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Purpose: The aim was to investigate the advantages of dosiomic and radiomic features
over traditional dose-volume histogram (DVH) features for predicting the development of
radiation pneumonitis (RP), to validate the generalizability of dosiomic and radiomic
features by using features selected from an esophageal cancer dataset and to use
these features with a lung cancer dataset.

Materials and Methods: A dataset containing 101 patients with esophageal cancer and
93 patients with lung cancer was included in this study. DVH and dosiomic features were
extracted from 3D dose distributions. Radiomic features were extracted from
pretreatment CT images. Feature selection was performed using only the esophageal
cancer dataset. Four predictive models for RP (DVH, dosiomic, radiomic and dosiomic +
radiomic models) were compared on the esophageal cancer dataset. We further used a
lung cancer dataset for the external validation of the selected dosiomic and radiomic
features from the esophageal cancer dataset. The performance of the predictive models
was evaluated by the area under the curve (AUC) of the receiver operating characteristic
curve (ROCAUC) and the AUC of the precision recall curve (PRAUC) metrics.

Result: The ROCAUCs and PRAUCs of the DVH, dosiomic, radiomic and dosiomic +
radiomic models on esophageal cancer dataset were 0.67 ± 0.11 and 0.75 ± 0.10, 0.71 ±
0.10 and 0.77 ± 0.09, 0.71 ± 0.11 and 0.79 ± 0.09, and 0.75 ± 0.10 and 0.81 ± 0.09,
respectively. The predictive performance of the dosiomic- and radiomic-based models
was significantly higher than that of the DVH-based model with respect to esophageal
cancer. The ROCAUCs and PRAUCs of the DVH, dosiomic, radiomic and dosiomic +
radiomic models on the lung cancer dataset were 0.64 ± 0.18 and 0.37 ± 0.20, 0.67 ±
0.17 and 0.37 ± 0.20, 0.67 ± 0.16 and 0.45 ± 0.23, and 0.68 ± 0.16 and 0.44 ± 0.22,
respectively. On the lung cancer dataset, the predictive performance of the radiomic and
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dosiomic + radiomic models was significantly higher than that of the DVH-based model.
However, the PRAUC of the dosiomic-based model showed no significant difference
relative to the corresponding RP prediction performance on the lung cancer dataset.

Conclusion: The results suggested that dosiomic and CT radiomic features could
improve RP prediction in thoracic radiotherapy. Dosiomic and radiomic feature
knowledge might be transferrable from esophageal cancer to lung cancer.
Keywords: radiotherapy, dosiomic, radiomic, machine learning, DVH, radiation pneumonitis, esophageal cancer
INTRODUCTION

In thoracic radiation therapy, organs at risk, such as the lungs, are
the limiting factors of radiation treatment due to radiation toxicity.
Radiation pneumonitis (RP) is one type of lung toxicity. Many
studies have tried to develop RP prediction models based on dose
volume histograms (DVHs) and/or the clinical profiles of patients
(1–3). However, DVHs and clinical factors are only some of the
many pieces of information that can be extracted from patients.

Recently, quantitative image features such as the dosiomic
(quantitative features of dose distribution) and/or radiomic
features of computed tomography (CT) images have been
reported to improve the performance of prediction models for
radiation toxicity (4–8). Dosiomic features contain more dose
distribution information than DVH features and have been
shown to be able to improve toxicity prediction in radiation
therapy. Information that can be used for the prediction of RP
can also be found in CT images. For example, interstitial lung
disease was found to be a risk factor for RP (9–11). RP prediction
models for lung cancer have also been shown to benefit from the
use of radiomic features obtained from CT images (6–8). The
quantitative imaging features of fluorine 18 fluorodeoxyglucose
(FDG) positron emission tomography (PET)/CT were previously
studied in esophageal cancer patients (12). While the radiomic
features from CT were not found to be significant, the radiomic
features from FDG-PET SUV were significantly associated with
grade 2 RP. However, only a subset of radiomics features in CT
images was explored.

Studies of dosiomic and radiomic features can result in
feature selection bias, as demonstrated by a systematic review
by Chalkidou et al., who generated 100 random features and
found that 10% of the features were significant predictors (13).
Furthermore, some random variables achieved higher
performance metric scores than other significant features, as
reported in other studies. To reduce the false-positive rates in
radiomic studies, external validation was recommended (14–18).

