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Abstract: As the initial antibody technology, the preparation of hybridoma cells has been widely used
in discovering antibody drugs and is still in use. Various antibody drugs obtained through this tech-
nology have been approved for treating human diseases. However, the key to producing hybridoma
cells is efficient cell fusion. High-voltage microsecond pulsed electric fields (µsHVPEFs) are currently
one of the most common methods used for cell electrofusion. Nevertheless, the membrane potential
induced by the external microsecond pulse is proportional to the diameter of the cell, making it
difficult to fuse cells of different sizes. Although nanosecond pulsed electric fields (nsPEFs) can
achieve the fusion of cells of different sizes, due to the limitation of pore size, deoxyribonucleic acid
(DNA) cannot efficiently pass through the cell pores produced by nsPEFs. This directly causes the
significant loss of the target gene and reduces the proportion of positive cells after fusion. To achieve
an electric field environment independent of cell size and enable efficient cell fusion, we propose a
combination of nanosecond pulsed electric fields and low-voltage microsecond pulsed electric fields
(ns/µsLVPEFs) to balance the advantages and disadvantages of the two techniques. The results
of fluorescence experiments and hybridoma culture experiments showed that after lymphocytes
and myeloma cells were stimulated by a pulse (ns/µsLVPEF, µsHVPEF, and control), compared
with µsHVPEF, applying ns/µsLVPEF at the same energy could increase the cell fusion efficiency
by 1.5–3.0 times. Thus far, we have combined nanosecond and microsecond pulses and provided a
practical solution that can significantly increase cell fusion efficiency. This efficient cell fusion method
may contribute to the further development of hybridoma technology in electrofusion.

Keywords: cell electrofusion; nanosecond/microsecond pulsed electric fields; equal energy;
hybridoma cell

1. Introduction

Cell fusion refers to using natural or artificial methods to make two cell types fuse
into one cell, which displays the combined characteristics of both cells. Cell fusion plays
an essential role in modern biotechnology. For example, one critical procedure in genetic
engineering is introducing exogenous genetic material into a host cell. Such insertion of
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genes can be accomplished by fusing the host cell with a cell containing the desired genetic
material. Furthermore, cell fusion plays a vital role in the production of monoclonal anti-
bodies, which requires the fusion of antibody-producing cells with continuously dividing
cancer cells such as myeloma cells [1–5].

Hybridoma technology was the earliest method to isolate monoclonal antibodies
(mAbs) and is still used today [6–8]. In contrast to other mAb discovery techniques, once
hybridoma cell clones are established, mAbs can be continuously secreted into culture
supernatants or ascites collected from immunized mice for purification. Light and heavy
chain combinations are not needed. The advent of this technology has accelerated the
process of mAb research. Hybridoma technology relies primarily on mature B cells stored
in secondary lymphoid organs. The process by which B cells undergo antigenic stimulation
in peripheral lymphoid germinal centers is called somatic hypermutation (SHM) [9]. V(D)J
rearrangement mechanisms of germline genes and SHM constitute the diversity of antibody
complementarity-determining regions (CDRs) [10]. Hybridoma technology fuses these
antigen-specific B cells with cells such as SP2/0 that can proliferate indefinitely, allowing
B cells to be easily cultured in vitro and continue to secrete antibodies. In addition to
common murine mAbs, hybridoma technology has also been applied to develop fully
human antibody transgenic animals or direct human-derived antibodies [11–13].

The key to preparing hybridoma cells is efficient cell fusion. There are numerous
methods to fuse cells, including chemical (polyethylene glycol, PEG) [14], viral (Hemagglu-
tinating virus of Japan, HVJ) [15], and physical methods (electric fields) [16–22]. The latter
one, electrofusion, is the most commonly used method owing to the highest repeatability
and stability. There are three preconditions for cell electrofusion:

1. Cells should be arranged in close contact [20];
2. Electroporation should be created in the contact zone of cell membranes [21];
3. Cells should be alive—µsPEF was used in cell fusion technology by Zimmermann

et al. as early as 40 years ago [22,23].

