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ABSTRACT

Temozolomide (TMZ) is an anticancer agent used to treat glioblastoma, typically following radiation
therapy and/or surgical resection. However, despite its effectiveness, at least 50% of patients do not
respond to TMZ, which is associated with repair and/or tolerance of TMZ-induced DNA lesions. Studies
have demonstrated that alkyladenine DNA glycosylase (AAG), an enzyme that triggers the base excision
repair (BER) pathway by excising TMZ-induced N3-methyladenine (3meA) and N7-methylguanine le-
sions, is overexpressed in glioblastoma tissues compared to normal tissues. Therefore, it is essential to
develop a rapid and efficient screening method for AAG inhibitors to overcome TMZ resistance in glio-
blastomas. Herein, we report a robust time-resolved photoluminescence platform for identifying AAG
inhibitors with improved sensitivity compared to conventional steady-state spectroscopic methods. As a
proof-of-concept, this assay was used to screen 1440 food and drug administration-approved drugs
against AAG, resulting in the repurposing of sunitinib as a potential AAG inhibitor. Sunitinib restored
glioblastoma (GBM) cancer cell sensitivity to TMZ, inhibited GBM cell proliferation and stem cell char-
acteristics, and induced GBM cell cycle arrest. Overall, this strategy offers a new method for the rapid
identification of small-molecule inhibitors of BER enzyme activities that can prevent false negatives due
to a fluorescent background.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Xi’'an Jiaotong University. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

can extend postoperative survival, it has been observed that at least
50% of patients ultimately do not respond to TMZ [2].

Glioblastoma, also referred to as glioblastoma (GBM), is an
aggressive type of brain cancer. The standard treatment for GBM
involves surgical intervention, followed by radiotherapy and
chemotherapy. Temozolomide (TMZ) is a first-line therapy for
treating GBM. TMZ induces the formation of the methyl adducts N’-
methylguanine, 0%-methylguanine, and N*-methyladenine in the
DNA, ultimately resulting in apoptosis [1]. Although chemotherapy
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Most DNA base adducts induced by TMZ are fixed by the base
excision repair (BER) pathway; thus, inhibition of this pathway can
increase sensitivity to anticancer drugs [3]. Alkyladenine DNA gly-
cosylase (AAG, alternatively called alkyl-N-purine glycosylase, and
N-methylpurine-DNA glycosylase) is a type of BER enzyme [4]. AAG
recognizes and excises damaged bases from DNA after alkylation or
oxidative DNA damage, generating an apurinic (AP) site [5]. Then,
AAG recruits apurinic/apyrimidinic endonuclease 1 (APE1) to the
abasic site, which cleaves the DNA backbone to reveal a single-strand
break with 3’-OH and 5’-deoxyribose phosphate (dRP) termini.
Subsequently, DNA polymerase 3 removes the 5e-dRP to reveal a
single nucleotide gap, in which DNA ligase seals after DNA poly-
merase B has filled it. Overexpression of AAG is linked to an
increased risk of lung cancer and colorectal cancer [6,7], and
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decreased patient survival in malignant GBM [8]. Several studies
have also demonstrated that AAG increases drug resistance in
various types of cancers [9,10]. Downregulation of AAG in HeLa and
ovarian cancer cells increased the potency of TMZ and N-methyl-N-
nitrosourea [5]. Therefore, AAG is a potential target for cancer
treatments, including GBM.

Gel electrophoresis in conjunction with radioactive labeling is
considered the “gold standard” for assessing the activity of DNA-
modifying enzymes [11]. Although other techniques such as bio-
informatics, fragment-substrate tethering, radioisotopic labeling,
affinity chromatography, and chemical cross-linking have been
reported for measuring DNA-modifying enzyme activity, they often
have drawbacks such as being time-consuming, complex, and/or
requiring strict safety protocols to minimize exposure to radiation.
Thus, novel in vitro methods that can rapidly and efficiently iden-
tify AAG inhibitors are urgently required. Fluorescence methods
using organic dyes have been developed to monitor DNA repair
enzyme activities [12,13]. However, the fluorescence of organic
dyes has a short lifetime in the nanosecond range, which makes it
difficult to distinguish their signal from the high background
fluorescence of the samples. This can lead to false negatives, thus
limiting the use of organic dyes in drug screening applications.