This study aimed to investigate the benefit of using radiomic
and dosiomic features in an RP prediction model for esophageal
cancer patients. We compared four predictive models with DVH
features, dosiomic features, radiomic features and combined
dosiomic and radiomic features. Furthermore, to investigate
the generalizability of dosiomic and radiomic features, we
incorporated an external dataset with lung cancer patients and
investigated a predictive model using features selected from
esophageal cancer data.
2

MATERIAL AND METHODS

Data
The CT images, ROIs, and 3D dose distributions of 333
esophageal cancer patients and 110 lung cancer patients >15
years of age who were treated with radiation therapy from 2011
to 2019 were extracted from the Varian Eclipse v16.1 treatment
planning system (TPS) (Varian Medical Systems, Palo Alto, CA)
at the Ramathibodi Hospital at Mahidol University. The study
was approved by the ethical committee of the Ramathibodi
Hospital at Mahidol University (IRB MURA2021/283).
Patients with previous histories of thoracic radiation therapy,
diagnoses of interstitial lung disease, follow-up times under one
year, no treatment data or diagnoses of lung metastasis within
one year were excluded from the study. After exclusion, 101
patients and 93 patients had esophageal cancer and lung cancer,
respectively. The clinical and treatment characteristics are shown
in Table 1. All dose distribution were calculated by Anisotropic
Analytical Algorithm (AAA) from Varian Eclipse TPS. The
script for the extraction of the treatment plan from the Varian
Eclipse TPS based on the Eclipse Scripting Application
Programming Interface (ESAPI) is available at GitHub at
https://github.com/44REAM/ExportFractionDose.git.

Radiation pneumonitis grading was performed by radiation
oncologists based on the National Cancer Institute Common
Terminology Criteria for Adverse Events version 5.0 (CTCAE
v5.0). In practice, grade 0 RP was defined as negative for RP,
grade 1 RP was defined as patients with symptoms or
radiographic features without the need for steroids. Grade 2
RP was defined as patients requiring steroids or with symptoms
that interfered with daily activities. Grade 3 RP was defined as
patients requiring oxygen and steroids. Grade 4 RP was defined
as patients requiring intubation. The aim of this study was to
evaluate the performance of dosiomic and radiomic features for
prediction of presence of any RP. However, due to unavailability
of grade 1 RP data in lung cancer dataset, the positive class for
esophageal cancer was defined as grade 1 or above, while for lung
cancer, positive class was defined as grade 2 or above.
Equivalent Dose in 2 Gy Fractions
Dose distributions were extracted as fractions. The dose
distributions of fractions and voxels were referred to as “doses
per fraction per voxel”. The equivalent dose in the 2 Gy fraction a
voxel with EQD2 fractions was calculated as follows (19):
February 2022 | Volume 12 | Article 768152
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DEQD2 =o
N

i

di,k + d2i,k=(a=b)
1 + 2=(a=b)

:

The value of the a/b ratio in the equation was assumed to be 3
(20–26). The variable di,j is the dose per fraction per voxel, i is the
number of fractions and k is the number of voxels. The equation
above was suitable for our dataset because of its compatibility with
different doses per fraction per voxel. Although we used a similar
prescription fraction size (1.8–3 Gy per fraction), the actual doses
the patient received in different locations and with different fractions
might have been different. For example, the first fraction may have
been delivered by an antero-posterior beam, and the second fraction
may have been delivered by 2 lateral beams, resulting in different
doses per fraction for different voxels.

Features
Resampling to 1.5 × 1.5 × 1.5 mm3 by b-spline algorithm was
performed for all dose distributions and CT images. ROIs was
resampled by nearest neighbor algorithm to match CT image. All
CT images were free-breathing CT scans. The mean lung doses
(MLDs), the volumes of the lungs that received doses greater than x
Gy, Vx (ranging from V5 to V70 over 5 Gy steps), were used as
DVH features. The Pyradiomics library in Python (27), which
contains the most common feature definitions based on the
Imaging Biomarker Standardization Initiative (IBSI) (28), was
used to extract dosiomic and radiomic features. Dosiomic features
were extracted from the resampled dose distribution. Both texture
Frontiers in Oncology | www.frontiersin.org 3
features and first-order features were then extracted from the CT
images (radiomic) and dose distributions (dosiomic). The dosiomic
features were extracted from lung ROIs, and the radiomics features
were extracted from the lung ROIs of patients who received doses
greater than x Gy for x = 10 and 20. The lung ROIs for esophageal
cancer were defined as all the bilateral areas of the lungs, and that for
lung cancer was defined as all the bilateral areas of the lungs minus
the gross tumor volume (GTV). All ROIs were segmented by
different physicians.

