF23,

TRAF3IP3, FOLR3, NKG7, RASAL3, ABI3, TCL1B
Adrenal Gland TCF4, STX1A, EP400, QRICH1, TSC1, ANKRD11 MTFR1L, TMEM41A, NOV, CHCHD2, TRAPPC2L, RMDN2,

FAM166B, ALAS1

https://doi.org/10.1371/journal.pone.0242773.t002
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200, FDR = 6.72E-06) and Histone binding (12/200, FDR = 3.17E-05) in the “Molecular
Function”.

In addition, Circadian entrainment (5/200 genes, FDR = 0.034, CACNA1C, CAMK2B,

ITPR1, PLCB1, PRKCB), WNT signalling (10/200, FDR = 3.1E-04, APC, CAMK2B, CHD8,

CREBBP, CSNK1E, GSK3B, PLCB1, PRICKLE1, PRICKLE2, PRKCB), Thyroid hormone sig-

nalling (8/200, FDR = 1.5E-03, ATP1A3, CREBBP, GSK3B, MED13, MED13L, NCOR1, PLCB1,

PRKCB), Aldosterone synthesis and secretion (8/200, FDR = 5.0E-04, ATP1A3, CACNA1C,

CAMK2B, DAGLA, ITPR1, NR4A2, PLCB1, PRKCB), Gastric acid secretion (5/200,

FDR = 0.0179, ATP1A3, CAMK2B, ITPR1, PLCB1, PRKCB), Insulin secretion (9/200,

FDR = 7.16E-05, ATP1A3, CACNA1C, CAMK2B, KCNMA1, PLCB1, PRKCB, RAPGEF4,

SNAP25, STX1A), Salivary secretion (5/200, FDR = 0.0298, ATP1A3, ITPR1, KCNMA1,

Fig 6. Significant ASD pathways. (A) Selected genes from 91 CNS geneset, highlighting that Nervous development (blue), Trans-synapses (red) and Ion

transmembrane transportation (yellow) are the most enriched pathways. (B) Selected genes highlighted from the 200 CNS+PT geneset, demonstrating that the

Nervous development (blue), the Chromatin organisation (green) and Gene regulation (red) were the among the most significant pathways. (C) Glutamatergic/

GABAergic synapses, (D) Cell signalling and Hormonal secretion pathways from the combined 291 genes all linked to calcium signalling, suggesting that

Calcium signalling is the most interconnected pathways linking the ASD signalling pathways. Edges represent combined gene score, node colours represent

selected GO terms (A-B) and KEGG pathways (C,D) The colours for 3D correspond to the following; Yellow-Calcium Signalling, Green -MAPK Signalling, Red

-cAMP signalling, Blue—Wnt Signalling, Brown—thyroid signalling, purple–Insulin Signalling, Orange–Aldosterone Synthesis and Secretion.

https://doi.org/10.1371/journal.pone.0242773.g006
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Table 3. Key Go terms of the CNS-specific and ubiquitous ASD genesets.

Term ID Term description (Background

Gene Count)

ASD

genes

FDR Matching proteins in the network (IDs)

Key GO terms of the CNS-specific geneset (91 genes) centered on brain development, synapse and ion transport

GO:0007399 (Biol.

Proc.)

Nervous system development

(2206)

47 (CNS) 1.39E-

18

ATP2B2, BCL11A, CAMK2A, CNTN6, CNTNAP2, CTNNA2, CTNND2, CUX2, DAB1,

DLX1, DSCAM, ELAVL3, ERBB4, FEZF2, FOXG1, GABRA4, GABRA5, GABRB3,

GAP43, GDA, GRIN1, GRIN2A, GRIN2B, HCN1, KCNQ2, KIRREL3, LRRC7, MYT1L,

NOS1, NRXN1, PLXNA4, RBFOX1, RELN, RIMS1, ROBO2, SCN2A, SCN8A, SHANK2,

SLC12A5, SLC1A2, SLC4A10, SLITRK5, SRRM4, SYT1, SYT17, TBR1, UNC13A
GO:0043005 (Cell.

Comp.)

Neuron projection (1142) 44 (CNS) 9.54E-

28

ANKS1B, CACNA1B, CADM2, CAMK2A, CDH8, CNKSR2, CNTNAP2, CTNNA2,

CTNND2, DAB1, DSCAM, FRMPD4, GABBR2, GABRA5, GAD1, GAP43, GRIA1,

GRIK2, GRIN1, GRIN2A, GRIN2B, GRM1, HCN1, HOMER1, KCND2, KCNQ2,

KCNQ3, KIRREL3, LRRC4, LRRC7, NOS1, NRXN1, RELN, ROBO2, SCN1A, SCN2A,

SCN8A, SHANK2, SLC12A5, SLC1A2, SLC30A3, SLC4A10, SYT1, UNC13A
GO:0099537 (Biol.

Proc.)

Trans-synaptic signalling 408) 31 (CNS) 2.41E-

25

CACNA1B, CACNA1G, CDH8, DLGAP1, DLGAP2, GABBR2, GABRA1, GABRA5,

GABRB3, GAD1, GLRA2, GRIA1, GRID1, GRIK2, GRIN1, GRIN2A, GRIN2B, GRM1,

HOMER1, KCND2, KCNQ2, KCNQ3, NOS1, NRXN1, RIMS1, SLC12A5, SLC1A2,

SLITRK5, SYT1, SYT17, UNC13A
GO:0045202 (Cell.

Comp.)

Synapse (107) 42 (CNS) 4.06E-

30

ANKS1B, ATP2B2, CACNA1B, CADM2, CAMK2A, CDH8, CNKSR2, CTNNA2, DAB1,

DLGAP1, DLGAP2, DLGAP3, DSCAM, FRMPD4, GABBR2, GABRA1, GABRA3,

GABRA4, GABRA5, GABRB3, GAD1, GAP43, GLRA2, GRIA1, GRID1, GRIK2, GRIN1,

GRIN2A, GRIN2B, GRM1, HOMER1, KCND2, LRRC4, LRRC7, NOS1, NRXN1, RIMS1,

SHANK2, SLC30A3, SYT1, SYT17, UNC13A
GO:0030594 (Mol.

Funct.)

Neurotransmitter receptor

activity (849)

13 (CNS) 3.11E-

13

GABBR2, GABRA1, GABRA3, GABRA4, GABRB3, GLRA2, GRIA1, GRID1, GRIK2,

GRIN1, GRIN2A, GRIN2B, GRM1
GO:0008066 (Mol.

Funct.)

Glutamate receptor activity (27) 7 (CNS) 2.73E-

09

GRIA1, GRID1, GRIK2, GRIN1, GRIN2A, GRIN2B, GRM1

GO:0016917 (Mol.

Funct.)

GABA receptor activity (22) 6 (CNS) 3.86E-

08

GABBR2, GABRA1, GABRA3, GABRA4, GABRA5, GABRB3

GO:0034220 (Biol.

Proc.)

