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The Yersinia genus has three members that are 
pathogenic for humans (1, 2). Y. pestis infec-
tion, usually a zoonosis from fl eas, causes the 
fatal systemic disease plague (3). In contrast, 
oral ingestion of the highly similar micro-
organism Yersinia pseudotuberculosis or the related 
Y. enterocolitica most often cause self-limiting 
enteritis and mesenteric adenitis, primarily as a 
consequence of eating contaminated food pro-
ducts (4, 5, 6). In patients with hemochroma-
tosis, however, enteric Yersinia disseminate 
systemically with a case fatality of 70% (7). In 
addition to enteritis, oral inoculation of mice 
with enteropathogenic Yersinia results in repli-
cation of the bacteria in the liver and spleen, 
resulting in death of the animal (8). Murine en-
teropathogenic Yersinia disease is very similar to 
the typhoid-like syndrome observed after in-

oculation of mice by other enteric pathogens 
such as Salmonella enterica serovar typhimurium 
(9). Therefore, Y. pseudotuberculosis pathogenesis 
in mice provides insight into the pathways and 
virulence mechanisms of enteropathogens that 
cause enteritis and systemic infections (4, 10).

Intestinal epithelial cells mainly function to 
facilitate nutrient absorption and most are en-
terocytes that have secretory and endocrine 
functions. Two properties of intestinal epithe-
lial cells, however, function to protect the in-
testine from pathogen invasion and disease. 
First, tight junctions between the epithelial 
cells help maintain the barrier between luminal 
contents and underlying mucosal tissue (11). 
Second, specialized epithelial cells, called M 
cells, overlay the lymphoid Peyer’s patches 
(PP) (12) and facilitate mucosal immune re-
sponses by transporting antigens from the in-
testinal lumen to deep pockets in the basal 
surface of the cell (13). Within the pockets 
are dendritic cells and macrophages, which 
are ideally placed to phagocytose antigens, 
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transport them to the regional lymph nodes, and initiate a 
local immune response (14, 15).

Y. pseudotuberculosis appears to take advantage of M cell 
function (16). Invasin, an outer membrane protein of entero-
pathogenic Yersinia, binds to β1 integrins on the luminal sur-
face of M cells (16, 17), facilitating translocation of bacteria 
across the M cell into the underlying PP tissue (18–21). 
Within 24 h after oral inoculation, enteropathogenic Yersinia 
are found in the mesenteric lymph nodes (MLN), then ap-
pear in the liver and spleen 48–72 h after inoculation (22, 
23). These observations have led to a model in which bacte-
rial colonization in the local lymphatic tissues leads to dis-
semination of enteropathogenic Yersinia into the blood stream 
(via lymph drainage to the thoracic duct), with subsequent 
infection of the liver and spleen (19, 22, 24).

Although the ordered spread from the lumen of the intes-
tine into the PP and MLN followed by dissemination to the 
liver and spleen is the presumed model of enteropathogen 
dissemination, there is sparse and often contradictory evi-
dence that this is the dissemination route. Previous work has 
shown that enteropathogenic Yersinia mutants lacking func-
tional invasin are able to spread to the liver and spleen within 
6 d, although shortly after inoculation these mutants fail to 
bind M cells and colonize PP with delayed kinetics (24). This 
suggests a pathway of intestinal translocation by enteropatho-
genic Yersinia that bypasses the PP. Similarly, a Salmonella 
mutant that is unable to colonize the PP (25) is detected in 
the blood stream of mice minutes after oral inoculation (26), 
probably after direct transport across the epithelial layer by 
a phagocytic cell. It has been proposed that this very early 
Salmonella bacteremia initiates the systemic terminal disease 
in mice (26). Collectively, these observations suggest that the 
conventionally accepted model for extraintestinal dissemina-
tion of enteropathogens may be incorrect.

This study used genetically modifi ed mice and clonal 
analysis of Y. pseudotuberculosis to examine extraintestinal dis-
semination of enteropathogens to the liver and spleen. Our 
results indicate that systemic disease results from bacteria that 
spread from some site other than the intestinal lymphatic tissue. 
Furthermore, prolonged replication within the intestines be-
fore entry into the spleen and liver appears to be a prerequisite 
for growth within these tissues and thus systemic infection.

RESULTS

Dynamics of Y. pseudotuberculosis infection after 

oral inoculation

The goal of these studies was to determine if systemic disease 
resulting from oral inoculation of Y. pseudotuberculosis is 
a consequence of ordered dissemination from local lymph 
nodes to distal tissues such as the liver and spleen. To 
 characterize the kinetics of enteropathogen dissemination, 
 orogastric inoculation of 5 × 108 CFU of Y.  pseudotuberculosis 
into C57BL/6J mice was performed. Organ colonization 
 assays revealed that the PP and MLN of most mice were 
populated with bacteria 7 d after infection (Fig. 1 A). The 
bacterial load within these tissues varied markedly (Fig. 1, A–C). 

Increasing the dose to enhance hepatosplenic infection 
 occasionally disrupted the intestinal barrier, permitting dis-
semination of normal bowel fl ora into the liver and spleen 
(unpublished data); therefore, 5 × 108 CFU was used as the 
standard orogastric dose. This lower dose also facilitated 
tracking individual clones of bacteria in clonal distribution 
studies described later.

The kinetics of the initial appearance of bacteria in each 
tissue site was followed (Fig. 1, B and C). Surprisingly, 30 
min and 5 h after oral inoculation of Y. pseudotuberculosis,  
bacteria were cultured from the liver and spleen. The 
colony counts recovered were close to the limits of detec-
tion, therefore a broth recovery technique was used to 

Figure 1. Typical infection of C57BL/6J mice 7 d after orogastric 

inoculation of Y. pseudotuberculosis and temporal kinetics of hepa-

tosplenic colonization. C57BL/6J mice were orogastrically inoculated 

with 5 × 108 CFU of Y. pseudotuberculosis. 7 d after infection (A), the 

mice were killed and the organs were weighed and cultured for bacterial 

colony counts on MacConkey lactose plates (see Materials and methods). 