The dosiomic and radiomic features included in this study were
based on the Pyradiomics library. However, we excluded one feature
among the first-order statistics of the dosiomic features, “mean
dose”, because this feature was redundant with the DVH features.
All features in this study were based on 51 (17 × 3) first-order
statistics features and 225 (61 × 3) texture features. The dose
distributions and CT images were further processed before the
calculation of dosiomic and radiomic features. The dose distribution
gray-level intensity was binned to the 100 Gy level with a fixed bin
size of 1 Gy. The CT image Hounsfield units (HUs) above 100 HU
and below −1,000 HU were set to zero, resulting in an HU range of
[−1,000 100]. Each HU value was then converted to a positive
number in the range [0 1,100] and binned with a fixed bin size of 50.
The texture features were based on the gray level cooccurrence
matrix (GLCM) with 72 (24 × 3) features, gray level run length
matrix (GLRLM) with 48 (16 × 3) features, gray level size
zone matrix (GLSZM) with 48 (16 × 3) features and neighborhood
gray tone difference matrix (NGTDM) with 15 (5 × 3)
TABLE 1 | Clinical and treatment characteristics of esophageal and lung cancer patients.

Clinical and Treatment Characteristics Esophageal Cancer Lung Cancer

Median (Range)/n (%)

Age 61 (26–93) 67 (32–87)
Sex
Male 89 (0.88%) 63 (68%)
Female 12 (0.12%) 30 (32%)
Stage
1 4 (4%) 31 (34%)
2 3 (3%) 58 (62%)
3 71 (70%) 3 (3%)
4 23 (23%) 1 (1%)
Prescription dose 50.4 (30.0–60.0) 59.4 (43.2–66)
Prescription fraction 1.8 (1.8–3.0) 2.0 (1.8–2.0)
Treatment setting
CCRT 95 (94%) 91 (98%)
RT 6 (6%) 2 (2%)
RT modality
3D conformal RT 78 (77%) 38 (41%)
IMRT/VMAT 9 (9%) 27 (29%)
Combine 14 (14%) 28 (30%)
RT aim
Preoperative 47 (47%) 0 (0%)
Postoperative (adjuvant) 1 (1%) 0 (0%)
Definitive 49 (48%) 93 (100%)
Palliative 4 (4%) 0 (0%)
RP grade
0 38 (38%)

77 (83%)
1 58 (57%)
2 5 (5%) 14 (15%)
3 0 (0%) 2 (2%)
4 0 (0%) 0 (0%)
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features. Both the DVH and dosiomic features were extracted from
lung the ROIs from dose distributions with or without corrections
to EQD2. All features were standardized to zero mean and unit
variance. In summary, 15 DVH features, 78 dosiomic features and
156 radiomic features were extracted from each patient. The
complete list of features is provided in Supplementary Table 2.

Model Building
The predictive models for radiation pneumonitis were built
separately for esophageal cancer patients and lung cancer
patients. An overview of the process is shown in Figure 1.

a. First, we performed feature selection via univariate analysis.
A univariate logistic regression model was developed for all
features using the entire esophageal dataset. Features that had
p-values ≥0.1 were eliminated. We further trained the logistic
regression model without regularization by repeat 5-fold
cross-validation 50 times for the esophageal patients on the
entire esophageal dataset. The top 10 features corresponding
to the average area under the receiver operating characteristic
curve (ROCAUC) from each feature group (DVH, dosiomic
and radiomic) were selected for multivariate analysis.

b. The esophageal data (500 instances) were randomly separated
into a training set (80%) and test set (20%). We trained the
following models: DVH (10 features), dosiomic (10 features),
radiomic (10 features) and dosiomic + radiomic (20 features)
models. Multivariate logistic regression with L2 norm
regularization was used. The L2 norm was utilized to prevent
model overfitting. The hyperparameter (regularization strength)
was determined by inner cross-validation (CV) by 250 Monte
Carlo CV (inner training set 80%; validation 20%) runs to
maximize the average ROCAUC on the validation set using
grid search. The minority class in the inner training set was
Frontiers in Oncology | www.frontiersin.org 4
oversampled by the synthetic minority oversampling technique
(SMOTE) to equalize the two classes.

c. Next, we trained multivariate logistic regression models using
the DVH, dosiomic and radiomic features selected previously
from the esophageal dataset and the lung cancer dataset. We
also selected DVH features from the lung dataset (DVHlung)
and trained the logistic regression model as described above
to introduce some bias to favor the DVH features.