Luminescent transition metal complexes, such as iridium (III)
complexes, exhibit higher quantum yields than organic dyes [14].
Moreover, in contrast to the limited range of emission wavelengths
of ruthenium (II) complexes, iridium (III) complexes can be fine-
tuned to display a variety of emission colors by modifying the
included ligands [14,15]. Meanwhile, the use of iridium (III) com-
plexes in time-resolved emission spectroscopy (TRES) can circum-
vent the issue of background autofluorescence owing to their long
phosphorescent lifetimes and significant Stokes shift values (usu-
ally exceeding 120 nm) [16]. A number of iridium (III) complexes
have been described for drug screening [16—19], and some iridium
(IIT) complexes have been designed and used as selective G-quad-
ruplex selectivity probes in our previous study [16,20,21].

The G-quadruplex is a non-canonical DNA secondary structure
formed by guanine-rich sequences [22]. Owing to its tremendous
structural diversity, the G-quadruplex structure has been utilized
for several in vitro applications, including analytical assays
[23—27]. Moreover, G-quadruplexes have been identified as effec-
tive signal-transducing units for the development of G-quadruplex-
based sensing assays [28]. In a typical G-quadruplex-based sensing
platform, the presence of an analyte causes a specific DNA
sequence, often in the ssDNA or dsDNA form, to conformationally
transition into a G-quadruplex structure [29]. The G-quadruplex
probe can then be used to convert the conformational shift of the
chosen DNA sequence into a luminescent response [30]. Compared
to other DNA structures, a variety of iridium (III) and ruthenium (II)
complexes exhibit strong selectivity for G-quadruplex patterns
[17,31,32]. With the addition of G-quadruplex DNA, Iridium probes
display significant fluorescence amplification [33].

In this study, we report a method for screening AAG inhibitors
that combines a long-lived G-quadruplex-selective iridium (III)
complex with TRES and DNA-switching strategies. As a proof-of-
concept, this assay was used to screen for potential AAG in-
hibitors in a library containing 1440 US Food and Drug Adminis-
tration (FDA)-approved drugs. This eventually led to the
identification of sunitinib as an AAG inhibitor in GBM.

2. Experimental
2.1. Cell lines and reagents

T98G cells were cultured in Dulbecco's modified Eagle's medium
at 37 °C with 5% CO,, 10% fetal bovine serum, and 1% penicillin/
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streptomycin. Sunitinib, morin, and TMZ were purchased from
MedChemExpress Ltd. (MCE, Monmouth Junction, NJ, USA) and
dissolved in 10 mM dimethyl sulfoxide (DMSO). Oligonucleotides
were synthesized by IGE Bio Inc. (Guangzhou, China) and the BGI
group (Shenzhen, China). Related sequences are listed in Table S1.
The probe (Fig. S1) was synthesized as described in our previous
study [19].

2.2. Screening AAG inhibitor

A solution containing 100 pM of F1 and R1 sequences in a so-
lution of 150 mM NaCl, 50 mM Tris, and pH 7.0 was subjected to
incubation at 95 °C for 10 min. Following this, the solution was
cooled to 4 °C to facilitate the formation of the duplex substrate
(F1—R1). F1-R1 was then incubated with appropriate concentra-
tions of AAG, APE1, and US FDA-approved drugs (10 uM). The
mixture solution was incubated at 37 °C for 30 min and then diluted
with buffer (25 mM KCl, 50 mM Tris, pH 7.0) to 500 pL. The final
concentration of the probe was 1 pM. A HORIBA Fluorolog-3
spectrophotometer (HORIBA—Jobin Yvon, Edison, NJ, USA) was
used to obtain steady-state photoluminescence spectra at an exci-
tation wavelength of 355 nm. Time-resolved experiments were
performed using the time-correlated single-photon counting
technique. The short-lived fluorescence of the potential com-
pounds was eliminated using a 500 ns delay period, while the
probe's long-lived phosphorescence was still detectable. The sam-
ples were excited at 355 nm and the emission was monitored at
450—700 nm.

2.3. Statistical analysis

Statistical analyses were performed using GraphPad Prism, and
the statistical significance was determined using the Student's t-
test with two groups. Comparisons between three or more groups
were analyzed using analysis of variance (ANOVA). P values were 2-
tailed, and significance was defined as P < 0.05. The error bars on
the graph show the scanning electron microscopy (SEM) results
obtained from three separate experiments.