Similar results were obtained with BALB/c mice (see Fig. 2 A). PP, Peyer’s 

patches; MLN, mesenteric lymph nodes. After oral inoculation, at 0.5, 5, 

11, 24, 72, and 180 h after inoculation, groups of mice were killed and the 

spleens (B) and livers (C) were cultured for the presence of any bacteria 

using the broth recovery technique (see Materials and methods). The re-

sults, compiled from a series of experiments and displayed above the 

graph in B, are the total number of mice examined at each time point. 

Each triangle represents the percentage of mice with bacteria cultured 

from spleen or liver in one experiment at each time point. Bars are the 

mean percentages of organs containing bacteria. At some time points, the 

same proportion was obtained in different experiments (see 11 h); conse-

quently, the triangles are superimposed. The total number of experiments 

performed at each time point were as follows: 0.5 h, seven experiments; 

5 h, four experiments; 11 h, four experiments; 24 h, three experiments; 

72 h, seven experiments; and 180 h, seven experiments. 
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enhance assay sensitivity (see Materials and methods). 30 min 
after oral inoculation, Y. pseudotuberculosis was cultured from 
an average of 48% of the livers of C57BL/6J mice (Fig. 1 C) 
and 28% of spleens (Fig. 1 B). At 5 h, there was a decrease in 
the frequency of liver (31%) and spleen (12%) infection, al-
though the diff erence was not signifi cant (Fig. 1, C and B) 
(P = 0.122 and P = 0.150, respectively). Unexpectedly, no 

Y. pseudotuberculosis could be cultured from liver or spleen 11 h 
after inoculation. This loss of bacteria in these tissues was re-
markably reproducible over multiple experiments (Fig. 1).

After the sterile period, we next detected Y. pseudotuber-
culosis in the liver and spleen at 24 h after inoculation, with an 
average of 33% of livers and 42% of spleens having culturable 
bacteria (Fig. 1). By the 72-h time point after inoculation, 
replication appeared to be well established in most mice, with 
Y. pseudotuberculosis cultured from the liver and spleen in 
�60% of the mice (Fig. 1). After the onset of the second sys-
temic infection, bacteria remained detectable by culture in 
the liver and spleen in >50% the mice 6–7 d after infection, 
when many animals were moribund (Fig. 1). A similar time 
course of dissemination was observed in BALB/c mice (Fig. 2 
and not depicted). Therefore, there appears to be two tem-
porally distinct processes of bacterial dissemination.

B cell function and lymphotoxin 𝛃–dependent lymph nodes 

are not required for hepatosplenic infection caused 

by Y. pseudotuberculosis

To test the hypothesis that there may be diff erent routes of 
spread into liver and spleen dependent on the time point at 
which spread occurs, we analyzed bacterial dissemination in 

Figure 2. Oral infection by Y. pseudotuberculosis in B cell–

 defi cient mice indicates two mechanistically different waves of spread 

from the intestine. 6 d after oral inoculation with 5 × 108 CFU of 

Y. pseudotuberculosis (see Materials and methods), BALB/c mice and BALB/

c-JHD mice (B cell defi cient) were killed and (A) PP and MLN or (B) spleen 

and liver were cultured for colony counts (see Materials and methods). 

Each triangle represents the CFU recovered from the organ of a mouse: 

(closed triangles) BALB/c mice and (open triangles) BALB/c-JHD mice. At 

some time points, similar colony counts were obtained in different mice 

and the triangles are superimposed. Bars are the mean number of bac-

teria found in the tissues from all experiments. The results were accu-

mulated from three separate experiments. In total, 10 wild-type and 11 

BALB/c-JHD mice were analyzed. There was no statistical difference in 

CFU recovered between the two mouse strains from the liver, spleen, or 

MLN. Only three BALB/c-JHD mice contained identifi able PP and bacteria 

were cultured from the PP of only one of these mice. (C) B cell function 

is required for early dissemination of Y. pseudotuberculosis from the 

intestine to spleen and liver. BALB/c and BALB/c-JHD mice were orogas-

trically inoculated with 5 × 108 CFU of Y. pseudotuberculosis. The mice 

were killed between 30 min and 2 h after infection and the liver and 

spleens were cultured for the presence of bacteria, using the broth 

 recovery technique. The results are pooled from three separate experi-

ments. # mice, mean percentage of mice from three separate experi-

ments that had culturable bacteria from the liver or spleen in the noted 

mouse strain.

Figure 3. Y. pseudotuberculosis colonizes the livers of the LT 𝛃−/− 

mouse. Mice were orally inoculated with 5 × 108 Y. pseudotuberculosis. 

6 d after inoculation, they were killed and colony counts were obtained 

from noted tissues. Shown are individual animals in which intestinal colo-

nization was established. Shown are three experiments from (A) C57BL/6J 

mice and (B) LT β−/− mice. The LT β−/− mice are displayed as separate 

graphs, with the three mice showing no intestinal bacteria separated from 

the other data. No PPs were found in the LT β−/− mouse, whereas only 

two mice had detectable colonization of the MLN in the KO strain.
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two mouse strains that are defi cient for specifi c cells of the 
host immune system. First analyzed were BALB/c-JHD mice, 
which produce no B cells, have reduced numbers of PP, and 
produce M cells with altered morphology and function (27, 28). 
As the presence of intact PP has been hypothesized to be 
critical for systemic disease caused by enteropathogens (27), it 
is predicted that such mutants should be severely depressed 
for large scale invasion into systemic infection sites. Consis-
tent with published reports (27), between zero and two PP 
were detectable by eye in the BALB/cJ-JHD mice, whereas 
from seven to nine PP were found in the parental mouse 
strain (unpublished data). The presence of dysfunctional PP 
in the mutant mouse strain is further supported by the fact 
that Y. pseudotuberculosis was only cultured from the PP of 
one of the few BALB/cJ-JHD mice in which any PP were 
identifi ed (Fig. 2 A).