The model performance was evaluated by the mean ROCAUC.
We also calculated the AUCs of the precision-recall curves
(PRAUC) because the ROCAUC could be biased when used
with imbalanced datasets (29). The mean, standard deviation
(SD) and 10th–90th percentiles of the ROCAUCs and PRAUCs
for the test set results of 500 models in each group were calculated.
A Z-test was used to test the statistical significance of the mean
AUC between each pair models. Statistical analyses were
performed using the Python and SciPy packages (30). A p-value
<0.05 was considered significant. For more details of the model
building, we refer to Supplementary S1.
RESULTS

The selected features for the DVH, dosiomic and radiomic
groups are shown in Supplementary Table 1. For the DVH
features selected from the esophageal cancer dataset, only V45
had a p-value less than 0.1 in the univariate analysis of the lung
cancer dataset. For DVHlung, only 3 features with p-values less
than 0.1 were selected (V45, V50, and V55). The univariate
analysis of lung cancer showed that 5 of 10 and 8 of 10 features
had p-values less than 0.1 in the dosiomic and radiomic analyses,
respectively (Supplementary Table 1).
FIGURE 1 | Overview of the process from inputting data to model training.
February 2022 | Volume 12 | Article 768152
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The ROCAUC and PRAUC curves are shown in Figure 2. For
the esophageal dataset, the model based on the DVH features
resulted in an ROCAUC of 0.67 ± 0.11 and a PRAUC of 0.75 ±
0.10. The model based on dosiomic features resulted in an
ROCAUC of 0.71 ± 0.10 and a PRAUC of 0.77 ± 0.09. The
model based on radiomic features resulted in an ROCAUC of
0.71 ± 0.11 and a PRAUC of 0.79 ± 0.09. The model based on
dosiomic + radiomic features resulted in an ROCAUC of 0.75 ±
0.10 and a PRAUC of 0.81 ± 0.09. The results of esophageal cancer
dataset are included in Table 2. The ROCAUC and PRAUC of the
model using dosiomic + radiomic features were significantly higher
than those of the models with DVH, dosiomic and radiomic
features (p-value <0.05). The AUCs of both the dosiomic model
and radiomic model were also significantly higher than that of the
DVH model (p-value <0.05). However, the ROCAUCs of the
dosiomic and radiomic models were not significantly different (p-
value = 0.62), although the PRAUC of the radiomic model was
significantly higher than that of the dosiomic model (p-value <0.05).

For the lung dataset, the model based on DVH features resulted
in an ROCAUC of 0.64 ± 0.18 and a PRAUC of 0.37 ± 0.20.
The model based on dosiomic features resulted in an ROCAUC
of 0.67 ± 0.17 and a PRAUC of 0.37 ± 0.20. The model based on
radiomic features resulted in an ROCAUC of 0.67 ± 0.16 and a
PRAUC of 0.45 ± 0.23. The model based on dosiomic + radiomic
features resulted in an ROCAUC of 0.68 ± 0.16 and a PRAUC of
Frontiers in Oncology | www.frontiersin.org 5
0.44 ± 0.22. The results of lung cancer dataset were included in
Table 3. The ROCAUCs of the dosiomic, radiomic and
dosiomic + radiomic models was significantly higher than that
of the DVH model. However, only the PRAUCs of the radiomic
and dosiomic + radiomic models were significantly higher than
that of the DVH model, and the PRAUCs of the dosiomic and
DVH models were not significantly different (p-value = 0.61).

We also provided the results when selecting the features within
CV loop in Supplementary Tables 3–5. The model building
method was included in Supplementary S2. For esophageal
dataset, the model based on the DVH features resulted in an
ROCAUC of 0.67 ± 0.10 and a PRAUC of 0.74 ± 0.09. The
model based on dosiomic features resulted in an ROCAUC of
0.70 ± 0.10 and a PRAUC of 0.77 ± 0.09. The model based on
radiomic features resulted in an ROCAUC of 0.63 ± 0.11 and a
PRAUC of 0.72 ± 0.09. The model based on dosiomic + radiomic
features resulted in an ROCAUC of 0.70 ± 0.11 and a PRAUC of
0.78 ± 0.10. For lung cancer dataset, the model based on the DVH
features resulted in an ROCAUC of 0.61 ± 0.17 and a PRAUC of
0.26 ± 0.16. The model based on dosiomic features resulted in an
ROCAUC of 0.67 ± 0.18 and a PRAUC of 0.38 ± 0.21. The model
based on radiomic features resulted in an ROCAUC of 0.66 ± 0.17
and a PRAUC of 0.46 ± 0.24. The model based on dosiomic +
radiomic features resulted in an ROCAUC of 0.70 ± 0.17 and a
PRAUC of 0.43 ± 0.22.
FIGURE 2 | Performance metrics of the predictive models obtained on the esophageal cancer and lung cancer datasets.
February 2022 | Volume 12 | Article 768152
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DISCUSSION