Nevertheless, in hybridoma technology, cell fusion based on µsPEF has considerable
defects [24,25]. The production of antibodies primarily relies on the cell fusion of myeloma
cells with B lymphocyte cells [21]. There are significant differences in the cell sizes (the radii
of B lymphocytes and myeloma cells are 3.85 µm and 7.75 µm, respectively) [26]. According
to the well-known Schwan equation [27], the transmembrane voltage (TMV) is defined as:

TMV = 1.5Ercosθ
(

1− e
−t
τ

)
(1)

where r, E, τ, and θ are the cell radius, electric field, charging time constant of the cell
membrane, and the angle between the electric field and the specified point, respectively.
When the transmembrane potential reaches around 1 V, it is currently regarded as the
potential threshold required to achieve electroporation [28]. The TMV of cell membranes
induced by external microsecond pulses is proportional to the diameter of the cells. Accord-
ingly, different-sized cells’ electrofusion by µsPEF faces a series of bottlenecks, the most
significant of which is the low efficiency. When one tries to fuse cells of two different sizes,
it is difficult to choose a proper field strength of the pulse for both cell types. When the field
is only large enough to cause membrane electroporation in the larger cells (myeloma cells),
it is not sufficient to induce a critical membrane potential to electroporate the membranes
of the smaller cells (lymphocytes). On the other hand, if the field strength is increased to
cause membrane electroporation in the smaller cell, the potential induced in the larger cell
is so high that it will cause irreversible damage and destroy the cells [29]. Therefore, it
is difficult to guarantee that two types of cells are in a suitable electroporation condition
simultaneously, which will lead to low cell fusion efficiency when applying µsPEF, only 1%
or less [21].

nsPEF has attracted increased attention in the biomedical field [30–33]. According
to simulation and experimental research [34], different-sized cell fusion can be realized
by nsPEF. The electroporation is mainly concentrated in the cell contact zone, and cell
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sizes have little impact on TMV when applying nsPEF [34]. According to the theory of
cell electrofusion [35], not only the sufficient size but also a sufficient life span of pores is
required to fuse cells. Although cell membranes can be electroporated by nsPEF, the radius
of pores is only several nanometers, and they quickly disappear [36,37]. Therefore, when
nsPEF is applied to electrofusion, some new problems arise (insufficient size and short life
span of pores).

In order to achieve high cell electrofusion efficiency, a new pulse form needs to be
put forward to overcome the bottlenecks caused by µsPEF or nsPEF mentioned above.
Fortunately, in the study of gene transfer efficiency, S Guo et al. found that when compared
with nsPEF, the higher gene transfer efficiency can be achieved by applying nsPEFs to cells
first, followed by one low-voltage millisecond pulse electric field, but not in the opposite
order [38]. Both gene transfection and cell electrofusion belong to reversible electroporation.
Based on the research above, we propose a hypothesis—cell fusion efficiency can be
improved by combining a nanosecond pulsed electric field with a low-voltage microsecond
pulsed electric field. The purpose of this paper is to utilize the advantages of nsPEF and
µsPEF. Firstly, nsPEF was used to create “tiny pores” on the cell membrane. Then, µsLVPEF
was applied to “expand and control” the size of pores to promote the effective fusion
of cells.

Based on pulse power technology, we developed a cell fusion instrument. Then,
several experiments were carried out. 1©Microscopic angle: µsHVPEF and ns/µsLVPEF
with equal energy were applied in fluorescence experiments of cell fusion. The fluorescence
reagents Hoechst 33342 and Propidium Iodide (PI) were used to identify fused and dead
cells, respectively. The fusion efficiencies based on different pulses can be counted through
fluorescence imaging. 2©Macroscopic angle: µsHVPEF and ns/µsLVPEF with equal energy
were used in cell culture experiments. After cell electrofusion, the cells were placed into
a specific medium (in this medium, only the lymphocytes fused with myeloma cells can
proliferate). After ten days of cell culture, the visible colony of hybridomas was counted,
and the fusion efficiencies were compared. Finally, the following conclusions can be drawn:
when compared with the traditional cell fusion method (µsHVPEF), ns/µsLVPEF with the
same energy can effectively improve the cell fusion efficiency (approximately 1.5–3.0 times).
Cell fusion induced by nanosecond/low-voltage microsecond pulses is a promising method
to develop cell fusion technology.