Despite the absence of functional PP in BALB/cJ-JHD 
mice, 7 d after orogastric inoculation, the infection of the 
liver and spleen by Y. pseudotuberculosis was similar in both the 
BALB/c-JHD and the BALB/c mice (Fig. 2 B). Furthermore, 
the MLN were colonized as effi  ciently as wild-type mice 
(Fig. 2 A). In contrast, when early time points between 30 
min and 2 h after orogastric inoculation of BALB/c-JHD 
were investigated, Y. pseudotuberculosis was never cultured 
from the livers and spleens of BALB/c-JHD, whereas >50% 
of wild-type mice had hepatosplenic infection (Fig. 2 C). 
These results indicate that although B cells or organs such as 
PP that are altered by lack of B cells play important roles in 
the early dissemination of Y. pseudotuberculosis to the liver and 
spleen, no such requirement exists for the later repopulation 
that leads to lethal disease. This result also argues against the 
hypothesis that the early bacteremia results from either me-
chanical disruption of the upper gastrointestinal tract or pul-
monary aspiration during orogastric inoculation. Therefore, 
the presence of the bacteria in liver and spleen at early and 

late times after inoculation in wild-type mice likely results 
from mechanistically distinct processes.

To further investigate the possibility that colonization of 
PP is not a prerequisite for hepatosplenic infection, a second 
mouse strain lacking PP was challenged orogastrically with 
Y. pseudotuberculosis. Previous work indicates that lymphotoxin 
β−/− mice (LTβ−/−) lack PP, peripheral lymph nodes, splenic 
germinal centers, and follicular dendritic cells, but possess 
B cells and mesenteric lymph nodes (29). In our studies, we 
found that none of 18 LTβ−/− mice dissected had PP, 
whereas 16 out of 18 had detectable MLN (Fig. 3 B). We 
analyzed colonization levels from three experiments after oral 
inoculation of either C57BL/6J mice (Fig. 3 A) or the con-
genic LTβ−/− strain (Fig. 3 B). For ease of analysis, LTβ−/− 
will be considered in two groups: those mice that were found 
to have bacteria in the lumen of the intestine and those in 
which Y. pseudotuberculosis failed to establish replication even 
within this site (Fig. 3 B).

For most of the LTβ−/− mice that had detectable bacte-
rial populations in the intestinal lumen, bacteria were also 
found within the livers, in spite of a lack of colonization of 
MLN (Fig. 3 B; only 2/15 LTβ−/− mice had bacteria in 
MLN). For these animals, the frequency at which liver colo-
nization was detected in the LTβ−/− mutant (11/15 mice) 
was not signifi cantly diff erent from the C57BL/6J mouse 
(16/19 mice; Fig. 3 A; P > 0.05). There was, however, a 
signifi cant depression in the number of bacteria in the liver 
and spleen in the LTβ−/− mutant (P < 0.05; see Table I A 
for range and median colonization values). In addition to 
these animals, three of the LTβ−/− mutants showed no evi-
dence of bacteria in the intestine or in any other tissue (Fig. 
3 B), perhaps because they lacked a pool of bacteria from 
which to initiate systemic disease. It is apparent from these 
studies that replication of Y. pseudotuberculosis in liver and 
spleen does not require colonization of the PP or MLN. 

Table I.  Analysis of Y. pseudotuberculosis infection in murine tissues

A. Effect of LT𝛃−/− mutation on bacterial yields in liver and spleen

Spleen Liver

Organ C57BL/6 LT𝛃−/− C57BL/6 LT𝛃−/−

Range CFU/g tissue 102–2 × 05 101–3 × 105 101–105 101–2 × 105

Median CFU/g tissue 1.5 × 05 1.8 × 102 4.4 × 104 4.2 × 102

p-value 0.002 0.04

B. Y. pseudotuberculosis clone and CFU distributions in C57BL/6J mice

Hours after inoculation 0.5 5 11 24 72 180

No. of clones in intestine
median 33.0 32.0 32.0 13.5 14.0 8.5
range all at 33 all at 32 all at 32 4–29 7–30 4–19

No. of clones in liver
median 0.0 0.0 0.0 0.0 0.5 1.0
range 0–11 0–4 all at 0 0–3 0–16 0–8

CFU in intestine
median 8 × 107 107 ND 2 × 104 6.5 × 105 5 × 104

range 7 × 105–9 × 107 6 × 106–3 × 107 ND 2 × 103–105 104–107 9 × 102–105

CFU in liver
median 0.4 × 101 0.0 0.0 ND 1.1 × 102 5 × 103

range 0–2 × 101 0–2 × 101 0 ND 0–1 × 105 0–7 × 104
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The absence of liver infection in those animals lacking popu-
lations in the intestine, however, raises the possibility that 
 systemic infection may require the establishment of bacterial 
replication in the lumen of the intestine. Therefore, the con-
nection between bacterial populations in sites associated with 
the intestine and the liver and spleen was studied further.

Bacteria causing late stage hepatosplenic infection 

are not derived from local lymph nodes

To determine if bacteria recovered from the spleen and liver 
were derived from the intestinal lumen rather than regional 
lymph nodes, the clonal dissemination of Y. pseudotuberculosis 
from various tissues was examined beginning at diff erent 
times after oral inoculation (Fig. 4). 33 uniquely tagged strains 
of wild-type Y. pseudotuberculosis were constructed (Fig. 4; see 
Materials and methods) and the presence of each clone in 
various tissues of C57BL/6J mice after orogastric inoculation 
of 5 × 108 CFU of bacteria (1.5 × 107 of each clone) was 
detected using Southern hybridization (Fig. 4). 30 min after 
inoculation, an average of two clones were found in the liver 
(Fig. 5 B and Table I B). The population of clones in liver 
and spleen were also found in the lumen of the intestines, as 
expected (Table II; 30 min, liver vs. intestine, spleen vs. 
intestine). Clones in the liver, however, were not necessarily 
found in the MLN (Table II), indicating that bacteria did not 
appear to replicate in these glands before entry into distal tis-
sue sites at early time points.