Our results showed that the dosiomic and radiomic models
achieved higher AUCs than the DVH-based models on the
esophageal cancer dataset. The results from our studies,
obtained on an esophageal cancer dataset, were different from
those of previous studies on the use of quantitative CT image
features for esophageal cancer to predict RP grade ≥2, which found
that SUV95 was a predictive feature but that CT images were bad
predictors (12). However, we investigated more CT radiomic
features than a previous study by Castillo et al. with respect to
esophageal cancer. Furthermore, in our population, PET might
not have been available for all patients due to restrictions in
Thailand. Another study on esophageal cancer data also found
that CT image-based delta-radiomics improved discriminative
ability of patient developing grade ≥ 3RP within 3 months (31).
Delta-radiomics was the technique that analyzes the radiomics
features at different time. It was show that delta-radiomics features
were robust than simple radiomics features (32). Delta-radiomics
also have the advantage of more data over radiomics features. An
advantage of using only pre-treatment data is that it might allow
clinician to revise the treatment plan before initiating treatment,
therefore preventing radiation pneumonitis.

In the lung dataset, only the radiomic and dosiomic +
radiomic models achieved better performance than the DVH-
based model. Although the ROCAUC of the dosiomic model was
better than that of the DVH-based model, the PRAUC of the
dosiomic-based model was not different from that of the DVH-
based model. This demonstrated that dosiomics and radiomics
could improve the performance of predictive models for RP, as
observed in previous studies (6, 33, 34). Furthermore, knowledge
of radiomic and dosiomic features might be transferable from
one dataset to another dataset with performance that is
equivalent to or better than that of standard DVH features.

The DVH features selected using the lung cancer dataset
(DVHlung) were expected to differ from the DVH features
selected from the esophageal cancer dataset, and the model
using DVHlung was expected to have better performance than
the DVH features selected from the esophageal cancer dataset.
Frontiers in Oncology | www.frontiersin.org 6
From the results, DVHlung was different from DVH, as expected,
but the performance of DVH was not different from that of
DVHlung. Nonetheless, radiomics and dosiomics still performed
slightly better regarding the prediction of RP than DVHlung.

Previous studies on the use of radiomics and dosiomics for
radiation pneumonitis prediction reported a variety of “most
important” features. Among CT radiomic studies with respect to
RP, Hirose et al. were the first to investigate a predictive model
using only pretreatment CT radiomics for predicting RP grade
≥2 in lung cancer after stereotactic body radiotherapy (SBRT)
(6). One of the most selected features was “correlation” from the
GLCM. Nevertheless, a radiomic study by Krafft et al. (7) did not
find any features that were common with those of Hirose et al. It
was difficult to compare the two studies since the treatment
modalities, extracted features and methods employed to build the
models were not the same. The results of dosiomic studies
relative to RP were also difficult to compare due to differences
in the extracted features. For example, Liang et al. found
“contrast” from the GLCM and “low grey level run emphasis”
from the GLRLM as the most predictive features of RP ≥2 in lung
cancer patients treated with volumetric modulated arc therapy
(VMAT) (34), while the study of dosiomics in lung cancer
patients treated with VMAT by Bourbonne et al. investigated
acute and late lung toxicity separately, which was different
approach from that of Liang et al. (35). Adachi et al. made a
study of dosiomics that utilized different modalities (SBRTs) and
different techniques for feature extraction (33).

A systemic review of PET/CT texture features also found that
many texture features have been reported even though the
datasets used were similar in terms of cancer types and
modalities (13). The study in which the dataset and features
were the most similar to those in our study was the work of Liang
et al., although the patients were different, and there was no work
done regarding CT radiomics (34). One drawback of their study
was that the result was not validated on a test set. However, we
separated a test dataset for the evaluation of our model. From the
obtained results, our selected dosiomic features were different
from those of their study. The differences in the selected features
might be derived from the difference between the training sets,
TABLE 3 | ROCAUC and PRAUC scores for the lung cancer dataset.