2. Materials and Methods
2.1. Ethics Statement and Cell Culture

The lymphocytes used in each experiment were extracted from the spleens of mice
(specific pathogen-free Kunming mice, male, five months old). The feeding and man-
agement of mice strictly followed the Chinese Ethical Guidelines for Laboratory Animal
Welfare (GB 14925-2001). Mice were provided with adequate food and water. Mice were
euthanized by inhaling an overdose of isoflurane when primary spleen-derived lympho-
cytes were collected. All animal experiments were approved by the Animal Welfare and
Ethics Committee of Chongqing Academy of Animal Sciences.

The SP2/0 myeloma cells were purchased from Shanghai Ya Biotechnology. In order
to maintain the cell activity, lymphocytes were used within six hours after isolation from
the spleens. SP2/0 myeloma cells were cultivated in a 5% CO2 humidified atmosphere at
37 ◦C using RPMI 1640 medium (12633020, Sigma-Aldrich, Rockville, IN, USA).

2.2. Cell Electrofusion Platform

A homemade ns/µsPEF cell electrofusion instrument was designed to set up the cell
electrofusion platform. The schematic and experimental setup are shown in Figures 1 and 2,
respectively. The signal generator and power amplifier were used to output the sine voltage,
causing cells to be arranged in close contact by dielectrophoresis (DEP) [39,40]. There
were several modules in the pulse generator to generate different voltage waveforms.
Switching between these different modules was carried out with a relay (JPK43A234,
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WPVAC, Jingdezhen, China), controlled by Field Programmable Gate Arrays (FPGA,
Model: ep4ce6, Alinx, Shanghai, China). The output of the cell fusion instrument was
connected with a fusion electrode. The current sensor (Model: 2100, Pearson Electronics,
Palo Alto, CA, USA) and high-voltage probe (Model: PPE5 kV, Teledyne Lecroy, Chestnut
Ridge, NY, USA) were used to collect signals of current and voltage, which were displayed
on the screen of the oscilloscope (Model: DPO3024, Tektronix, Shanghai, China). The
output parameters of the pulse generator are shown below. Sine voltage—frequency:
0–2 MHz, amplitude: 0–±100 V. Nanosecond pulse—frequency: 0–100 Hz, amplitude:
0–5000 V, pulse width: 0–600 ns, number of pulses: 0–100. Microsecond pulse—frequency:
0–100 Hz, amplitude: 0–2000 V, pulse width: 0–80 µs, number of pulses: 0–100. Figure 3
displays the waveforms of the cell fusion instrument.

Bioengineering 2021, 8, x FOR PEER REVIEW 4 of 14 
 

2.2. Cell Electrofusion Platform 

A homemade ns/μsPEF cell electrofusion instrument was designed to set up the cell 

electrofusion platform. The schematic and experimental setup are shown in Figures 1 and 

2, respectively. The signal generator and power amplifier were used to output the sine 

voltage, causing cells to be arranged in close contact by dielectrophoresis (DEP) [39,40]. 

There were several modules in the pulse generator to generate different voltage wave-

forms. Switching between these different modules was carried out with a relay 

(JPK43A234, WPVAC, Jingdezhen, China), controlled by Field Programmable Gate Ar-

rays (FPGA, Model: ep4ce6, Alinx, Shanghai, China). The output of the cell fusion instru-

ment was connected with a fusion electrode. The current sensor (Model: 2100, Pearson 

Electronics, Palo Alto, CA, USA) and high-voltage probe (Model: PPE5 kV, Teledyne 

Lecroy, Chestnut Ridge, NY, USA) were used to collect signals of current and voltage, 

which were displayed on the screen of the oscilloscope (Model: DPO3024, Tektronix, 

Shanghai, China). The output parameters of the pulse generator are shown below. Sine 

voltage—frequency: 0–2 MHz, amplitude: 0–±100 V. Nanosecond pulse—frequency: 0–

100 Hz, amplitude: 0–5000 V, pulse width: 0–600 ns, number of pulses: 0–100. Microsec-

ond pulse—frequency: 0–100 Hz, amplitude: 0–2000 V, pulse width: 0–80 μs, number of 

pulses: 0–100. Figure 3 displays the waveforms of the cell fusion instrument. 