Ion transmembrane transport

(995)

30 (CNS) 1.55E-

14

ATP2B2, CACNA1A, CACNA1B, CACNA1D, CACNA1G, CACNA2D3, GABRA1,

GABRA3, GABRA4, GABRA5, GABRB3, GLRA2, GRIA1, GRID1, GRIK2, GRIN1,

GRIN2A, GRIN2B, HCN1, KCND2, KCNQ2, KCNQ3, SCN1A, SCN2A, SCN8A,

SLC12A5, SLC1A2, SLC24A2, SLC30A3, SLC4A10
GO:0034702 (Cell.

Comp.)

Ion channel complex (278) 24 (CNS) 7.59E-

22

CACNA1A, CACNA1B, CACNA1D, CACNA1G, CNTNAP2, DPP10, GABRA1,

GABRA3, GABRA4, GABRA5, GABRB3, GLRA2, GRIA1, GRIK2, GRIN1, GRIN2A,

GRIN2B, HCN1, KCND2, KCNQ2, KCNQ3, SCN1A, SCN2A, SCN8A
GO:0022839 (Mol.

Funct.)

Ion gated channel activity (329) 24 (CNS) 4.34E-

19

CACNA1A, CACNA1B, CACNA1D, CACNA1G, CACNA2D3, GABRA1, GABRA3,

GABRA4, GABRA5, GABRB3, GLRA2, GRIA1, GRID1, GRIK2, GRIN1, GRIN2A,

GRIN2B, HCN1, KCND2, KCNQ2, KCNQ3, SCN1A, SCN2A, SCN8A
GO:0005262 (Mol.

Funct.)

Calcium channel activity (114) 9 (CNS) 7.18E-

08

CACNA1A, CACNA1B, CACNA1D, CACNA1G, CACNA2D3, GRIN1, GRIN2A,

RIN2B, SLC24A2
Key GO terms of the CNS+PT geneset (200 genes) clustered on brain development, synapse, and gene regulation

GO:0007399 (Biol.

Proc.)

Nervous system development

(2206)

72 (CNS

+PT)

7.50E-

17

ANK2, ANK3, APBB1, ARHGAP33, ARID1B, ARNT2, ATRX, AUTS2, CAMK2B,

CAMSAP2, CHD5, CHD7, CHD8, CIC, CLSTN3, CNR1, CNTN4, CSNK1E, DAGLA,

DLG4, DMD, DPYSL2, DPYSL3, DYRK1A, EPHB2, EXT1, GIGYF2, GSK3B, HDAC4,

JARID2, KDM6A, KDM6B, KIF5C, KIT, MAP2, APK8IP2, MARK1, MBD5, MECP2,

MYH10, MYO5A, NAV2, NEGR1, NEO1, NF1, NFIB, NIPBL, NLGN2, NPAS2, NR4A2,

NRCAM, NRXN2, NRXN3, NTRK3, OPHN1, PLCB1, PRICKLE1, PTBP2, RERE,

SATB2, SETD2, SLIT3, SMARCA2, SMARCC2, SNAP25, SPAST, STXBP1, SYN1,

TAOK2, TCF4, TSC1, WASF1
GO:0050804 (Biol.

Proc.)

Modulation of chemical synaptic

transmission (316)

20 (CNS

+PT)

1.74E-

08

CAMK2B, CLSTN2, CLSTN3, CNR1, CNTN4, DLG4, EPHB2, GRIK5, KCNB1, KIT,

MAPK8IP2, MECP2, NF1, NLGN2, OPHN1, RIMS3, SNAP25, STX1A, STXBP1, SYN1
GO:0099537 (Biol.

Proc.)

Trans-synaptic signalling (408) 22 (CNS

+PT)

3.16E-

08

ARID1B, CACNB2, CASK, CLSTN3, CNR1, DAGLA, DLG4, EPHB2, GRIK5, GSK3B,

MAPK8IP2, MECP2, MYO5A, NF1, NRXN2, RIMS3, SLC6A1, SNAP25, STX1A,

STXBP1, SYN1, SYNJ1

(Continued)
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Table 3. (Continued)

Term ID Term description (Background

Gene Count)

ASD

genes

FDR Matching proteins in the network (IDs)

GO:0045202 (Cell.

Comp.)

Synapse (849) 45 (CNS

+PT)

3.25E-

17

ANK2, ANK3, APBB1, ARHGAP32, ARHGAP33, ATP1A3, CACNA1C, CADM1,

CAMK2B, CASK, CLSTN2, CLSTN3, CNR1, CPEB4, DAGLA, DLG4, DMD, DMXL2,

EPHB2, GPHN, GRIK5, GSK3B, HDAC4, ITPR1, KCNB1, MAP2, MAPK8IP2, MECP2,

MYH10, NF1, NLGN2, NRCAM, NRXN2, OPHN1, PDE4B, PSD3, RIMS3, SNAP25,

STX1A, STXBP1, STXBP5, SYN1, SYNE1, SYNJ1, WASF1
GO:0005634 (Cell.

Comp.)

Nucleus (6892) 128 (CNS

+PT)

1.73E-

14

ANKRD11, APBB1, APC, ARHGAP32, ARID1B, ARNT2, ASH1L, ATRX, AUTS2,

BAZ2B, BRD4, BTAF1, CAMK2B, CAMTA1, CASK, CDK13, CHD3, CHD5, CHD7,

CHD8, CIC, CMIP, CPEB4, CREBBP, CSNK1E, CTCF, DCUN1D1, DDX3X, DMD,

DOCK4, DST, DYRK1A, EHMT1, EP400, EPC2, EPHB2, FBXO11, FOXP1, GGNBP2,

GRIK5, GSK3B, HCFC1, HDAC4, HERC2, HNRNPU, HUWE1, INTS6, IRF2BPL,

ITPR1, JARID2, JMJD1C, KAT6A, KATNAL1, KDM4B, KDM6A, KDM6B, KHDRBS3,

MAP2, MBD5, MECP2, MED13, MED13L, MEIS2, MKL2, NAV2, NCOR1, NEO1, NF1,

NFIB, NFIX, NIPBL, NPAS2, NR2F1, NR3C2, NR4A2, NSD1, OCRL, OFD1, OGT,

PDE4A, PHF2, PHIP, PLCB1, POGZ, PRICKLE1, PRICKLE2, PRKCB, PRPF39, PTBP2,

QRICH1, RAI1, RB1CC1, RBM27, RERE, RFX3, RNF38, SAE1, SATB2, SETBP1,

SETD2, SMARCA2, SMARCC2, SPAST, SRSF11, STX1A, STXBP1, SYN1, SYNE1,

TAOK2, TCF4, TLK2, TOP1, TRIM33, TRIP12, TSC1, UBN2, UBR5, UPF2, USP15,

USP7, WAC, WDFY3, WDR26, YEATS2, YY1, ZMYND11, ZNF462, ZNF827
GO:0006325 (Biol.

Proc.)