ROCAUC 10th, 90th ROCAUC PRAUC 10th, 90th PRAUC

DVHlung 0.64 ± 0.18 0.42, 0.88 0.38 ± 0.20 0.13, 0.66
DVH 0.64 ± 0.18 0.42, 0.88 0.37 ± 0.20 0.13, 0.66
Dosiomic 0.67 ± 0.17 0.44, 0.90 0.37 ± 0.20 0.15, 0.68
Radiomic 0.67 ± 0.16 0.46, 0.88 0.45 ± 0.23 0.14, 0.75
Dosiomic + Radiomic 0.68 ± 0.16 0.46, 0.90 0.44 ± 0.22 0.15, 0.75
February 2022 | Volume
TABLE 2 | ROCAUC and PRAUC scores for the esophageal cancer dataset.

ROCAUC 10th, 90th ROCAUC PRAUC 10th, 90th PRAUC

DVH 0.67 ± 0.11 0.53, 0.82 0.75 ± 0.10 0.61 0.87
Dosiomic 0.71 ± 0.10 0.58, 0.84 0.77 ± 0.09 0.65 0.89
Radiomic 0.71 ± 0.11 0.57, 0.85 0.79 ± 0.09 0.66 0.90
Dosiomic + Radiomic 0.75 ± 0.10 0.63, 0.88 0.81 ± 0.09 0.68, 0.92
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since we trained the model on esophageal cancer patients, as
opposed to lung cancer patients.

Some studies have reported that the results from radiomic
features can be biased due to false positives, and an external
dataset is required to confirm the predictability of models (13,
36). Our study did not use an external dataset to validate the
performance of the predictive model but to validate the radiomic
and dosiomic features instead. To avoid biases in the radiomic
and dosiomic features, we incorporated lung cancer patients
receiving RT as an external dataset with an end point of
predicted RP grade ≥2. The aim of incorporating an external
dataset was to ensure the superiority of the predictive abilities of
dosiomic and radiomic features over that of DVH features in the
same organ. The results obtained on an external dataset indicated
that dosiomic and radiomic feature performed equally or
superior to DVH-based features in the same organ, even with
different primary cancers.

There were several limitations in our study. First, our study
was based on retrospective data, which might have resulted in
false positives (36). Nevertheless, we tried to overcome this
limitation by introducing lung cancer patients as an external
dataset. Another limitation was that, from a biological
standpoint, grade 1 RP and grade 2 RP are different. This is
due to unavailability of grade 1 RP data in lung cancer. Grade 1
RP is viewed as local damage from the criterion of CT image
changes. This might be a drawback of the study regarding grade 1
RP, which could cause the results to be inapplicable to grade 2
RP. However, grade 1 RP can also be viewed as whole organ
damage if it is classified as grade 1 by symptom criteria, which
would be biologically similar to grade 2 RP. The input spaces in
the lung cancer and esophageal cancer datasets were also
different. The input space in the lung cancer dataset had
smaller ROIs than that in the esophageal cancer dataset, and
the doses administered to the lungs of lung cancer patients were
also higher than the doses administered to the lungs of
esophageal cancer patients. Another difference was that the
risk factors, such as the locations of the primary tumors, were
not the same. Despite all the differences described above, we
found that the dosiomic and radiomic feature models could
achieve performance that was equal or superior to that of the
DVH model.

The method of features selection in esophageal cancer dataset
might cause overfitting problem for esophageal cancer results
since the features selection process was carry out of the CV loop
but not be for lung cancer dataset. Thus, we also provided the
results of models using feature selection within the CV loop
which eliminated the problem of overfitting in Supplementary S2.
In summary, only the performance of the model that included
radiomic decrease less than DVH model in esophageal cancer
dataset (Supplementary Table 3), while in lung cancer dataset,
the performance of radiomic and dosiomic model still greater than
DVH model (Supplementary Table 4). The featured select in both
methods were similar (Supplementary Table 5). The purpose was
to test the transferability of dosiomic and radiomic features to lung
cancer dataset which the process does not cause overfitting in the
lung cancer results.
Frontiers in Oncology | www.frontiersin.org 7
CONCLUSION

In conclusion, studies on the dosiomic and radiomic feature of
RP are in the early stage. Our study found that dosiomic and
radiomic models could enhance the performance of RP
prediction models for esophageal and lung cancer patients
treated with RT. Further prospective studies are required to
validate the effectiveness of dosiomic and radiomic features.
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