 

Figure 1. Schematic of cell fusion platform. 

 

Figure 2. Experimental setups. The voltage is applied to the fusion chamber to make cells fuse. 

Figure 1. Schematic of cell fusion platform.

Bioengineering 2021, 8, x FOR PEER REVIEW 4 of 14 
 

2.2. Cell Electrofusion Platform 

A homemade ns/μsPEF cell electrofusion instrument was designed to set up the cell 

electrofusion platform. The schematic and experimental setup are shown in Figures 1 and 

2, respectively. The signal generator and power amplifier were used to output the sine 

voltage, causing cells to be arranged in close contact by dielectrophoresis (DEP) [39,40]. 

There were several modules in the pulse generator to generate different voltage wave-

forms. Switching between these different modules was carried out with a relay 

(JPK43A234, WPVAC, Jingdezhen, China), controlled by Field Programmable Gate Ar-

rays (FPGA, Model: ep4ce6, Alinx, Shanghai, China). The output of the cell fusion instru-

ment was connected with a fusion electrode. The current sensor (Model: 2100, Pearson 

Electronics, Palo Alto, CA, USA) and high-voltage probe (Model: PPE5 kV, Teledyne 

Lecroy, Chestnut Ridge, NY, USA) were used to collect signals of current and voltage, 

which were displayed on the screen of the oscilloscope (Model: DPO3024, Tektronix, 

Shanghai, China). The output parameters of the pulse generator are shown below. Sine 

voltage—frequency: 0–2 MHz, amplitude: 0–±100 V. Nanosecond pulse—frequency: 0–

100 Hz, amplitude: 0–5000 V, pulse width: 0–600 ns, number of pulses: 0–100. Microsec-

ond pulse—frequency: 0–100 Hz, amplitude: 0–2000 V, pulse width: 0–80 μs, number of 

pulses: 0–100. Figure 3 displays the waveforms of the cell fusion instrument. 

 

Figure 1. Schematic of cell fusion platform. 

 

Figure 2. Experimental setups. The voltage is applied to the fusion chamber to make cells fuse. Figure 2. Experimental setups. The voltage is applied to the fusion chamber to make cells fuse.



Bioengineering 2022, 9, 450 5 of 14Bioengineering 2021, 8, x FOR PEER REVIEW 5 of 14 
 

 

Figure 3. The waveform of the cell fusion instrument. ns/μsLVPEF used in the experiments. 

2.3. Fluorescence Experiments 

In order to evaluate the effect of different pulse waveforms from a microscopic angle, 

fluorescence experiments were developed. In each experiment, 5 × 105 lymphocytes and 5 

× 105 SP2/0 cells were used. By utilizing the characteristic of size differences, smaller cells 

(lymphocytes) rather than larger cells (myeloma cells) were stained with Hoechst 33342 

(10 μg/mL, blue fluorescence, Solarbio, Beijing, China) for 15 min at 37 °C to stain the 

nuclei of lymphocytes. Lymphocytes and myeloma cells were independently washed with 

phosphate-buffered saline (PBS, Sigma, Beijing, China) twice for 5 min and then washed 

with fusion medium (osmolarity: 270 to 290 mOsm/L, conductivity: 0.01 S/m, device 

model: 47-0001, BTX, Holliston, MA, USA) twice for 5 min. After this, two types of cells 

were transferred into a coaxial fusion electrode (shown in the top right-hand corner of 

Figure 2, gap: 3.81 mm, device model: 47–0030, BTX, Holliston, MA, USA), waiting for cell 

electrofusion. Twenty minutes after the electrofusion, PI (1 mg/mL, red fluorescence, Life 

Technologies, Waltham, MA, USA) was added to the cell suspension and incubated for 6 

min. Four visual fields were randomly selected to observe the fluorescence images by flu-

orescence microscopy (Life Technologies, Waltham, MA, USA), and the multiple channels 

of fluorescence images were used to calculate the efficiency of cell fusion (cell fusion rate 

= number of multinucleated cells/total number of myeloma cells). When the blue fluores-

cence was observed in a large cell, it indicated that the two types of cells had fused. The 

dead cells (stained with the PI fluorescent molecule) were excluded from cell fusion effi-

ciency analysis.  