Chromatin organization (683) 44 (CNS

+PT)

1.44E-

18

APBB1, ARID1B, ASH1L, ATRX, BAZ2B, BRD4, CHD3, CHD5, CHD7, CHD8,

CREBBP, CTCF, EHMT1, EP400, EPC2, HCFC1, HDAC4, HNRNPU, HUWE1,

JARID2, JMJD1C, KAT6A, KDM4B, KDM6A, KDM6B, MECP2, NCOR1, NSD1, OGT,

PHF2, PRKCB, RERE, SATB2, SETD2, SMARCA2, SMARCC2, TLK2, TOP1, USP15,

USP7, WAC, YEATS2, ZMYND11, ZNF462
GO:0003682 (Mol.

Func.)

Chromatin binding (501) 29 (CNS

+PT)

2.62E-

11

APBB1, ASH1L, ATRX, AUTS2, BRD4, CHD7, CHD8, CIC, CREBBP, CTCF, EP400,

HCFC1, HDAC4, HNRNPU, JARID2, JMJD1C, KDM6A, KDM6B, MBD5, MECP2,

NIPBL, NSD1, PRKCB, RERE, SATB2, SMARCA2, TOP1, WAC, ZMYND11
GO:0016570 (Biol.

Proc.)

Histone modification (347) 26 (CNS

+PT)

2.08E-

12

APBB1, ASH1L, CHD3, CHD5, CREBBP, EHMT1, EP400, EPC2, HCFC1, HDAC4,

HUWE1, JMJD1C, KAT6A, KDM4B, KDM6A, KDM6B, MECP2, NSD1, OGT, PHF2,

PRKCB, SETD2, USP15, USP7, WAC, YEATS2
GO:0042393 (Mol.

Func.)

Histone binding (188) 12 2.99E-

05

APBB1, ATRX, BRD4, CHD5, CHD8, PHF2, PHIP, PRKCB, SMARCA2, USP15,

YEATS2, ZMYND11
GO:0008134 (Mol.

Func.)

Transcription factor binding

(610)

24 2.05E-

06

APBB1, ARNT2, CDK13, CREBBP, DDX3X, FOXP1, GSK3B, HCFC1, HDAC4,

HNRNPU, JARID2, JMJD1C, KAT6A, MECP2, MED13, MEIS2, NCOR1, NR4A2,

NSD1, PRKCB, TCF4, TRIP12, USP7, YEATS2
GO:0010468 (Biol.

Proc.)

Regulation of gene expression

(4533)

96 (CNS

+PT)

4.21E-

12

ANK2, ANK3, APBB1, ARID1B, ARNT2, ASH1L, ATRX, AUTS2, BAZ2B, BRD4,

BTAF1, CAMTA1, CDK13, CHD3, CHD5, CHD7, CHD8, CIC, CPEB4, CREBBP,

CSNK1E, CTCF, DAPK1, DDX3X, DYRK1A, EHMT1, EPC2, EPHB2, FOXP1,

GGNBP2, GIGYF2, GSK3B, HCFC1, HDAC4, HNRNPU, IRF2BPL, JARID2, JMJD1C,

KAT6A, KDM4B, KDM6A, KDM6B, KHDRBS3, KIT, MECP2, MED13, MED13L,

MEIS2, MKL2, NCOR1, NEO1, NF1, NFIB, NFIX, NIPBL, NPAS2, NR2F1, NR3C2,

NR4A2, NSD1, NTRK3, OGT, PHF2, PHIP, PLCB1, POGZ, PRICKLE1, PRKCB,

PTBP2, QRICH1, RAI1, RB1CC1, RERE, RFX3, SATB2, SETBP1, SETD2, SLIT3,

SMARCA2, SMARCC2, TCF4, TNRC6B, TOP1, TRIM33, TSC1, UBR5, UPF2, USP15,

USP7, VIP, WAC, YEATS2, YY1, ZMYND11, ZNF462, ZNF827
GO:0003677 (Mol.

Func.)

DNA binding (2457) 53 5.62E-

06

ARID1B, ARNT2, ASH1L, ATRX, BAZ2B, BTAF1, CAMTA1, CDK13, CHD3, CHD5,

CHD7, CHD8, CIC, CREBBP, CTCF, DDX3X, EP400, FOXP1, HDAC4, HNRNPU,

HUWE1, JARID2, JMJD1C, KAT6A, KDM6A, KDM6B, MECP2, MEIS2, NCOR1,

NFIB, NFIX, NPAS2, NR2F1, NR3C2, NR4A2, NSD1, POGZ, QRICH1, RAI1, RERE,

RFX3, SATB2, SETBP1, SMARCA2, SMARCC2, TCF4, TOP1, TRIM33, UPF2, YY1,

ZMYND11, ZNF462, ZNF827

(Continued)
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PLCB1, PRKCB) and Pancreatic secretion (5/200, FDR = 0.0343, ATP1A3, ITPR1, KCNMA1,

PLCB1, PRKCB) were also detected as significant KEGG pathways in the CNS+PT ASD

geneset.

In consistency with this, STRING analysis of the combined 291 ASD genes gave rise to 47

“KEGG pathways” (S18 Table), 677 “Biological Processes” (S19 Table), 149 “Cellular Compo-
nents” (S20 Table) and 177 “Molecular Function” (S21 Table). The top enriched pathways of

the combined ASD risk factors included Nervous system development (119/291 genes,

FDR = 8.85E-34), Synapse (87/291, 1.9E-43), Trans-synaptic signalling (53/291, 1.04E-28), Ion

channel complex (36/291, 2.55E-20), Ion-gated channel activity (33/291, 1.2E-14), Regulation

of ion transport (44/291, 4.79E-15) and Neurotransmitter receptor activity (14/291, 8.86E-08),

Chromatin organisation (44/291, 9.4E-14), Chromosome (36/291, 4.80E-06) and Chromatin

binding (31/291, 3.48E-09) and Positive regulation of gene expression (66/291, 8.15E-10).

These data suggest that the CNS+PT geneset of ASD candidate genes may influence not only

the core symptoms via CNS development and synaptic function, but also the comorbidities

through dysregulated gene expression and hormonal signalling in the peripheral organs.

E/I balance, and calcium signalling are central to ASD

KEGG analyses generated 26 pathways for the CNS (S13 Table) geneset and 31 pathways for

the CNS+PT geneset (S17 Table). The top pathways from the CNS geneset corresponded to

Glutamatergic synapse (12/91 genes, 2.46E-11), GABAergic synapse (11/91, 3.44E-11), Neuro-

active ligand-receptor interaction (14/91, 1.42E-09), Retrograde endocannabinoid signalling

(11/91, 3.77E-09), Calcium signalling pathway (11/91, 1.80E-08) and MAPK signalling (6/91,

0.0105). The CNS+PT ASD geneset was also enriched for Secretion, Thyroid function, and

Cellular signalling. Interestingly, 10 pathways from both ASD genesets appeared to overlap,

which included Glutamatergic, Dopaminergic, Cholinergic synapses, Circadian entrainment,

cAMP and Retrograde endocannabinoid signalling (Table 3). Calcium channels, Glutamater-

gic and GABAergic receptors appeared to link to most of the pathways.

