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Myocardial infarction (MI) affects millions of people worldwide. MI causes massive cardiac cell death and heart function decrease.
However, heart tissue cannot effectively regenerate by itself. While stem cell therapy has been considered an effective approach for
regeneration, the efficacy of cardiac stem cell therapy remains low due to inferior cell engraftment in the infarcted region. This
is mainly a result of low cell retention in the tissue and poor cell survival under ischemic, immune rejection and inflammatory
conditions. Various approaches have been explored to improve cell engraftment: increase of cell retention using biomaterials as
cell carriers; augmentation of cell survival under ischemic conditions by preconditioning cells, genetic modification of cells, and
controlled release of growth factors and oxygen; and enhancement of cell survival by protecting cells from excessive inflammation
and immune surveillance. In this paper, we review current progress, advantages, disadvantages, and potential solutions of these
approaches.

1. Introduction

Heart disease has a high rate of morbidity and mortality
[1]. Myocardial infarction (MI) is a major heart disease
that causes massive cardiac cell death and partial loss of
heart function. The infarcted heart tissue cannot effectively
regenerate by itself because adult cardiomyocytes are unable
to proliferate, and cardiac stem cells spontaneously generate
only a limited number of cardiomyocytes [2]. Heart function
thus cannot be restored. Following MI, the left ventricular
wall progressively becomes thinner, and heart function grad-
ually decreases. This adverse remodeling process leads to
heart failure [3]. Heart transplantation is the only solution
for patients with end-stage heart failure, but the number
of donors available for transplantation is extremely limited,
and the recipients require long-term immune suppressants
to prevent organ rejection. Stem cell therapy is an alternate
strategy. It aims to regenerate the infarcted heart tissue and/or
improve heart function.

2. Stem Cells for Cardiac Therapy

Multiple cell types have been tested in animal models and
clinical trials for cardiac therapy. Some stem cell types are
capable of differentiating into cardiomyocytes to regenerate
the heart tissue, leading to the restoration of heart function.
These cells include cardiac stem cells [4–8] and pluripotent
stem cell-derived cardiovascular progenitor cells [9, 10].
Some stem cell types cannot differentiate into functional
cardiomyocytes but provide paracrine effects to augment the
survival of resident cardiac cells, vascularize infarcted heart
tissue, modulate immune response, recruit endogenous stem
cells, and facilitate beneficial remodeling [11–17], resulting in
an overall improvement of heart function. These stem cells
include bone marrow-derived stem cells [18–23], adipose-
derived stem cells [24–27], and cardiosphere-derived cells
(CDCs) [28–35].

In the majority of current animal studies and clinical
trials, stem cells are injected directly into the infarcted
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heart. However approximately 90% of cells are lost to the
circulation, leaked, or squeezed out of the injection site [36].
For those cells retained in the infarcted tissue, most of them
die within the first few weeks [37]. Overall, cell engraftment
of current stem cell therapy is low, and its therapeutic efficacy
is limited.

3. Major Causes of Low Cell Engraftment in
Infarcted Hearts

As discussed above, the major causes of the low cell engraft-
ment are inferior cell retention and survival in the infarcted
heart tissue. The commonly used saline solution has very
low viscosity and cannot efficiently hold the cells in tissue.
Transplanted cell death is mainly a result of inadequate cell
attachment to the host tissue, severe ischemia, and excessive
inflammation. Anoikis is a form of programmed cell death of
adherent cells induced by poor or weak interaction between
cell and extracellular matrix (ECM) [38]. In normal heart
tissue, adherent cells attach strongly to the surrounding ECM.
In the infarcted tissue, however, the ECM does not allow
strong cell attachment [39]. Moreover, the saline used for
cell transplantation does not provide cells with a matrix for
attachment. These events cause anoikis [40].

Another factor is oxygen tension in the tissue. After MI,
an extremely low oxygen and nutrient ischemic environment
exists in the infarcted region. Although hypoxia is considered
necessary to preserve the stem cell properties [41], the harsh
ischemic environment activates cell death pathways, resulting
in death of the transplanted cells [42].