2.4. Hybridoma Culture Experiments 

The cell processing in culture experiments was similar to that previously described, 

except that no fluorescence dye was added. In order to compare the efficiency of cell fu-

sion more intuitively, we carried out hybridoma culture experiments. After electrofusion, 

the cells were transferred into a specific medium—Clona Cell™ semisolid culture me-

dium (Model: 03804, Stemcell, Vancouver, BC, Canada)—in which only fused hybrid cells 

could survive and proliferate, and the other cells would die. Ten days later, the colonies 

of cells could be counted visibly by the naked eye. 

2.5. Definition of Cell Fusion Efficiency 

In fluorescence and culture experiments, cell fusion efficiency was determined as the 

ratio between the number of hybrid cells and the number of SP2/0 cells between the elec-

trodes [18]. 

  

Figure 3. The waveform of the cell fusion instrument. ns/µsLVPEF used in the experiments.

2.3. Fluorescence Experiments

In order to evaluate the effect of different pulse waveforms from a microscopic angle,
fluorescence experiments were developed. In each experiment, 5 × 105 lymphocytes and
5 × 105 SP2/0 cells were used. By utilizing the characteristic of size differences, smaller
cells (lymphocytes) rather than larger cells (myeloma cells) were stained with Hoechst
33342 (10 µg/mL, blue fluorescence, Solarbio, Beijing, China) for 15 min at 37 ◦C to stain the
nuclei of lymphocytes. Lymphocytes and myeloma cells were independently washed with
phosphate-buffered saline (PBS, Sigma, Beijing, China) twice for 5 min and then washed
with fusion medium (osmolarity: 270 to 290 mOsm/L, conductivity: 0.01 S/m, device
model: 47-0001, BTX, Holliston, MA, USA) twice for 5 min. After this, two types of cells
were transferred into a coaxial fusion electrode (shown in the top right-hand corner of
Figure 2, gap: 3.81 mm, device model: 47–0030, BTX, Holliston, MA, USA), waiting for
cell electrofusion. Twenty minutes after the electrofusion, PI (1 mg/mL, red fluorescence,
Life Technologies, Waltham, MA, USA) was added to the cell suspension and incubated
for 6 min. Four visual fields were randomly selected to observe the fluorescence images
by fluorescence microscopy (Life Technologies, Waltham, MA, USA), and the multiple
channels of fluorescence images were used to calculate the efficiency of cell fusion (cell
fusion rate = number of multinucleated cells/total number of myeloma cells). When the
blue fluorescence was observed in a large cell, it indicated that the two types of cells had
fused. The dead cells (stained with the PI fluorescent molecule) were excluded from cell
fusion efficiency analysis.

2.4. Hybridoma Culture Experiments

The cell processing in culture experiments was similar to that previously described,
except that no fluorescence dye was added. In order to compare the efficiency of cell fusion
more intuitively, we carried out hybridoma culture experiments. After electrofusion, the
cells were transferred into a specific medium—Clona Cell™ semisolid culture medium
(Model: 03804, Stemcell, Vancouver, BC, Canada)—in which only fused hybrid cells could
survive and proliferate, and the other cells would die. Ten days later, the colonies of cells
could be counted visibly by the naked eye.

2.5. Definition of Cell Fusion Efficiency

In fluorescence and culture experiments, cell fusion efficiency was determined as
the ratio between the number of hybrid cells and the number of SP2/0 cells between the
electrodes [18].
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2.6. Electrofusion Protocols

ns/µsLVPEF and µsHVPEF were applied to the cell suspension. The energy dose of
ns/µsLVPEF was the same as that of µsHVPEF. The electrical dose was used to facilitate
comparison, as described by the following equation [41,42]:

Dose =
N

∑
n=1

E2
n × Tn

[
kV2µs/cm2

]
(2)

EN = Un/d (3)

where En is the electric field intensity of the nth pulse, Tn is the duration of the nth pulse
measured by an oscilloscope, and N is the total number of pulses. Un is the voltage of the
nth pulse measured by the oscilloscope. d is the electrode gap. The schematic of the pulses
applied in experiments is shown in Figure 4.
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2.7. Statistical Analysis

All data are presented as the means ± standard deviation (SD) of more than four inde-
pendent experiments, and the significance of the indexes between the different parameter
groups was tested. OriginPro (Version: 9.0, OriginLabTM, Northampton, MA, USA) was
used to analyze the statistically significant differences between the sham control and other
experimental groups.