To further investigate the interconnectivity among the KEGG pathways (S18 Table), we

constructed an interaction matrix with the combined ASD geneset KEGG pathways (S22

Table), similar to a previous analysis [30]. The calcium signalling (27/47), MAPK Signalling

(12/47) and cAMP signalling (6/47) were identified as highly interconnected signalling path-

ways. Pre-synaptically, the genes in calcium signalling also appeared frequently in the other

pathways, particularly the genes encoding the pore-forming subunit of voltage-gated calcium

channel (CACNA1A, CACNA1B, CACNA1C, CACNA1D), the I3P receptor IPTR1, PLCB and

the calmodulin proteins (CAMK2A, CAMK2B) are connected to the neurotransmitter releases

Table 3. (Continued)

Term ID Term description (Background

Gene Count)

ASD

genes

FDR Matching proteins in the network (IDs)

GO:0043167 (Mol.

Func.)

Ion binding (6066) 106 (CNS

+PT)

1.42E-

08

AGAP1, ARHGAP32, ARHGAP33, ASAP2, ASH1L, ATP1A3, ATP8A1, ATRX, BAZ2B,

BTAF1, CACNA1C, CACNA2D1, CAMK2B, CASK, CDC42BPB, CDK13, CHD3,

CHD5, CHD7, CHD8, CLSTN2, CLSTN3, CPEB4, CREBBP, CSNK1E, CTCF, DAGLA,

DAPK1, DDX3X, DMD, DPYSL3, DST, DYNC1H1, DYRK1A, EHMT1, EP400, EPHB2,

EXT1, FBXO11, FGD1, FOXP1, GPHN, GSK3B, HDAC4, HERC2, HNRNPU, IRF2BPL,

ITPR1, JMJD1C, KAT6A, KATNAL1, KCND3, KCNMA1, KDM4B, KDM6A, KDM6B,

KIF21B, KIF5C, KIT, MARK1, MYH10, MYO5A, NAV2, NF1, NPAS2, NR2F1, NR3C2,

NR4A2, NRXN2, NRXN3, NSD1, NTRK3, OGT, OPHN1, PDE4A, PDE4B, PHF2,

PHF3, PLCB1, POGZ, PRICKLE1, PRICKLE2, PRKCB, RAI1, RAPGEF4, RBM27,

RERE, RNF38, SETD2, SLC6A1, SLIT3, SMARCA2, SPAST, SYN1, TAOK2, TLK2,

TOP1, TRIM33, TRIO, UBR5, WDFY3, YTHDC2, YY1, ZMYND11, ZNF462, ZNF827

https://doi.org/10.1371/journal.pone.0242773.t003
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(Table 4). Post-synaptically, Glutamatergic synapse (8/47) had the largest number of interac-

tions with other pathways, which was followed by Dopaminergic synapse (7/47). The NDMAR

(GRIN2A, GRIN2B, GRIN1) and AMPA (GRIA1) receptors were also the highly interconnec-

ted notes in neural and synaptic, calcium and cAMP signalling pathways. In summary, this

overlap analyses demonstrated that the E/I balance, and calcium signalling are the most signifi-

cant pathways linking to the ASD core symptoms, and transcriptional regulation to the ASD

comorbidities.

Enriched epilepsy/seizures in the CNS geneset and congenital

abnormalities/developmental delay in CNS+PT geneset

The results from WebGestalt (Fig 7, Supplementary links 1 and 2) showed that epilepsy and

seizures were enriched in 19 of the top 50 phenotype terms and movement disorders in 9 of

the 50 terms in the CNS geneset. In the CNS+PT set, there was enrichment for behaviour

issues (9/50) such as self-injurious (FDR = 1.04E-07), aggressive behaviour (1.04E-11), and

congenital abnormalities of the face (25/50 items).

High proportion of the ASD genes were dysregulated in ASD

We compared the ASD geneset with DEGs between ASD and controls in the literature and

found that 201 of the 292 genes in our ASD geneset were dysregulated, at least once across

multiple ASD gene expression studies (Table 4, S23 Table). Recurrent DEGs such as RELN,

FOXP1, GAD1, NRXN1, FOXG1 and CAMK2A were present in multiple studies (S23 Table).

These data suggest that not only mutations but also dysregulated expression of the ASD risk

genes can be linked to the development of ASD.

Table 4. Genes dysregulated in ASD expression studies that overlapped with our geneset.

Study Tissue type genes overlap up down

Gupta [66] Cortical post-mortem 22 18 4

Parikshak [67] Cortical post-mortem 24 4 20

Voineagu [56] Cortical post-mortem 48 39 9

Walker (2013) [49] colon 2 0 2

Walker (2016) [46] blood and colon 70 5|37�� 29|6��

Mariani [50] Organoids 89 86� 3�

Gresi Olivera [54] IPSC neurons 2 2 0

DeRosa [53] IPSC neurons 15 4� 11�

Velmeshev [68] Cortical tissue post-mortem 38 32 6

Herrero [69] Amygdala post-mortem 9 2 7

Chien [48] Lymphblastoid cell lines 9 2 7

Ginsberg [70] Cortical tissue 2 2 0

Garbett [45] Superior Temporal Gyrus 2 0 2

Breen [55] IPSC neurons and NPCs 10 9 1

Wang (2015) [64] IPSC neurons and NPCs 84 63 21

Wang (2017) [52] Organoids 24 17 7

Pramparo [47] Leukocytes 15 0 12

�denotes genes which have simultaneous up/down expression

�� denote genes for blood and colon samples respectively.

https://doi.org/10.1371/journal.pone.0242773.t004
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ASD genes enriched in cortex development and sex-bias brain expression

We compared ASD shortlist with CSEA dataset and found that 280 of the 292 ASD genes were

mapped to CSEA, with an enrichment in the cortex across most timepoints (S24 Table), with

most significant enrichment in the early-mid fetal stage of brain development at pSI 0.05 (p-

value = 5.427e-16, FDR = 3.256e-14) pSI 0.01 (p-value = 5.560e-07 FDR = 3.336e-05) and pSI

0.001 p-value = 8.912e-04, FDR = 0.053) (Fig 8D). In addition, there was also enrichment of

genes in the striatum at the early-mid fetal stage (p-value = 1.872e-08, FDR = 2.808e-07), in

the cerebellum at childhood (p-value = 7.576e-07, FDR = 7.576e-06) and adolescence (p-

value = 9.970e-04, FDR = 0.005), in the thalamus in early fetal (p-value = 0.010, 0.043) and

neonatal period (p-value 4.333e-04, FDR = 0.003), and in the amygdala from mid-early (p-

value = 0.009, FDR = 0.042) to mid-late (p-value = 0.017, FDR = 0.064) fetal stages. These data

suggest that the ASD geneset plays essential role in brain development, especially

corticogenesis.