11 h after inoculation, no bacteria were detectable in the 
spleens or livers of the mice (Figs. 1 and 5 A), but a second 
wave of entry became apparent by 72 h after inoculation  
(Figs. 1 and 5, A and B). At the later time point, clones in 
distal tissues were a subpopulation of the remaining clones 
in the intestines (Table II; 72 h, liver vs. intestine, spleen vs. 
intestine). The clones in the livers and spleens, however, were 
not consistently found in the intestinal lymphatic tissues, 
 indicating that the hepatosplenic infection did not require 
replication in the PP and MLN before entry into distal tissue 
sites (Table II).

The total number of clones present in spleen or liver was 
consistently small, indicating the existence of a severe bottle-
neck that limited bacterial dissemination from the intestines 
into distal tissue sites (Fig. 5 B liver; spleen, not depicted). 
Between 72 h and 6 d after inoculation, the colony counts in 
the liver rose signifi cantly (Fig. 5 A and Table I B), although 
the number of clones in this organ remained unchanged (Fig. 
5 B and Table I B). Between 72 h and 6 d after inoculation, 
the proportion of mice with any bacteria detected in the liver 
was also unchanged (Fig. 1; P > 0.1). Collectively, these re-
sults are consistent with the model that a few clones reached 
distal organ sites within 72 h after inoculation and replicated 
after arrival. Further support for this model was obtained by 
pooling the data from all the animals and determining the to-
tal number of clones found at each time point after oral inoc-
ulation. When the data were normalized to the total number 
of clones found in the original inocula, the disappearance and 
reappearance of clones in the spleen and liver was readily ob-
served (Fig. 5 E). Based on the clonal dissemination data, 
these clones were not siblings of bacteria from the regional 
lymph nodes (Table II). Therefore, bacteria seeding the liver 
and spleen were probably derived from a reservoir other than 
the PP or MLN.

Figure 4. Strategy for identifi cation of Y. pseudotuberculosis 

clones present in different tissue sites. 33 Y. pseudotuberculosis 

strains, each differing by only a unique oligonucleotide tag, were grown 

in broth and pooled immediately before oral inoculation into C57BL/6J 

mice (see Materials and methods). At various times after inoculation, the 

animals were killed, noted glands were removed, and bacteria were iso-

lated by plating tissues on bacteriologic media (see Materials and meth-

ods). The colonies arising were pooled, DNA was isolated, and probes were 

constructed by PCR amplifi cation of the unique oligonucleotide tags. The 

clones found in each tissue site were determined, and compared with the 

results obtained from other tissue sites.

Table II.  Association of clones in tissues

30 min 72 h

Liver vs. spleen 23% 98%a

Liver vs. MLN 52% 3%

Liver vs. PP ND 25%

Liver vs. intestine 100%a 87%a

Spleen vs. liver 56% 93%a

Spleen vs. MLN ND 3%

Spleen vs. PP ND 30%

Spleen vs. intestine 100%a 79%a

Intestine vs. liver 38% 32%

Intestine vs. spleen 9% 28%

C57BL/6J mice were inoculated orogastrically with Y. pseudotuberculosis labeled 

with 33 individual DNA tags. At times after inoculation, the mice were killed and 

harvested organs were examined for the presence of the individual clones using the 

technique described in Materials and methods. Percent association is expressed as 

the mean frequency that a clone present in one organ (organ x) was also present in 

the second organ of the same mouse (organ x vs. organ y). The association of the 

clones within the two organs was analyzed using the chi-squared test and 

signifi cance for association (P < 0.05) is denoted by percentages in bold.
aND, not determined.
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The second episode of hepatosplenic infection follows 

bacterial replication in the intestines

The kinetics of intestinal infection was analyzed next in the 
same mice used for liver and spleen clonal analysis (Fig. 5, C 
and D). All the clones inoculated were present in the intestines 
through 11 h after inoculation (Fig. 5 D and Table I B), but by 

24 h there was a signifi cant reduction in the number of clones 
to an average of 13 clones (P < 0.01; Fig. 5 D), accompanied 
by a fall to 5 × 104 CFU/g intestinal contents (Fig. 5 C). 
 Between 24 and 72 h, replication in the intestines became 
 apparent (Fig. 5 C) with a stable number of clones present in 
the intestine (Fig. 5, D and E). The appearance of bacteria in 
the liver at 72 h (Fig. 5 B) occurred after there was an expan-
sion of the bacterial load in the intestines (Fig. 5 C and Table 
I B), consistent with the model that the pool of bacteria found 
in the intestinal lumen, rather than the lymph tissue, acts as the 
primary reservoir for the bacteria that cause late systemic dis-
ease. In support of this hypothesis, the liver and spleen popula-
tions of clones were usually a subpopulation of the intestinal 
clones found 72 h after oral inoculation (Table II; liver vs. in-
testine, spleen vs. intestine). Therefore, the clones that cause 
systemic disease appear to be derived directly from the bacteria 
present in the lumen of the intestines at this later time point, 
rather than from those present in local lymph nodes.