Following MI, acute inflammation ensues with recruit-
ment of inflammatory cells (neutrophils andmonocytes) into
the infarcted heart tissue. These recruited inflammatory cells
are engaged in production of various inflammatory cytokines
and chemokines to recruitmore inflammatory cells, secretion
of various proteolytic enzymes and reactive oxygen species
(ROS), and phagocytosis to remove dead cells and tissue
debris [43–45]. Both ROS and proinflammatory cytokines,
such as tumor necrosis factor-𝛼 (TNF-𝛼), can compromise
survival of transplanted cells.

4. Approaches to Improve
Stem Cell Engraftment

To increase cell engraftment in infarcted hearts, improving
both cell retention and survival is necessary. The former
may be achieved by using viscous, injectable hydrogels as
cell carriers since low viscosity saline cannot efficiently hold
cells in tissue. An injectable hydrogel can be delivered into
the infarcted hearts through a minimal invasive injection
approach (Figure 1) [49]. Seeding cells into scaffolds and
patching them onto the heart may also increase cell reten-
tion (Figure 1). Both injectable hydrogels and scaffolds can
augment cell survival. They provide an environment for cell
attachment, which is required for cell survival. They can also
bemodified to promote stem cell survival under ischemic and
inflammatory conditions [50]. In addition, the hydrogels and

scaffolds offer mechanical support to the infarcted tissue to
improve cardiac function.

To address the issue of cell survival under ischemic
conditions, approaches including ischemic preexposure of
cells, genetic modulation of cells, and delivery of growth
factors and oxygen to cells have been used. To promote
cell survival under inflammatory conditions, biomaterials
have been modified to prevent immune proteins and proin-
flammatory cytokines from penetrating inside to attack the
encapsulated stem cells.

4.1. Using Biomaterials and Cell Adhesion Molecules for Stem
Cell Delivery. Biomaterials used for stem cell transplantation
should be biodegradable and biocompatible [51]. Specifically,
they should have a controlled biodegradation rate, which
ideally coincides with the rate of new tissue regeneration
[52]. The degradation products should be nontoxic. The
biomaterials should ideally mimic mechanical properties of
the heart tissue, for example, stiffness. This will decrease
the elevated wall stress to improve cardiac function [53].
Both natural and synthetic polymers have been employed for
stem cell transplantation. Natural polymers are biologically
derived materials. Some of them, like fibrin [49, 54], alginate
[55–57], collagen [58, 59], Matrigel [60], hyaluronic acid [61],
and chitosan [62], have been used to deliver stem cells into
infarcted hearts.

Synthetic polymers are generated via chemical method to
pursue desired properties and functions. The properties can
be controlled by composition and chemistry. The capability
of endowing synthetic polymers with functional groups and
tunable properties are advantages of using these polymers
for stem cell transplantation [63]. Commonly used synthetic
polymers include polyesters, such as polyglycolide (PGA),
polylactide (PLA), poly(lactide-co-glycolide) (PLGA), poly-
caprolactone (PCL), and their copolymers [64]. These poly-
mers are often used in the form of scaffold. PLGA scaffolds
loaded with bFGF have been used to promote cardiac angio-
genesis [65]. Porous PCL scaffolds have been used to deliver
endothelial progenitor cells into heart tissue to promote
vascularization [66].

Some synthetic polymers can be used in the form of
hydrogel. For example, Li et al. generated thermosensi-
tive hydrogels based on N-isopropylacrylamide (NIPAAm),
acrylic acid (AAc), dimethyl-gamma-butyrolactone acrylate
(DBA), and 2-hydroxyethyl methacrylate-poly(trimethylene
carbonate) (HEMAPTMC) [46].The hydrogels are injectable
at room temperature and solidify at body temperature
within 10 seconds. They can therefore quickly solidify to
efficiently hold cells in the tissue. Interestingly, mesenchymal
stem cells (MSCs) were able to proliferate inside (Figure 2).
Other synthetic hydrogels developed for cardiac repair
include poly(ethylene oxide)-b-poly(propylene oxide)-b-
poly(ethylene oxide) (PEO-PPO-PEO) [67], poly(D-lysine)
(PDL) [68], and MPEG-PCL-MPEG [69, 70].