3. Results

The purpose of this paper is to compare the cell fusion efficiencies of µsHVPEF with
those of ns/µsLVPEF. There were three independent experimental groups, and each group
contained three pulsing conditions (ns/µsLVPEF, µsHVPEF, control). The field strength of
microsecond pulses in each group was different. All experimental results were compared
within the groups, not between groups. All pulse parameters used in the experiments are
shown in Table 1.
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Table 1. The pulse parameters used in the experiments.

Group Pulse Type
ns

Electric Field
(kV/cm)

ns
Pulse

Width (µs)

ns
Number

µs
Electric

Field (kV/cm)

µs
Pulse

Width (µs)

µs
Number

Total Dose
(kV2µs/cm2)

1
ns/µsLVPEF 6 0.2 5 2 40 1 36 + 160
µsHVPEF 0 0 0 2.2 40 1 196
Control 0 0 0 0 0 0 0

2
ns/µsLVPEF 6 0.2 5 2.5 40 1 36 + 250
µsHVPEF 0 0 0 2.67 40 1 286
Control 0 0 0 0 0 0 0

3
ns/µsLVPEF 6 0.2 5 3 40 1 36 + 360
µsHVPEF 0 0 0 3.15 40 1 396
Control 0 0 0 0 0 0 0

3.1. Fluorescence Experiments

Nuclei of the smaller-sized cells (lymphocytes) were stained with the blue fluores-
cent molecule to judge whether or not the two cells were fused. Small-sized cells with
inconspicuous nuclear membraned under fluorescence microscopy (the small cell is in the
larger cell) were judged as fusion cells (Supplementary Figure S1). The merged fluorescence
images are displayed in Figure 5, and the white circles labeled with numbers (1–7) represent
the fused cells. After fusion, PI was used to distinguish the dead cells (which could not
be included in cell fusion efficiency analysis) from the cell suspension. The growth of
hybridoma cells is shown in Figure 6. The statistical data of the fluorescence experiments
are shown in Figure 7a. In group 1, the cell fusion efficiencies of different parameters were
2.46%, 0.83%, 0.14%, respectively. In group 2, the cell fusion efficiencies were 3.90%, 1.45%,
0.11%, respectively. According to group 1 and group 2, there was a significant difference in
fusion efficiency between ns/µsLVPEF and µsHVPEF, and the efficiency of ns/µsLVPEF
was approximately 2.5–3.0 times that of the equal energy dose in µsHVPEF. In group 3, the
cell fusion efficiencies of different parameters were 0.76%, 0.66%, 0.09%, respectively.
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Figure 5. Fluorescence imaging of group 1 based on lymphocytes and myeloma cells. (a) Cells
are arranged in pearl chains by sine voltage, which will establish close contact between cells. The
myeloma cells are much larger than lymphocytes. (b) Control group: no pulse voltage is applied.
(c) Cell fusion by applying ns/µsLVPEF. Blue fluorescence represents nuclei of lymphocytes, and red
fluorescence indicates dead cells. (d) Cell fusion based on µsHVPEF. The energy dose of µsHVPEF is
the same as that of ns/µsLVPEF.
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Figure 6. Culture experiments based on lymphocytes and myeloma cells. After cell fusion, the cells
were transferred into six-well plates to proliferate for ten days. The white cell colonies in the field of
vision represent hybridoma.
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(b) Hybridoma yield of culture experiments. White, red, green represent the data of ns/µsLVPEF,
µsHVPEF, control, respectively.