Antibiotic-induced reduction of Y. pseudotuberculosis 

in the intestines lowers late stage systemic infection

To test the model that the clones that give rise to hepato-
splenic infection were derived from bacteria that fi rst repli-
cated in the intestines, we used the antibiotic streptomycin to 
determine the eff ect of reduced intestinal bacterial load on 
extraintestinal dissemination. Streptomycin is reported to be 
poorly absorbed from the intestine (30), so oral administra-
tion is predicted to reduce intestinal but not spleen or liver 
bacterial replication. Mice were orally inoculated with 
Y. pseudotuberculosis, the initial dissemination events were al-
lowed to progress, and then 1 mg of streptomycin was ad-
ministered orogastrically at 5, 12, and 24 h after inoculation. 
The intestinal Y. pseudotuberculosis load was signifi cantly re-
duced in streptomycin-treated mice at 24 and 72 h after in-
oculation, as compared with the PBS controls, demonstrating 
the effi  cacy of streptomycin killing of intestinal Y. pseudotu-
berculosis (Fig. 6 A). Despite early dissemination of Y. pseudo-
tuberculosis, 72 h after oral inoculation of the bacteria, there 
was a signifi cant reduction (P < 0.05) in the colony counts 
of Y. pseudotuberculosis in the livers of mice that had received 
oral streptomycin, compared with those that had received 
PBS (Fig. 6 B). Streptomycin did not leak into the blood-
stream during intestinal Y. pseudotuberculosis infection, as 
 serum streptomycin levels found in these animals were 
 comparable to both uninfected, streptomycin-gavaged mice 
as well as to mice having no streptomycin treatment (Fig. S1, 
available at http://www.jem.org/cgi/content/full/jem.
20060905/DC1). Additionally, if mice were inoculated 
 intraperitoneally with Y. pseudotuberculosis, subsequent oral 
streptomycin administration produced no signifi cant decrease 
in CFU in the liver (Fig. 6 C), confi rming that systemic ab-
sorption of oral streptomycin was ineffi  cient and its antimi-
crobial action was limited to bacteria within the intestines. 
Therefore, successful Y. pseudotuberculosis replication in the 
liver and spleen required an adequate intestinal bacterial load 
in addition to a period of intestinal replication.

Figure 5. Bacterial load and clonal dissemination of Y. pseudo-

tuberculosis. C57BL/6J mice were orally inoculated with 5 × 108 CFU of a 

pool of 33 uniquely tagged wild-type Y. pseudotuberculosis clones. At 

noted times after inoculation, the mice were killed and the liver (A and B) 

or intestines (C and D) (see Materials and methods for “intestines” defi ni-

tion) were assayed for the bacterial CFU (A and C) or the number of indi-

vidual clones (B and D) (see Materials and methods). The results are 

pooled from separate experiments. Displayed above the graphs are the 

total number of mice examined at each time point and the number of 

experiments performed for each time point. Each triangle represents the 

CFU or number of clones isolated from the liver or intestines of one 

mouse in one experiment at each time point. Dark bars are the mean CFU 

or clones isolated from the livers of all mice at that time point. At some 

time points, the same CFU or number of clones was obtained in different 

mice; consequently, some triangles are superimposed. (E) Clonal distribu-

tion in infected organs over time. To determine the percentage of total 

clones found in each tissue, the total number of clones found in each 

tissue site was determined for all the animals killed at the noted time 

point. This number was then divided by the total number of clones that 

had been inoculated in all the animals analyzed at the noted time point to 

obtain the percentage.



JEM VOL. 203, June 12, 2006 1597

ARTICLE

DISCUSSION

There are two striking results from this study. First, 
Y. pseudotuberculosis did not effi  ciently initiate replication in 
systemic infection immediately after oral inoculation, as rep-
lication in the intestines appeared necessary before successful 
hepatosplenic infection. Second, liver and spleen coloniza-
tion was independent of preliminary replication in the PP 
and MLN. These results confl ict with models that propose 
systemic infections by enteropathogens proceeding in or-
dered pathways in which translocation across M cells and in-
testinal lymph tissue infection are prerequisites for systemic 
disease (27). The data do support, however, studies indicating 

that systemic disease can be initiated with bacterial mutants 
that are defective for colonization of local lymph nodes (9, 
23). Although a route may exist through the intestinal lym-
phatic system that leads to systemic disease, the only evidence 
consistent with PP entry being essential for colonization of 
more distal tissues was the inability of PP-defective mice 
lacking functional B cells to support dissemination of bacteria 
shortly after oral inoculation. There is no evidence, however, 
that this early dissemination was necessary or suffi  cient for 
growth of bacteria in the liver and spleen. These results are 
consistent with the observation made from signature tagged 
mutagenesis studies of Y. pseudotuberculosis, in which bacterial 
clones could be isolated from liver and spleen that were not 
found in localized lymph nodes (22). These results also sup-
port prior fi ndings of bottlenecks limiting dissemination from 
local to distal infection sites, as observed with enteropatho-
gens (32, 33) and viruses (34).

The combined results of the clonal and kinetic analyses 
of spleen and liver colonization indicate that there is little 
connection between dissemination events that occur immedi-
ately after oral inoculation and systemic infection (Fig. 5; Ta-
ble II). During the 24-h period after oral inoculation that 
witnessed loss of culturable bacteria from spleen and liver, 
clones were concurrently depleted from the intestinal pool. 
At 72 h after inoculation, the bacteria found in distal tissue 
sites were derived from the intestinal pool that remained after 
this depletion, arguing that bacteria in these organs are de-
rived from clones that have fi rst replicated in the intestine. 
The observed increase in intestinal bacterial load that oc-
curred simultaneously with the second systemic dissemina-
tion is consistent with this intestinal population being the 
source of the disseminated bacteria, rather than the parent 
being the initial bolus that appeared in spleen and liver im-
mediately after inoculation. This model was further sup-
ported when intestinal Y. pseudotuberculosis load was reduced 
by administration of the locally acting antibiotic, streptomy-
cin, which in turn reduced late hepatosplenic infection. 
Therefore, it appears that the bacterial pool that translocates 
into spleen and liver is derived from a population that has 
been established in the intestinal lumen.