To investigate if the ASD genes are sex-related, we compared the ASD geneset with genes

which were known to have sex-biased expression in prenatal male and female (S25 Table). Sig-

nificant correlations were found with genes bias for female cerebellar cortex, dorsolateral

Fig 7. Co-Morbid phenotypes associated with ASD. (A) Top 50 terms enriched in CNS geneset, (B) top 50 terms enriched in CNS+PT geneset. X-axis denotes ratio of

enrichment. Dark blue are terms below FDR< 0.05.

https://doi.org/10.1371/journal.pone.0242773.g007
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prefrontal cortex, medial prefrontal cortex, orbital frontal cortex, inferolateral temporal cortex

and caudal superior temporal cortex (Fig 8A), and with genes bias for male primary somato-

sensory cortex, mediodorsal nucleus of thalamus and striatum (Fig 8B). In addition, 34 of the

292 genes were found to have sex-biased gene-splicing in at least one brain region (Fig 8C, S25

Table). These genes are likely to contribute to sex-bias occurrence of the ASD.

ASD genes present in other conditions

We next compared the ASD genes with other neuropsychiatric conditions, including schizo-

phrenia, bipolar and major depression, and peripheral conditions such as arrythmia, inflam-

matory bowel disease and type 1 and type 2 diabetes (Fig 9, S25 Table), and identified 94 genes

which were identified in Pyschgenet database (Fig 9A), and involved in synaptic transmission.

The remaining ASD-unique genes were enriched for chromatin organization and gene expres-

sion. We also found significant overlaps of the ASD genes with factors associated with psychi-

atric and peripheral conditions (Fig 9B), including a large overlap with type 2 diabetes (134/

Fig 8. Sex-biased expression of the ASD genesets. Biased expression of the ASD genesets in female (A) and male (B) brain regions. Values

are expressed as FDR in red and Log2 odds ratio in green with gradients. N.S for not significant. (C) Overlap of 34 ASD genes with sex-biased

splicing genes. (D) Bullseye plot showing enrichment of ASD geneset in brain regions with most significant correlation in cerebral cortex

throughout brain development. A1C -primary auditory cortex, AMY—amygdaloid complex, CBC—cerebellar cortex, DFC -dorsolateral

prefrontal cortex, HIP—hippocampus, IPC—posterior inferior parietal cortex, ITC—inferolateral temporal cortex, M1C-primary motor

cortex, MD—mediodorsal nucleus of thalamus, MFC—medial prefrontal cortex, OFC -orbital frontal cortex, S1C - primary somatosensory

cortex, STC—posterior(caudal) superior temporal cortex, STR -striatum, VFC—ventrolateral prefrontal cortex, and V1C - primary visual

cortex.

https://doi.org/10.1371/journal.pone.0242773.g008
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292, FDR = 3e-42). These data suggest a common disturbance in neuronal communication

with CNS other neuropsychiatric disorders and gene dysregulation with peripheral conditions.

Discussion

It is becoming apparent that ASD genes could influence other organ systems. This is reflected

by the many co-morbidities occurring outside the CNS such gastrointestinal issues, metabolic

disorders, auto-immune disorders, tuberous sclerosis, attention-deficit hyperactivity disorder,

and sensory problems associated motor problems. However, little attention has been given to

related organs of major comorbidities. Here we have identified 319 overlapping ASD candi-

dates among the four independent scoring systems and the SFARI database [28, 31–34]. We

also introduced gene expression using the GTEx database [39, 71], which consists of mRNA

data of 53 human tissues from approximately 1000 individuals at the age of 21–70. This

resulted in a shortlist of 292 common ASD candidate genes with mRNA expression at TPM

�3 transcripts. This also categorized the ASD factors into 2 genesets, the CNS-specific geneset

of 91 genes (with a TMP<3 in PT) and the CNS+PT geneset of 201 genes. This was validated

at the protein level across these tissues in the human protein atlas (HPA) dataset and Huri,

showing that that ASD genes are not only expressed in other organs outside the brain, but also

appear to interact with other proteins in tissue-specific networks.

STRING analyses show that the CNS geneset is enriched for nervous development, gluta-

matergic/GABAergic synapses, and calcium signalling. Phenotype analysis also showed high

enrichment for epilepsy and seizures. Both results support the hypothesis that disruption of E/

I balance during CNS development as a major feature of ASD [72], which are related to CNS

co-morbidities such as epilepsy occurring in 30% of ASD at severe end of the spectrum.

The expression of 201 ASD candidate genes in CNS+PT suggest that ASD genes may influ-

ence not only the CNS but also peripheral systems in the body. This geneset is enriched for

nervous development and synapse, as well as for chromatin organisation and gene regulation,

which are consistent with previous reports from exome sequencing studies [12, 14, 16, 17, 29].

Therefore, the genes involved in chromatin organisation and gene regulation could have an

influence in peripheral co-morbidities. Many of the genes in our ASD geneset also show dysre-

gulated expression in multiple studies (Table 4) pertaining to cortical tissue and iPSC derived

models, and in the few studies carried on gene expression in the gastrointestinal tract of ASD.

Strong candidate genes such as CHD8, POGZ and DYRK1A were previously reported to be

associated with not only autism but also gastrointestinal issues, facial dysmorpisms, visual and

feeding problems [73–76]. Indeed, facial dysmorphism is also a recurrent phenotype that

emerges among various subgroups of autistics with known genetic mutations [77–79]. Some

enrichment of ASD genes reported to overlap with heart development (S10-21) and congenital

heart deformation [80, 81], and a high rate of ASD diagnosis was reported among children

with congenital heart defects [82]. POGZ and ANKRD11 are also present in many tissue inter-

action networks (Table 2) which are involved in neural proliferation. The POGZ is a zinc finger

protein interacting with the transcription factor SP1 [83], and ANKRD11 is a chromatin regu-

lator, modulating histone acetylation and inhibiting ligand-dependent activation of transcrip-

tion [84]. ANKRD11 mutations have been associated with diseases with distinctive craniofacial

Fig 9. Overlap of ASD genes with other conditions. A) Comparison of the ASD geneset with Pyschgenet (SCZ, BP, MDD) defines a

network of 94 overlapping genes (green) and 198 ASD-unique genes (blue). B) matrix of overlaps between ASD/Psychiatric (SCZ, BP,

MDD) and peripheral (IBD, ARY. T1D and T2D) conditions. C) Network of ASD genes and overlaps with peripheral (IBD, ARY. T1D

and T2D) conditions, with orange circle for non-overlapping genes. IBD—Inflammatory bowel disease, Ary—Arrythmia, T1D - type 1

diabetes, T2D - type 2 diabetes. SCZ–schizophrenia, BP–bipolar disorder, MDD–major depressive disorder.

https://doi.org/10.1371/journal.pone.0242773.g009
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features, short stature, skeletal anomalies, global developmental delay, seizures and intellectual

disability [85].

The strong enrichment for neuronal processes and functions in tissues beyond the brain is

of curious interest, but researchers are starting to explore other aspects of ASD that could have

an impact on other organs such as the heart via the sympathetic and parasympathetic nervous

systems [86], and the gastrointestinal tract via the enteric nervous system [87]. In fact there is

growing evidence that heart rate is affected among Autistics [88–91], along with evidence that

ASD genes could be involved in aspects of gastrointestinal development and function [74, 92–

97]. There is a potential for more work on how the parts of the brain control heart rate and gas-

trointestinal, how they are altered in autism, or even if reported autonomic issues in co-mor-

bidities such gastroesophageal reflux [98, 99] hold true in the autistic population as well. The

expression of proteins such as STX1A, SNAP25 and FOXP1 expressed in endocrine tissues

could be of interest in ASD, given how knockouts in these genes can impact the development

and function of certain parts of the endocrine system [100–102] and how genes involved in

neurotransmission could also be involved in secretion of hormones [103].