Biomaterials can be modified with cell adhesive mole-
cules to improve cell attachment, thus decreasing anoikis-
induced stem cell death during transplantation [71]. Cell
adhesive molecules are often mixed with or conjugated
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Figure 1: Strategies to improve cell retention in infarcted hearts. An injectable hydrogel can be used as a delivery vehicle for cells (a), or cells
and therapeutic agents such as genes or proteins (b). A scaffold can be seeded with cells in vitro and then implanted to the infarcted region
(c).

to the biomaterials. Karoubi et al. studied MSC survival
in agarose with and without the addition of fibronectin
and fibrinogen [72]. The results showed that cell survival
was significantly increased after addition of fibronectin and
fibrinogen. Similarly, fibrin glue remarkably improved cell
survival in infarcted hearts [54]. Cooke et al. investigated
cell adhesion on surfaces modified with several cell adhesive
molecules, collagen I, collagen IV, fibronectin, and laminin,
and found that cell attachment was increased [71]. Pep-
tides YIGSR/IKVAV and RGD derived from laminin and
fibronectin, respectively, have also been used to modify
biomaterials to improve cell affinity [73].

4.2. Preexposure of Stem Cells for Enhanced Cell Survival.
Preexposure of stem cells with ischemia or cytokines for
cytoprotection is an alternate strategy to alleviate cell death. It
enhances the cell tolerance to the harsh ischemic conditions.
Murry et al. showed that cyclic exposure of stem cells to
ischemia improved cell survival in ischemic myocardium
[74]. Maulik et al. further demonstrated that ischemic preex-
posure allowed cells to adapt to ischemia, thus attenuating cell
death under ischemia [75]. Grund et al. found that ischemi-
cally preexposed cells had reduced oxygen consumption [76].
In addition, ischemic preexposure enhanced cell secretion of
growth factors [77, 78].

Cytokine preexposure can also improve cell survival [79–
81]. MSCs pretreated with SDF-1𝛼 released antiapoptotic and
angiogenic cytokines to improve cell survival and augment
tissue angiogenesis [79]. Preexposure of endothelial progen-
itor cells with VEGF and bFGF enhanced cell paracrine
effects, resulting in enhanced cell survival, angiogenesis, and
reduced infarct size and left ventricle remodeling [80, 81].
Cells pretreatedwith IGF-1 showed cytoprotection effect both
in vitro and in vivo [82, 83]. PI3K/Akt and MAPK/Erk1/2
pathways are responsible for the prosurvival effect.

4.3. Release of Growth Factors to Improve Cell Survival.
High rates of both short-term and long-term cell survival
are necessary for cardiac stem cell therapy. These may be
achieved by using growth factors. Prosurvival growth factors
allow for short-term cell survival, while angiogenic growth

factors stimulate angiogenesis for long-term cell survival [84–
86]. IGF-1 and HGF are two commonly used prosurvival
growth factors. FGF [87], PDGF [88], and VEGF [89] are
angiogenic growth factors used to promote angiogenesis
in various tissues. bFGF also enhances cell survival under
ischemic conditions [47]. In addition, specific growth factors
can be used with prosurvival and angiogenic growth factors
to promote stem cell differentiation into functional cells such
as cardiomyocytes [90–92].

However, a concern for using growth factors in stem
cell transplantation is that most of them have a relatively
short half-life [93, 94]. Genetic modification of stem cells to
promote the cells to secrete prosurvival and proangiogenic
growth factors and sustained release of growth factors using
biomaterials are commonly used approaches to address this
concern.