Infection of the PP-defi cient BALB/c-JHD mouse re-
vealed no early bacterial translocation into spleen and liver, 
despite wild-type levels of colonization in these organs 6 d 
after inoculation. The absence of early bacterial dissemina-
tion in these mutant mice is consistent with the model that 
bacteria causing systemic disease are not derived from the 
population that crosses the epithelium shortly after oral 
 inoculation. Either B cells or, more likely, B cell–dependent 
processes such as PP organogenesis, are important for early 
but not late stage extraintestinal dissemination. As we showed 
that tissues associated with immune sampling are important 
for the early dissemination events, it seems likely that the 
 appearance of bacteria shortly after oral inoculation is 
 advantageous to the host, because it allows early immune 
surveillance, defending against eventual bacterial replication 
in these sites.

Figure 6. Oral streptomycin reduces intestinal bacterial load and 

subsequent systemic infection after oral but not intraperitoneal 

inoculation. C57BL/6J mice were orally inoculated (A and B) with 5 × 108 

CFU of Y. pseudotuberculosis or inoculated i.p. (C) with 104 CFU of 

Y. pseudotuberculosis. At 5, 12, and 24 h after inoculation, each mouse 

was orogastrically inoculated either with streptomycin (white triangles 

and black bars) or with PBS (gray triangles and bars). 24 and 72 h after 

inoculation, the intestines (see Materials and methods) were examined 

for CFU (A). The livers of the orally inoculated mice were also examined 

for colony counts 72 h after infection (B). The mice inoculated i.p. with 

Y. pseudotuberculosis were killed 72 h after inoculation and examined for 

CFU (C). The results are pooled from three separate experiments. Displayed 

above the graph is the total number of mice examined at each time point. 

Each triangle represents the CFU of a mouse. Bars are the mean number 

of bacteria found in the tissues from all experiments. At some time points, 

similar colony counts were obtained in different mice and the triangles 

are superimposed.
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During the second phase of infection, most of the bacte-
rial clones observed in the liver and spleen were not derived 
from clones growing in regional lymph nodes (Table II), re-
sults consistent with prior observations that both Salmonella 
(35) and Y. enterocolitica (36) colonize the spleen and liver of 
lymphotoxin mutant mice after oral infection. Given that 
these other enteropathogens are both subject to bottlenecks 
limiting extraintestinal dissemination and use PP-indepen-
dent routes of invasion, it seems likely that our results are not 
solely representative for Y. pseudotuberculosis. Collectively, 
these results suggest that undetermined routes may exist that 
lead the bacteria across the intestine before establishing sys-
temic disease. There are at least three possible translocation 
mechanisms that bypass the PP, initiated from bacterial pools 
found within either the small intestine or colon (reference 37 
and unpublished data). First, host or bacterial process may 
cause local micro-damage in the intestinal epithelium, pro-
viding sites for translocation. For instance, eff ectors from the 
Yersinia type III secretion system may break down the tight 
junctions between intestinal epithelial cells (38, 39), as could 
natural apoptotic processes occurring at the top of intestinal 
villi (40), permitting translocation of bacteria. Second,  villous-
associated M cells have recently been identifi ed (41) that 
 allow sampling of intestinal contents and are hypothetically 
portals across the epithelium. In fact, introduction of Y. pseu-
dotuberculosis into intestinal ligated loops isolated from mutant 
mice lacking PP results in bacterial association with these 
newly identifi ed cells (41), although no evidence has been 
provided that infection of regional lymph nodes or distal or-
gans such as liver or spleen results from such a relationship, 
Finally, phagocytic or dendritic cells interdigitated within the 
intestinal epithelium have been demonstrated to sample lu-
minal bacteria (42–44), and evidence exists for phagocytic 
routing of S. typhimurium across the intestine. Recent work 
indicates that transepithelial extensions of dendritic cells fa-
cilitate sampling of intestinal bacteria, dependent on the pres-
ence of chemokine receptor CX3CR1 (42), and these could 
be major sites of attachment by intestinal pathogens. The 
processes that lead to translocation across the intestine may 
not be particularly effi  cient, as large loads of bacteria in sys-
temic infection sites can be derived from as few as one intes-
tinal clone. Furthermore, the routes that establish systemic 
disease may not be identical in every animal.

Two pathways may route Y. pseudotuberculosis to distal in-
fection sites once the organisms penetrate the intestinal epi-
thelial layer as either free or host cell-associated bacteria. 
Blood-borne bacteria can travel vial the portal vein system, 
which transports intestinal blood directly to the liver. This 
allows unfi ltered bacteria to transit to other downstream 
blood-fi ltering organs such as the spleen. Alternatively, bac-
teria entering via the lymphatics may fi rst route to the 
 mesenteric lymph nodes, drain into the thoracic duct and 
 ultimately fl ow into the bloodstream. In either case, the colo-
nization of organs such as the liver or spleen indicates that 
bacteria are present in the bloodstream at some point. Al-
though it is possible that the initial conduit for disseminating 

bacteria is via intestinal lymph fl uid with subsequent entry 
into the mesenteric lymph nodes, our data indicate that 
this would probably occur without colonizing this organ. 
Whatever the route chosen, it is likely that either free or host 
cell–associated enteropathogenic bacteria are provided with 
multiple strategies for initiating dissemination. Supporting 
this hypothesis is a recent study of mutant mice lacking either 
CX3CR1+ or CD11c+ dendritic cells in the intestinal lamina 
propria; invasion of a model enteropathogen across the intes-
tinal epithelium can still occur in these mutant mice (45).

The results presented here raise the possibility that 
Y. pseudotuberculosis populations found in distal tissue sites are 
never derived from organisms growing in the regional lymph 
nodes. We believe, however, that exit from the regional 
nodes can still occur in our mouse model, even though there 
is severe attenuation of movement from the PP and MLN 
into the liver and spleen during systemic disease. In support 
of some movement out of the regional lymph nodes is the 
observation that the levels of bacteria found in the livers 
of the LT β−/− mouse lacking PP were not as high as in 
C57BL/6J (Table IA), even though systemic disease still oc-
curred in the mutant. An explanation for this result is that loss 
of PP in the LTβ−/− mouse results in loss of one of several 
possible translocation routes across the intestine, causing a re-
duction, but not elimination, of bacteria translocating to the 
liver. Furthermore, although the clonal analysis showed that 
none of the disseminated bacteria appear derived from colo-
nies found in the regional lymph nodes of some of the ani-
mals, in other animals occasional clones were identifi ed in the 
distal tissue sites that may have been derived from the lymph 
node population (Table II). As systemic disease requires the 
occurrence of only a few productive translocation events, 
small numbers of bacteria could certainly translocate across 
various sites in the intestine, including the regional lymph 
nodes. Single clones from any of these sites would then be 
suffi  cient to give rise to a large population of bacteria in sys-
temic infection sites (Fig. 5).