Another unaddressed question is if the peripheral nervous system and peripheral organs

are affected by mutations in addition to the CNS. Amongst the results we found enrichment

for neuromuscular and cardiac function in STRING analysis (S9-20). Some animal models

such as FOXP1, SHANK3, NOS1 and CHD8 [74, 92, 94, 96, 97] have been developed for func-

tional analysis of ASD candidate genes in the gastrointestinal system, which indicates that

ASD genes may play an important role in this organ [95], and yet most research have been

mainly focused on the brain in both human and animal models. A greater utilisation of the

animal models to explore other systems such as the cardiac and gastrointestinal systems would

be welcome.

In fact, 88/292 genes in our ASD geneset already have existing genetic mouse models, as

well as rescue models for 28/292 genes according to the SFARI database (July 2020) at the time

of writing. They are helpful in understanding function of these genes, and may also assist drug

development to remediate related pathways, not just in the brain, but also throughout the

peripheral nervous system that connects to co-morbidity organs, and even in the peripheral

organs themselves.

The interconnectivity analyses from the current study reveal calcium, MAPK and glutama-

tergic signalling as three highest interconnected pathways, all are also involved with each other

based on the interaction matrix. This is in line with a previous publication that ASD factors are

converged upon MAPK and calcium signalling [30]. It is worth to note that MAPK signalling

is also interlinked with calcium signalling in this study. Ten of the 14 MAPK pathway mem-

bers, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1G, CACNA2D1, CACNA2D3,

CACNB2, ERBB4 and PRKCB, are overlapped with the calcium signalling (Table 5), and 8 of

them are calcium channels. Furthermore, calcium channels appear in 16 top KEGG pathways

including glutamatergic, GABAergic, dopaminergic, cholinergic and serotonergic synapses of

the ASD genes (Table 5). Our results add to the evidence that calcium and glutamatergic sig-

nalling are the significant components in ASD pathways.

Calcium signalling is a highly integral system in the human body and is increasingly shown

to be implicated in ASD [104, 105]. In neurons, the arrival of the electric current induces Ca2+

influx via voltage-gated calcium channels, and this triggers exocytosis and neurotransmitter

release [106]. The voltage-gated calcium channels are tetramers containing three auxiliary sub-

units (β, α2δ, γ) and one pore-forming α1 subunit. Eight calcium channels (CACNA1A, CAC-
NA1B, CACNA1C, CACNA1D, CACNA1G, CACNA2D1, CACNA2D3, CACNB2) are present

in our 291 ASD geneset. Experiments using fibroblasts from monogenic [107] and non-syn-

dromic autistic subjects [108] demonstrate aberrant calcium signalling mediated by I3PR. In
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Table 5. Converging ASD candidate genes on E/I balance and calcium signalling pathway.

Term ID Term description (Background

Gene Count)

ASD

genes

FDR Matching proteins in the network (IDs)

hsa04724 Glutamatergic synapse (112) 12 (CNS) 2.46E-

11

CACNA1A, CACNA1D, DLGAP1, GRIA1, GRIK2, GRIN1, GRIN2A, GRIN2B, GRM1,

HOMER1, SHANK2, SLC1A2
6 (CNS

+PT)

0.0179 CACNA1C, DLG4, GRIK5, ITPR1, PLCB1, PRKCB

19 (Com) 1.21E-

10

CACNA1A, CACNA1C, CACNA1D, DLG4, DLGAP1, GRIA1, GRIK2, GRIK5, GRIN1, GRIN2A,

GRIN2B, GRM1, HOMER1, SHANK3, ITPR1, PLCB1, PRKCB, SHANK2, SLC1A2
hsa04727 GABAergic synapse (88) 11 (CNS) 3.44E-

11

CACNA1A, CACNA1B, CACNA1D, GABBR2, GABRA1, GABRA3, GABRA4, GABRA5,

GABRB3, GAD1, SLC12A5
15 (Com) 2.48E-

09

CACNA1A, CACNA1B, CACNA1C, CACNA1D, GABBR2, GABRA1, GABRA3, GABRA4,

GABRA5, GABRB3, GAD1, GPHN, PRKCB, SLC12A5, SLC6A1
hsa04728 Dopaminergic synapse (128) 8 (CNS) 2.16E-

06

CACNA1A, CACNA1B, CACNA1D, CAMK2A, GRIA1, GRIN2A, GRIN2B, SCN1A

7 (CNS

+PT)

0.0126 CACNA1C, CAMK2B, GSK3B, ITPR1, KIF5C, PLCB1, PRKCB

15 (Com) 7.84E-

08

CACNA1A, CACNA1B, CACNA1C, CACNA1D, CAMK2A, CAMK2B, GRIA1, GRIN2A,

GRIN2B, GSK3B, ITPR1, KIF5C, PLCB1, PRKCB, SCN1A
hsa04725 Cholinergic synapse (111) 6 (CNS) 0.0001 CACNA1A, CACNA1B, CACNA1D, CAMK2A, KCNQ2, KCNQ3

11 (Com) 2.36E-

05

CACNA1A, CACNA1B, CACNA1C, CACNA1D, CAMK2A, CAMK2B, ITPR1, KCNQ2,

KCNQ3, PLCB1, PRKCB
hsa04726 Serotonergic synapse (112) 5 (CNS) 0.0011 CACNA1A, CACNA1B, CACNA1D, GABRB3, KCND2

10 (Com) 0.00062 CACNA1A, CACNA1B, CACNA1C, CACNA1D, GABRB3, ITPR1, KCND2, PLCB1, PRKCB
hsa04720 Long-term potentiation (64) 6 (CNS) 6.89E-

06

CAMK2A, GRIA1, GRIN1, GRIN2A, GRIN2B, GRM1

6 (CNS

+PT)

0.0025 CACNA1C, CAMK2B, CREBBP, ITPR1, PLCB1, PRKCB

12 (Com) 3.14E-

08

CACNA1C, CAMK2A, CAMK2B, CREBBP, GRIA1, GRIN1, GRIN2A, GRIN2B, GRM1, ITPR1,

PLCB1, PRKCB
hsa04730 Long-term depression (60) 4 (CNS) 0.0011 CACNA1A, GRIA1, GRM1, NOS1

7 (Com) 0.00051 CACNA1A, GRIA1, GRM1, ITPR1, NOS1, PLCB1, PRKCB
hsa04024 cAMP signaling pathway (195) 8 (CNS) 3.21E-

05

ATP2B2, CACNA1D, CAMK2A, GABBR2, GRIA1, GRIN1, GRIN2A, GRIN2B

7 (CNS

+PT)