Stem cells transfected with encoded genes of angiogenic
growth factors like VEGF and FGF, and antiapoptotic factors
like Akt and heme oxygenase-1, were able to secrete autocrine
and paracrine growth factors [95, 96]. After transplanting
these cells into infarcted hearts, cell survival, angiogenesis,
and heart function were improved [97–99]. Matsumoto et al.
transfected VEGF gene to MSCs and injected the modified
cells into MI rat hearts [100]. High expression of VEGF was
detected. This not only reduced cell death and increased
capillary density, but also decreased the infarct size.

The growth factors are often encapsulated in biomaterials
for controlled release [101–103]. Li et al. developed a bFGF
release system based on a thermoresponsive and degradable
hydrogel [47]. bFGF can be gradually released from the
hydrogel for more than 2 weeks. The bFGF releasing system
significantly increased MSC survival under low oxygen and
nutrient conditions (Figure 3). It is expected that transplanta-
tion of stem cells using this bFGF release systemwill augment
cell survival in the infarcted hearts. The release system may
also promote angiogenesis due to the angiogenic effect of
bFGF.

Padin-Iruega et al. tethered IGF-1 to self-assembling
peptide nanofibers and used them for delivery of cardiac
progenitor cells (CPCs) into infarcted hearts [104].The IGF-1
was found to continuously release from the nanofibers to the
myocardium. The released IGF-1 not only augmented CPC
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Figure 2: Macroscopic images of hydrogel and cells. The copolymer solution is flowable at 4∘C (a) and forms gel after gelation at 37∘C (b).
The copolymer solution can be injected through a 26-gauge needle (c). At 37∘C, the formed gel is flexible and can be stretched: (d) before
stretching; (e) after stretching; (f) fluorescence images of MSCs encapsulated in hydrogels with or without collagen and superoxide dismutase
(SOD, 4mg/mL) after 1 and 7 days of culture. The cells were stained with live cell stain CMFDA before encapsulation. Scale bar = 100𝜇m.
This figure is adopted from [46].

survival but also promoted cardiac differentiation, leading to
enhanced cardiac regeneration.

4.4. Augmentation of Cell Survival by Releasing Oxygen to
Transplanted Cells. Oxygen is critical for cell survival. The
extremely low oxygen concentration in the infarcted heart
results in significant cell death [105, 106]. Transplantation
of stem cells with an oxygen release system is considered a
feasible strategy to improve cell survival [107].

An oxygen release system can be generated using inor-
ganic peroxide. Oh et al. developed a calcium peroxide-based
oxygen release system by incorporating calcium peroxide
into PLGA scaffold [108]. The system can continuously
release oxygen for 10 days. The released oxygen enhanced
cell survival under hypoxic conditions in vitro. However,
this approach is not well suited for cardiac application
since the Ca2+ generated together with oxygen may lead to
abnormal Ca2+ transient in cardiomyocytes [109]. To avoid
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Figure 3: (a) Release kinetics of bFGF loaded in the hydrogels. bFGF loading was 10 and 50 𝜇g/mL, respectively. The error bars are small.
(b) VEGF expression of MSCs in the hydrogels under different culture conditions. Cells were cultured under conditions of 10% FBS and 21%
oxygen, 1% FBS and 21% oxygen, 1% FBS and 5% oxygen, and 1% FBS and 1% oxygen, respectively. The expression was normalized by that
under 10% FBS with 21% oxygen culture condition. (c) MSC survival in hydrogels cultured under different conditions. Culture conditions:
10% FBS and 21% oxygen, 1% FBS and 21% oxygen, 1% FBS and 5% oxygen, and 1% FBS and 1% oxygen. Double stranded DNA (dsDNA)
content was used to quantify live cell number in the hydrogels. The dsDNA content at day 1 (100%) was used for normalization. This figure is
adopted from [47].

the ion effect, organic molecules-based oxygen release sys-
tems, such as pyridine endoperoxide oxygen release sys-
tem [110], hydrogen peroxide/poly(methyl methacrylate)
microcapsule oxygen release system [111], and porphyrin-
hemoprotein (rHSA(FeP-Glu)) oxygen release system [112],
were developed and found to enhance cell survival. However,
these oxygen release systems can release oxygen for less than
24 hours [108, 110–112].