Broth-grown Y. pseudotuberculosis appears to be poorly 
prepared to initiate replication in systemic infection sites after 
oral inoculation. The strong connection between intestinal 
growth of bacteria and successful systemic disease argues that 
bacterial proteins facilitating hepatosplenic infection are up-
regulated relative to broth culture during prolonged growth 
in the host. There are large numbers of virulence-associated 
proteins encoded by Yersinia species that are candidates for 
being activated within such a niche, because both the type III 
protein translocation system and the translocated Yop sub-
strates of this system are selectively expressed at physiological 
temperature (10). As only a subset of Yops is required for in-
testinal survival (37), perhaps the intestine provides a permis-
sive niche for the microorganism to express the full armory 
of virulence factors required for replication in the more 
 restrictive tissues of liver and spleen. The Yop translocated 
substrates are involved in several biochemical processes that 
impair host immune cell function, and Yop expression 
is critical for successful systemic disease (10). In humans, 
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 enteropathogenic Yersinia infection is usually a self-limiting 
illness, with no systemic spread. Perhaps, unlike in the mouse, 
replication in the human intestine does not induce the ap-
propriate virulence factors required for the microorganism to 
deal with the highly restrictive nature of distal tissue sites in 
humans, or the intestinal innate immune response is suffi  cient 
to restrict Y. pseudotuberculosis to the human intestine.

The work described here demonstrates the complexity of 
systemic disease initiated by oral inoculation of an entero-
pathogen into a mammal. Although it may be attractive to de-
scribe the route taken by a pathogen as if it were a large-scale 
military invasion from a single beachhead, we do not believe 
that this accurately describes what occurs before establishing 
lethal disease. Rather, it appears that Y.  pseudotuberculosis colo-
nizes the intestinal niche, which possesses several entry portals 
for dissemination to systemic infection sites. The microorgan-
ism may even take advantage of delaying entry into the spleen 
and liver, as immediate entry into these organs does not result 
in productive replication. During establishment of intestinal 
colonization, the bacteria seem to armor themselves to allow 
replication in these sites and to guard themselves against host 
assault. This facilitates the eventual small-scale breaches of in-
testinal defenses. The relationship of the microorganism with 
the regional lymph nodes is similarly complex, as the low effi  -
ciency of movement out of these glands may be a refl ection of 
the fact that the organism is inducing host defenses to ensure 
a localized disease and subsequent transmission to other hosts. 
Further work will focus on this tension between establishing 
a local and systemic disease, defi ning changes in Y. pseudotuber-
culosis that allow the organism to move from an intestinal site 
to extraintestinal organs, and identifying the many portals that 
allow movement out of the intestine.

MATERIALS AND METHODS
Bacterial strains, growth conditions, and clonal analysis of Y. pseudo-

tuberculosis. All bacterial strains are derived from YPIII(P+), a Y. pseudo-

tuberculosis serogroup III strain (46). YPIII(P+) was passaged in mice and 

isolated from liver to obtain the strain M31. The strain PB1000 refers to 

M31 harboring pACYC184 derivatives having unique oligonucleotide tags.

Unique genetic sequences (tags) used to label clones of wild-type 

Y. pseudotuberculosis were inserted into the plasmid pACYC184 in Escherichia coli 

(47). pACYC184-tag plasmids were electroporated into Y. pseudotuberculosis. 

The pACYC184-tag plasmids were constructed as follows. The plasmid car-

rying oligonucleotide tags, (pUTminiTn5Kn2+tags; references 22, 31) and 

pACYC184 were electroporated into E. coli strains SM10λpir and HB101, 

respectively. Transpositions of miniTn5Kn2+ into pACYC184 were iso-

lated after mating, selecting for kanamycin (30 μg/ml), and tetracycline 

(5 μg/ml) resistance. Loss of pUTminiTn5Kn2 transposition vector and 

 insertions into the pACYC184 CamR gene were determined by ampicillin 

and chloramphenicol sensitivity, respectively.

For probing of pools of oligonucleotide-tagged strains, the DNA-tags 

were amplifi ed by PCR using the P2 and P4 primers described previously 

(22, 31). To separate the tag from the primer arms, the PCR product was 

digested with HindIII overnight at 37°C and the 40-bp tag was separated 

from the 20-bp primer arms by electrophoresis on an 8% polyacrylamide gel 

and eluted into TE at 4°C overnight. 20 μl of each tag-elute was placed onto 

nitrocellulose membranes (Schleider & Schuell Nytran) in a grid pattern us-

ing a 96-well vacuum dot-blotter (Bio-Rad Laboratories). The DNA was 

denatured with 0.5M NaOH and after neutralization and crossed linked to 

the membrane with ultraviolet light (Stratagene). After use, membranes were 

stripped according to the manufacturer’s instructions (Roche) and reused 

multiple times.

For labeling of the DNA probes, each plasmid preparation was ampli-

fi ed by PCR using the P2 and P4 primers and incorporating digoxigenin 

dNTP (Roche) according to the manufacturer’s instructions, except the ra-

tio of labeled dNTP to unlabeled dNTP was 5:1. The probe was hybridized 

at 42°C overnight to the target membranes in hybridization buff er. Plasmids 

were identifi ed that showed no cross-hybridization to other tags, and each 

tag was placed at a defi ned address on membranes in subsequent experi-

ments. These membranes were stripped and reused multiple times and 

stored in PBS at 4°C.