0.0382 ATP1A3, CACNA1C, CAMK2B, CREBBP, PDE4A, PDE4B, RAPGEF4

15 (Com) 7.17E-

06

ATP1A3, ATP2B2, CACNA1C, CACNA1D, CAMK2A, CAMK2B, CREBBP, GABBR2, GRIA1,

GRIN1, GRIN2A, GRIN2B, PDE4A, PDE4B, RAPGEF4
hsa04010 MAPK signaling pathway (293) 6 (CNS) 0.0105 CACNA1A, CACNA1B, CACNA1D, CACNA1G, CACNA2D3, ERBB4

14 (Com) 0.0013 CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1G, CACNA2D1, CACNA2D3,

CACNB2, ERBB4, KIT, MAPK8IP2, NF1, PRKCB, TAOK2
hsa04020 Calcium signaling pathway (179) 11 (CNS) 1.80E-

08

ATP2B2, CACNA1A, CACNA1B, CACNA1D, CACNA1G, CAMK2A, ERBB4, GRIN1,

GRIN2A, GRM1, NOS1
16 (Com) 7.79E-

07

ATP2B2, CACNA1A, CACNA1B, CACNA1C, CACNA1D, CACNA1G, CAMK2A, CAMK2B,

ERBB4, GRIN1, GRIN2A, GRM1, ITPR1, NOS1, PLCB1, PRKCB
hsa04713 Circadian entrainment (93) 9 (CNS) 1.74E-

08

CACNA1D, CACNA1G, CAMK2A, GRIA1, GRIN1, GRIN2A, GRIN2B, NOS1, NOS1AP

5 (CNS

+PT)

0.0339 CACNA1C, CAMK2B, ITPR1, PLCB1, PRKCB

14 (Com) 1.98E-

08

CACNA1C, CACNA1D, CACNA1G, CAMK2A, CAMK2B, GRIA1, GRIN1, GRIN2A, GRIN2B,

ITPR1, NOS1, NOS1AP, PLCB1, PRKCB

(Continued)
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addition, mutations of calcium channels have been found in ASD, for example, CACNA1A
rs7249246/rs12609735 were associated with Chinese Han ASD [109], and CACNA1A muta-

tions in Epileptic Encephalopathy [110, 111], gain of function of CACNA1C in Timothy syn-

drome with ASD [112] and recurring CNVs of CACNA2D3 [29, 36, 113, 114]. Exome

sequencing has identified various mutations of CACNA1D in ASD [14, 16, 29, 36, 115], epi-

lepsy [116] developmental delay [117] endocrine issues [117, 118], CACNA2D1 in epilepsy

and intellectual disability [119] and CACNB2 mutations in ASD [120, 121]. CACNA1C
(rs1024582) and CACNB2 (rs2799573) polymorphisms were suggested as the common risks

across seven brain diseases [122]. Therefore, dysregulated calcium and synaptic signalling

could be a commonly perturbed pathway in ASD and frequently occurring comorbidities.

Calcium channels are coupled to neuronal transmission, and E/I imbalance was proposed

as a common ASD pathway previously [123]. For example, increased calcium signalling is

found in NRXN1α+/− neurons derived from ASD induced pluripotent stem cells with

increased expression of voltage-gated calcium channels [124]. In the current study, KEGG

pathways show that CACNA1A, CACNA1C, CACNA1D are involved in glutamatergic synapse;

CACNA1A, CACNA1B and CACNA1D in cholinergic synapse; and CACNA1A, CACNA1B,

CACNA1C and CACNA1D in GABAergic, dopaminergic, and serotonergic synapses. The glu-

tamatergic and GABAergic transmission are the major excitatory and inhibitory pathways in

the CNS, which are recurrently featured in “Biological Processes”, “Molecular Functions”, “Cell
Components” and KEGG pathways of the 291 ASD candidate genes. Various glutamatergic

receptor genes (GRIA1, GRIK2, GRIK5, GRIN1, GRIN2A, GRIN2B, GRM1, GRM5, GRM7),

scaffolding components of synapses (SHANK2, SHANK3, DLG4, DLGAP1) and transport of

glutamate (SLC1A2) were all involved in ASD and other comorbidities [110, 125–130].

Table 5. (Continued)

Term ID Term description (Background

Gene Count)

ASD

genes

FDR Matching proteins in the network (IDs)

hsa04925 Aldosterone synthesis and

secretion (93)

4 (CNS) 0.005 ATP2B2, CACNA1D, CACNA1G, CAMK2A
3 (CNS

+PT)

0.0475 ATP1A3, NR3C2, PRKCB

12 (Com) 9.03E-

07

ATP1A3, ATP2B2, CACNA1C, CACNA1D, CACNA1G, CAMK2A, CAMK2B, DAGLA, ITPR1,

NR4A2, PLCB1, PRKCB
hsa04723 Retrograde endocannabinoid

signalling (148)

11 (CNS) 3.77E-

09

CACNA1A, CACNA1B, CACNA1D, GABRA1, GABRA3, GABRA4, GABRA5, GABRB3, GRIA1,

GRM1, RIMS1
6 (CNS

+PT)

0.0382 CACNA1C, CNR1, DAGLA, ITPR1, PLCB1, PRKCB

17 (Com) 1.58E-

08

CACNA1A, CACNA1B, CACNA1C, CACNA1D, CNR1, DAGLA, GABRA1, GABRA3, GABRA4,

GABRA5, GABRB3, GRIA1, GRM1, ITPR1, PLCB1, PRKCB, RIMS1
hsa04310 Wnt signaling pathway (143) 10 (CNS

+PT)

0.00031 APC, CAMK2B, CHD8, CREBBP, CSNK1E, GSK3B, PLCB1, PRICKLE1, PRICKLE2, PRKCB

15 (Com) 0.00017 ATP1A3, ATP2B2, CACNA1C, CACNA1D, CAMK2A, CAMK2B, CREBBP, GABBR2, GRIA1,

GRIN1, GRIN2A, GRIN2B, PDE4A, PDE4B, RAPGEF4
hsa04921 Oxytocin signaling pathway

(149)

7 (CNS

+PT)

0.0179 CACNA1C, CACNA2D1, CACNB2, CAMK2B, ITPR1, PLCB1, PRKCB

10 (Com) 0.00098 CACNA1C, CACNA1D, CACNA2D1, CACNA2D3, CACNB2, CAMK2A, CAMK2B, ITPR1,

PLCB1, PRKCB
hsa04911 Insulin secretion (84) 9 (CNS

+PT)

7.16E-

05

TP1A3, CACNA1C, CAMK2B, KCNMA1, PLCB1, PRKCB, RAPGEF4, SNAP25, STX1A

11 (Com) 2.51E-

06

ATP1A3, CACNA1C, CACNA1D, CAMK2A, CAMK2B, KCNMA1, PLCB1, PRKCB, RAPGEF4,

SNAP25, STX1A

https://doi.org/10.1371/journal.pone.0242773.t005
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Remarkably, various calcium signalling members are commonly appeared in other path-

ways that are perturbed in ASD (Fig 5C–5D, Table 5). For example, 11/14 molecules in Circa-

dian entrainment, 10/14 in MAPK signalling, 7/15 in Wnt signalling, 10/10 in Oxytocin

signalling, 9/12 in Aldosterone synthesis and secretion, 8/17 in Retrograde endocannabinoid

signalling, 6/11 in insulin secretion, were found in calcium signalling pathway, which could be

of great interest given their role in the pancreas [131]. In the top KEGG pathways identified

from the CNS geneset (CNS), the CNS+PT geneset and combined (Com) 292 ASD candidates,

calcium signalling members (bold) appeared in all other KEGG pathways. Therefore, calcium

signalling is likely to play a major role not only in ASD but also in ASD comorbidities.