To achieve longer term oxygen release, Abdi et al. encap-
sulated hydrogen peroxide into PLGA microspheres and
obtained oxygen release for 7 days [113]. Li et al. encapsulated
hydrogen peroxide/PVP complex in the PLGAmicrospheres

and achieved sustained oxygen release at a relatively high
oxygen level for 2 weeks (Figure 4) [48]. This oxygen release
system significantly improved cell survival under hypoxic
conditions in vitro. It has a great potential to augment cell
survival in infarcted hearts for an extended period of time. Yet
the concentration of released oxygen needs to be controlled
so as not to overproduce ROS.

4.5. Modification of Biomaterials to Enhance Cell Sur-
vival under Immune Rejection and Inflammation Conditions.
Immune rejection and excessive inflammation also decrease
the survival rate of transplanted cells. Proinflammatory
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figure is adopted from [48].

cytokines like TNF-𝛼 and IL-1 induce excessive inflammation
and create a noxious microenvironment, in addition to caus-
ing apoptosis of the cells [114]. Optimization of biomaterial
properties and introduction of anti-inflammatory molecules
into biomaterials may provide protection for the trans-
planted cells. By controlling pore size of the biomaterials,
transplanted cells can be immunoisolated, leading to better
cell survival of the transplanted cells [115–119]. However,
small cytotoxic molecules such as TNF-𝛼 and IL-1𝛽 can still
diffuse into the biomaterials [120, 121]. To address this issue,
approaches like increasing degree of cross-linking andmatrix
concentration were used. However, these approaches may
impede nutrient transport to cells. An alternate approach is to
modify the biomaterials with anti-inflammatory molecules.
For example, anti-TNF-peptide WP9QY (YCWSQYLCY)
may be conjugated into hydrogel to prevent TNF from
penetrating inside [122].

After MI, ROS content in the failing heart is upregulated
[123], which can be cytotoxic against the transplanted cells.
To decrease the cytotoxic effects of ROS, Hume and Anseth
incorporated superoxide dismutase mimetic (SODm) into
PEG hydrogel. This largely protected cells from oxidative
stress damage and improved cell survival [124].

5. Conclusions and Prospects

Stem cell therapy is considered a potent and promising
approach for cardiac therapy. However, the efficacy is limited
as only a small percentage of transplanted cells engrafted
in the infarcted tissue. Low cell retention and inferior cell
survival are mainly responsible for the limited cell engraft-
ment. Hydrogels and scaffolds can be utilized to improve
cell retention. Injectable hydrogels may be more convenient
for cell delivery than scaffolds as they can be delivered by a

minimally invasive injection approach. Injectable hydrogels
increase cell retention because of their high viscosity. Yet, long
gelation time may not allow the hydrogels to largely increase
cell retention, as they may be squeezed out of heart tissue
or washed into circulation before gelation. Some hydrogels
require UV radiation, pH changing, or ion addition to solid-
ify, whichmay cause potential harm to cells.Thermosensitive
and biodegradable hydrogels that have a fast gelation rate (in
seconds) may address this issue.

Different approaches have been explored to enhance cell
survival in infarcted hearts. While they can improve cell
survival to some extent, different types of stem cells may
require dissimilar optimization approaches for preparation,
activation, transplantation procedures, and maintenance in
vivo. There are also disadvantages associated with these
approaches. Ischemic preexposure may damage cells in the
process, and the transplanted cells may not survive under
ischemic conditions for a long enough period. Genetic
modification of cells may raise safety concerns. Controlled
release of growth factors and oxygen and immune protection
appear to bemore effective to promote cell survival. However,
further studies on the long-term effect of these approaches on
cell survival, functioning, and differentiation are needed.

From a clinical point of view, safety and efficacy are still
paramount issues. More studies on animals are required in
order to develop a reliable cell-biomaterial delivery system
with long-term safety and efficacy. Biomaterial type, degrada-
tion product toxicity, dose, and timing must be well studied
before clinical application.
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