Preparation of Y. pseudotuberculosis for oral inoculation into mice. 

One colony of Y. pseudotuberculosis freshly streaked on LB plates was grown 

in either LB (Figs. 1 and 6) or brain heart infusion (BHI) broth supplemented 

with 30 μg/ml kanamycin and 5 μg/ml of tetracycline (when needed) at 

26°C to an A600 = 4.4. 1 ml of bacteria from this culture was washed twice 

with PBS and resuspended in 2 ml of PBS. 200 μl of this bacterial suspension 

contained 5 × 108 CFU, and was orogastrically inoculated into the mice.

Mouse strains and husbandry. BALB/cJ-JHD mice, defective in Ig heavy 

chain switching (27, 48), and the lymphotoxin β-defi cient C57BL/6J 

(LTβ−/−) (29) mice were bred in house. BALB/c and C57BL/6J mice were 

obtained from The Jackson Laboratory at 5 wk of age and allowed to accli-

matize to the new environment for 1 wk before the experiments. All mice 

used were 6-wk-old females.

Orogastric mouse infections. Mice were starved of food for 16 h before 

inoculations, but were provided water during this period. 200 μl of the sus-

pension of Y. pseudotuberculosis was orogastrically inoculated into mice using 

a 21-gauge stainless steel ball-tipped feeding needle (Harvard Apparatus 

Inc.). If aspiration of inocula occurred during infection (visual detection of 

fl uid after nasal respiration), mice were immediately killed and excluded 

from the experiment. The mice were starved of food for a further 90 min 

 after infection and permitted food and water ab libatum. At various time 

points after inoculation, the mice were killed by CO2 asphyxiation. If re-

quired, blood was obtained by a direct cardiac puncture immediately post-

mortem. All PP, MLN, liver, and spleen tissue that could be identifi ed in the 

time course were retrieved. Intestinal tissue retrieved was the distal inch of 

terminal ileum (after the PP had been removed), cecum (minus PP), and 

proximal inch of the large intestines. The intestinal luminal contents were 

included in this sample.

Tissue for bacterial colony counts was placed in 200 μl of PBS immedi-

ately after dissection and stored on ice until samples were weighed. 800 μl of 

PBS was added to the vial and the tissue homogenized using a TissueTearor 

(Biospec). The total homogenates of all the organs, as well as serial dilutions 

of the homogenates were inoculated onto MacConkey-lactose agar plates. 

Colonies were counted after 48 h incubation at 28°C.

Tissue for the broth recovery method was diced into small pieces 

(�5 mm × 5 mm) and inoculated into 3 ml of BHI supplemented with 

30 μg/ml kanamycin and 5 μg/ml of tetracycline. To eradicate DNA cross-

contamination between each organ and each mouse, a separate set of dissection 

instruments was used for removal of each organ from each mouse. In addi-

tion, instead of autoclaving, immediately after use, the instruments were 

placed in bleach, 1 ppm, scrubbed with soap and water, soaked for a further 

20 min in bleach, rinsed, and air dried under ultraviolet light.

After dicing of the organs, the BHI/tissue suspension was placed in 

a shaker overnight at 28°C, and 250 μl of the BHI/tissue suspension was 

inoculated onto MacConkey and BHI plates both supplemented with 

 kanamycin and tetracycline. After 48-h incubation at 28°C, plasmid 

 preparations were made from the pool of arising colonies. The tags were 

amplifi ed and digoxigenin labeled using PCR and detected by chemilu-

minescence (Roche).

All animal experiments used protocols approved by the Tufts University 

School of Medicine Division of Laboratory Animal Medicine.
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Mouse inoculations in the presence of streptomycin. 5, 12, and 24 h 

after oral or i.p. inoculation of bacteria, the animals were orogastrically rein-

oculated with 1 mg of streptomycin suspended in 200 μl of PBS, or 200 μl 

of PBS-only control. 24 or 72 h after the bacterial inoculation, the mice 

were killed and the intestines, livers, and spleens homogenized for colony 

counts as described in the preceding section.

Statistical analysis of results. The variability of Y. pseudotuberculosis spleen 

and liver infections rendered the resulting data nonparametric. Therefore, 

the diff erence between the colony counts in two groups of tissues examined 

was compared using the Mann-Whitney U-test. The frequency of infection 

in two populations of mice, assayed using the broth recovery technique, was 

compared using two-sided Fisher’s exact test mid-P. The association be-

tween clones in tissues was analyzed using the chi-squared test. Signifi cance 

for all tests was defi ned by a p-value of ≤0.05.

Determination of streptomycin concentrations in bloodstream of 

infected mice. Groups of mice were either mock inoculated with PBS or 

inoculated with 5 × 108 CFU of Y. pseudotuberculosis, followed by oral ga-

vage with 1 mg of streptomycin at 5, 12, and 24 h after infection. Blood was 

obtained by cardiac puncture at 24 h after infection into serum separator 

tubes (Becton Dickinson) and centrifuged and resulting serum was pooled 

from individual mice to yield a minimum of 0.5 mL serum per condition. 

Controls included serum from uninfected mice (normal mouse serum), se-

rum from mice injected intravenously with 200 μg of streptomycin, and 

normal mouse serum spiked with streptomycin to give 100 μg/ml fi nal con-

centration. Serum samples were stored frozen at −70°C until assayed for 

streptomycin levels by an HPLC-based assay (Focus Diagnostics). The mini-

mal inhibitory concentration of streptomycin upon Y. pseudotuberculosis 

growth was determined to be 12.5 μg/ml.

Online supplemental material. Experiment that measures the concentra-

tion of streptomycin in the mouse bloodstream after oral Y. pseudotuberculosis 

inoculation is found online as Fig. S1, available at http://www.jem.org/cgi/

content/full/jem.20060905/DC1.
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