3.2. Culture Experiments

After cell electrofusion, the cells were transferred into a six-well plate filled with a
culture medium. After ten days of incubation at 37 ◦C, hybridoma visible to the naked eye
could be counted, which are displayed in Figure 6. The hybridoma yields of ns/µsLVPEF,
µsHVPEF, and control are shown in Figure 7b. In group 1, the hybridoma yields of different
parameters were 0.27% (135 cells), 0.17% (85 cells), and 0%, respectively. In group 2, the
hybridoma yields were 0.37% (185 cells), 0.23% (115 cells), and 0%, respectively. In group 1
and group 2, we observed a significant improvement in hybridoma yields after applying
ns/µsLVPEF. The efficiency of ns/µsLVPEF was approximately 1.50–1.56 times higher than
that of µsHVPEF. In group 3, the hybridoma yields were 0.16% (80 cells), 0.14% (70 cells),
and 0‰, respectively. However, there was no significant difference between ns/µsLVPEF
and µsHVPEF in group 3. We believe that this may be due to the respective properties of
the two electric fields, which we will analyze in the Discussion section.

4. Discussion

Fusion efficiency affects the number of hybridomas. Kao et al. found that PEG can
be used for the fusion of protoplasts [43] and then widely used in the preparation of
hybridomas [44–46]. However, hybridoma technology involves the fusion of immune cells
and cancer cells. Immune cells can be affected by the toxicity of PEG and die. PEG fusion
will result in some potential antibodies not being discovered. Zimmermann et al. created a
method to fuse cells with a unipolar pulsed electric field, which provides new ideas for
improving the fusion efficiency and enhancing the reproducibility of operations [22].

H. Weber et al. found that the fusion of protoplasts with pulsed electric fields can
significantly increase the number of clones, with higher fusion efficiency than PEG [47].
U Karsten et al. demonstrated that the electrofusion method could increase the efficiency
of hybridoma production by up to 53 times. In addition, the hybridomas prepared by
electrofusion grew more vigorously and could form monoclonal colonies visible to the
naked eye earlier [48]. In order to further improve the fusion efficiency of traditional electro-
fusion methods, we propose, for the first time, the combined application of ns/µsLVPEFs
to improve traditional electrofusion methods.

After the comprehensive analysis of the effects of ns/µsLVPEF and µsHVPEF on
cell fusion, hybridoma culture and fluorescence experiments showed that ns/µsLVPEF
could improve the efficiency of cell fusion. Several questions need to be discussed: What
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is the difference between ns/µsPEF and other pulses (µsPEF and nsPEF)? What is the
improvement mechanism of cell fusion efficiency based on ns/µsLVPEF?

4.1. Characteristics of Cell Fusion Based on µsPEF (µsHVPEF or µsLVPEF)

Advantages: The more comprehensive the pulse width, the stronger the ability to
expand the pores [42]. The dynamic development of pores is related to the electric field
force. Three types of electric force can be induced by external electricity, which can be
expressed by the formula below [49]:

F = ρE +
1
2

E2∇ε + f (4)

Among them, F is the electric field force, ρ is the space charge, E is the external field
strength, ε is the dielectric constant, and f is the strain force of electrostriction. According
to the law of conservation of momentum, F × t = m × v, where t is the pulse width, m is the
mass of the phospholipid bilayer, and v is the displacement velocity of the lipid layer. The
displacement of the phospholipid bilayer can be equivalent to the diameter of pores on the
cell membrane. Combined with formula (4) and the law of conservation of momentum, the
radius of the pore can be calculated by the following formula:

r =

∫ t
0 vdt

2
=

∫ t
0

Ft
m dt
2

=
2ρEt2 +∇εE2t2 + 2 f t2

8m
(5)

It can be seen from the formula that the pulse width contributes the most to the
development of the pore size. For example, the radius of the pore electroporated by
nsPEF and µsPEF was calculated, respectively. The parameters of nsPEF were electric
field intensity 6000 V/cm and pulse width 200 ns. The parameters of µsPEF were electric
field intensity 2000 V/cm and pulse width 40 µs. The radius of the pores generated by
nsPEF was (6 × 10−11 × ρ

m + 1.8 × 10−7 × ∇εm + 1 × 10−14 × f
m ). The radius of the pores

generated by µsPEF was (8 × 10−7 × ρ
m + 8 × 10−4 × ∇εm + 1 × 10−10 × f

m ). It can be seen
from the calculation that the pores generated by µsPEF were much larger than those by
nsPEF. The experiments also proved that the pore size could be increased by choosing a
wider pulse width [50].