Limitations

Like other meta-analyses, biases and limitations should be considered in pathway analyses. We

first assumed that any significant ASD candidate genes shall appear in 4/5 independent data-

sets. However, some strong candidate genes, such as FMR1 and PTEN, did not appear in the

final 291 gene list. While they have much evidence to support their role in ASD, the genes did

not overlap due to differences in ranking criteria of different systems. For example, PTEN was

in the top ranking in SFARI, Zhang and EXAC, however it was not shortlisted from Duda’s

and Krishnan’s score systems. Likewise, FMR1 was ranked top in Duda’s, Zhang’s and SFARI,

but did not pass the threshold in EXAC or Krishnan’s dataset. The biological influence of

FMR1 and PTEN in ASD is very significant. For example, FMR1 is known to target 126/291

ASD candidates in the current study, and PTEN is a target of another strong ASD candidate,

CHD8, on our list.

We also filtered out 200 genes (S26 Table), which were overlapped by four independent

scoring systems but not existed in the SFARI database. 66 of them are targets of the FMR1, and

36 are targets of CHD8. Some of them like BCL11B, DPF1, ETV1, NFASC, PAK7, PLXNC1,

SCN3A, SLC17A7 and SLITRK1 were also dysregulated in cerebral organoids derived from

autistics with large head circumference [50], while others (NEDD4L, RICTOR, SLC8A1,

CELF2, MLLT3, PPFIA2, EPHA7, LRRC4C and RORB) were identified from very recent single

cell sequencing of autism cortical tissue [68]. This suggests they would still be modulated as

downstream targets in some cases of ASD.

In the current study we hypothesized that a strong ASD candidate gene should be highly

expressed in the brain and/or relative PT with strong comorbidity. However, this assumption

could be potentially challenged by the following scenario. (1) If an ASD gene were develop-

ment-specific but had low abundance in adult post-mortem tissues, it would be filtered out by

GTEx dataset derived from donors of 20–79 age; (2) If a gene were highly expressed in a small

subset of specific nuclei of the brain, which might appear not abundant in the total brain RNA;

(3) If an ASD gene were modulated by ethnic genetic background, as 85.2% of GTEx donors

were Caucasian European subjects, 12.7% were African-American, 1.1% were Asian and 0.3%

were American-Indian. As for protein expression, the HPA is an evolving database, and genes

with no protein expression data now can be updated in future releases. The same goes for cell

types in tissue, which will also be incomplete, given the myriad cell types that are present in all

organs. The use of single cell sequencing technology and flow cytometry will be useful in

addressing the issue [132, 133].

It is interesting that many of the ASD genes are found to have sex-bias expression and/or

splicing, which may be associated with sex-bias diagnosis of ASD [134–136]. We are limited in

understanding its biological base by the lack of transcriptomic analysis of ASD genes. Many of

the transcriptomic studies have focused on male subjects, or the ratio of female samples are

too few to illustrate any sex-specific effects in ASD. It is suggested that future transcriptomic
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studies should incorporate an even number of male and female subjects in both groups of case

and control. Organoid cell lines may also be created from both sexes to make up for this short

coming.

It would be desirable if gene expression datasets are available to compare from control and

ASD patients at different time points not just in the brain, but also across the entire body. A

recent publication [137] has proposed a paediatric cell atlas, which would collate and charac-

terise gene expression at the single cell level across multiple tissues and time points of human

development from birth to adulthood. This would be a fantastic initiative if it fully goes ahead,

as such a resource would bring great insight into the co-morbidities associated with ASD. Sin-

gle-cell expression data from cortical tissue of ASD subjects has become available to research-

ers recently [68], which could be a good starting point to analyse cell-types of interest and

explore ASD heterogeneity. The availability of iPSCs from different ASD cases allows to cul-

ture and analyse different cell types in both CNS and peripheral organs, which are not easily

accessed by conventional methodologies. This can be useful to explore how ASD genes may

influence the biological processes during brain development, neuronal function, as well as cells

of comorbidity peripheral organs.

Conclusion

By utilizing multiple scoring systems, we have identified recurrent ASD candidate genes, with

convergence on multiple pathways and processes involved in ASD (Fig 10). The use of GTEx

and HPA data also gives a glimpse into their body-wide expression patterns, which has not

been explored previously using ASD gene lists, which we have done so in this study. The bioin-

formatic analyses of CNS-specific and/or CNS+PT candidate genesets enable us to pinpoint

CNS development, E/I balance and calcium signalling as important pathways involved in not

just ASD but also brain comorbidity such as epilepsy. The analysis of CNS+PT geneset sug-

gests chromosomal organisation/transcription regulation, calcium-interconnected MARK/

WNT and secretion as major pathways with disruptive behaviour, developmental delay as well

Fig 10. Working hypothesis of ASD. From fertilization to full development, mutations in chromatin modelling and

transcription factors can contribute to altered developmental trajectory in brain formation, synaptogenesis, and

organogenesis. Alterations in synaptic and ion channel genes may lead to perturbed action potentials and imbalance of

E/I synapses that can contribute to the core ASD symptoms and CNS comorbidity such as epilepsy and motor

functions. However, alterations in cellular, hormonal signalling and gene regulation can contribute to peripheral co-

morbidities such as altered facial phenotypes and behaviour. Calcium signalling appears acting as a hub among the

CNS and peripheral pathways.

https://doi.org/10.1371/journal.pone.0242773.g010
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as congenital abnormalities. Calcium signalling is highly interconnected amongst pathways,

which could be informative in exploring complications and co-morbidities associated with

ASD where calcium signalling could be involved, especially those subsets of autistic individuals

who harbour mutations in these genes that can result in channelopathies.

Supporting information

S1 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S2 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S3 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(PNG)

S4 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S5 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S6 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,
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Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S7 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S8 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S9 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S10 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S11 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S12 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)
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S13 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S14 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S15 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S16 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S17 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S18 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-

mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)

S19 Fig. ASD genes are present in tissue-specific interaction networks. Yellow nodes high-

light ASD genes, green are tissue-specific genes, red edges are interactions between ASD genes

and other partners. The graphs are in order of appearance; Adrenal Gland, Adipose subcutane-

ous, Artery aorta, Artery coronary, Artery tibial, Colon sigmoid, Colon transverse, Esophagus-
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mucosa, Esophagus-muscularis, Heart-left atrial appendage, Heart-left ventricle, Kidney,

Lung, Muscle-skeletal, Pancreas, Pituitary, Small Intestine-terminal ileum, Spleen, Stomach.

(TIF)
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