Disadvantages: Since the transmembrane potential induced by the external microsec-
ond pulses is proportional to the diameter of the cells, it is difficult to fuse the different-sized
cells. In Figure 5d, the highlighted cells (white circles 4, 5, 6, and 7) represent fused cells.
These cells are stained with PI (dead cells), so they cannot be counted in the fusion efficiency
measurement. It is challenging to ensure that two types of cells are simultaneously in the
optimal electroporation state. Failure to address this can lead to fusion failure or cell death.
Therefore, the cell fusion efficiency is low when applying µsPEF.

4.2. Characteristics of Cell Fusion Based on nsPEF

Advantages: In the best case for cell fusion, the cell electroporation should mainly
concentrate on the cell contact zone, and the remaining zones of the cell membrane should
have no or few pores. This can be achieved by applying nsPEF [34]. Using formula (6) for
the time constant, the phenomenon of concentrated electroporation can be explained. C
is the membrane capacitance. Se and Si denote the conductivity of the extracellular and
intracellular fluid, respectively. The cell contact zone is surrounded by a high-conductivity
cytoplasm (0.25 S/m) on both sides [51]. As for the rest of the cell membrane, there is
high-conductivity cytoplasm (0.25 S/m) on one side and low-conductivity extracellular
cell fluid (0.01 S/m, which is commonly used in cell fusion research [52,53], including our
experiments) on the other side. The charging time of the contact zone is much shorter than
those of other areas, and it is easier to reach the electroporation threshold of the contact
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zone. Consequently, the electroporation will be mainly concentrated in the cell contact zone
when using nsPEF.

τ = rC
(

1
2se

+
1
si

)
(6)

Disadvantages: The cell fusion process will take several minutes [54]. In this process,
the pores are required to remain “open” until the cell fusion is complete. Research [55]
showed that nsPEF did not increase the size of pores formed in the membrane. Similarly,
Si et al. found that short high-voltage sub-microsecond pulses also contributed less to
pore development and only produced tiny pores, which could recover quickly after the
pulses [24]. The efficiency of cell fusion will be limited by nsPEF due to the tiny and easily
recoverable pores.

4.3. Cell Fusion Based on ns/µsLVPEF

The advantages and disadvantages of nsPEF and µsPEF have been analyzed above,
and we combined the advantages of these two pulses to offset the shortcomings of each
type. The basic principle of ns/µsLVPEF is shown in Figure 8. The nsPEF is equivalent
to pretreatment. According to formula (5), as long as there is an energy input, the size of
the pores will continue to increase. When applying nsPEF, the tiny pores created in the
cell’s contact zone are not large enough for cell fusion [29]. After this, the pores can be
expanded by the following µsLVPEF, resulting in cell fusion. According to Figure 7, we
can see that there is a significant difference between ns/µsLVPEF and µsHVPEF when the
electric field intensity of µsPEF is of a medium or low level (group 1, group 2). However, if
the electric field intensity of µsPEF increases excessively (group 3), there is no difference
between ns/µsLVPEF and µsHVPEF. This is because some cells are dead in group 3 due to
irreversible electroporation.
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expand the pores.

This study showed that a synergistic effect was evoked by combining nanosecond
pulses with microsecond pulses, which improved the cell fusion efficiency. A cell electrofu-
sion platform based on pulse power technology was built to study the effectiveness of this
pulsing method. We evaluated the effect of different pulses on cell fusion efficiency from
two perspectives: fluorescence experiments (microscopic angle) and culture experiments
(macroscopic angle). According to the law of equal energy, the cell fusion efficiencies of
ns/µsLVPEF and µsHVPEF were compared. In summary, we can conclude that, compared
with µsHVPEF, cell fusion efficiency can be raised 1.5–3.0 times when applying ns/µsLVPEF.
The regulation mechanism and distribution of electroporation when applying ns/µsLVPEF
are unclear, and further investigations are warranted.
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