3. Results
3.1. Design principle of AAG inhibitor screening method

The mechanism of the assay involves the formation of a double-
stranded DNA substrate, wherein a G-quadruplex sequence con-
taining 3meA (F1:5'-GTGGGTAGGGCGGGTTGG3meAACTGCGTC-
GACCTG-3') partially hybridizes to a complementary DNA strand
(R1:3’- CCCAACCTTGACGCAGCTGGAC-5') (Fig. 1). In the presence of
AAG, the 3meA lesion was excised to create an AP site on F1. The AP
site was subsequently cleaved by APE1, weakening the interaction
between F1 and R1 and liberating the G-quadruplex-forming part
of F1. The G-quadruplex-forming sequence can reorganize into a
G-quadruplex conformation, which can then be detected by the
G-quadruplex-selective iridium (III) complex, This interaction re-
sults in a significant increase in the emissive response of the
iridium (III) complex. However, in the presence of the AAG inhibi-
tor, the liberation of F1 was inhibited, and the luminescence of the
iridium (III) complex remained low. The utilization of iridium (III)
probes with significant Stokes shifts and extended phosphores-
cence lifetimes facilitated the detection of their signals using TRES,
even in samples with high levels of fluorescent background.
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Fig. 1. Diagram for screening new alkyladenine DNA glycosylase (AAG) inhibitors. APE1: apurinic/apyrimidinic endonuclease 1; 3meA: N3-methyladenine; Ir: Iridium; TRES: time-

resolved emission spectroscopy.
3.2. Comparison of TRES with steady-state methods to screen AAG
inhibitors

Circular dichroism (CD) spectroscopy was used to verify the
formation of the F1 G-quadruplex structure. CD spectroscopy of the

F1 G-quadruplex-forming fragment showed a 266 nm strong pos-
itive peak and a 220 nm weaker negative peak, which is a
G-quadruplex of the hybrid type [19] (Fig. S2). The selectivity of the
G-quadruplex-specific iridium (III) probe for G-quadruplex DNA
was then evaluated. Probe emission was evaluated in the presence
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Fig. 2. Alkyladenine DNA glycosylase (AAG) inhibitor screening in a US Food and Drug Administration (FDA)-approved library by time-resolved emission spectroscopy (TRES) or
steady-state methods. A lower relative intensity value, indicated by a color that appears closer to orange-red on the color scale, is suggestive of the presence of AAG inhibitors.
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of several types of DNA (Table S1). Upon incubation with G-quad-
ruplex PS2.M, the probe exhibited the most significant increase in
emission, followed by c-kit87up, c-kitl, Pu22, Grich, and c-kit2
G-quadruplexes (Fig. S3A). No significant difference was observed
in luminescence when the probe was incubated with ssDNA or
dsDNA. Therefore, the PS2.M sequence forms a suitable G-quad-
ruplex structure for our probe and was therefore used for the
design of the F1 strand. Consistent with this, the iridium (IIl) probe
showed markedly increased emission with the G-quadruplex DNA
sequence F1, whereas R1 or single-stranded DNA only showed
slight changes in luminescence (Fig. S3B). In summary, the probe
can function as a signal transducer when a quadruplex scaffold is
produced from an ssDNA or dsDNA substrate because of the
selective recognition of the G-quadruplex motif, resulting in an
increased emission signal.

The experimental conditions for the sensing were optimized.
The system displayed the highest emission response at a probe
concentration of 1 uM, pH 7.0, and K* concentration of 25 mM
(Fig. S4). The platform was used to screen a database of 1440 US
FDA-approved drug compounds (10 uM) for AAG inhibition. How-
ever, under steady-state screening conditions, compared with the
DMSO group (HY—Y0320), nearly every prepared sample demon-
strated stronger emission responses due to the intrinsic fluores-
cence of the drug molecules (Fig. 2). Consequently, the reduction in
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luminescence of the iridium (II) probe was difficult to distinguish,
even when AAG was inhibited, resulting in false-negative results.
Therefore, we hypothesized that we could leverage the extended
phosphorescence lifetime of the probe to screen the library using
TRES, thereby circumventing any interference caused by the sam-
ples’ short-lived fluorescence. The luminescence lifetime of the
probe was over 1000 ns, which is more than 10 times longer than
the lifetimes of US FDA-approved compounds, which were gener-
ally less than 100 ns (Fig. S5). Of the 1440 US FDA-approved drugs
(Fig. S6), 531 compounds were found to significantly reduce the
fluorescence intensity of the probe in TRES mode (Fig. 2). Among
these, eight compounds (sunitinib, mitoxantrone, tenoxicam, so-
dium copper chlorophyllin A, entacapone, phenazopyridine, brox-
yquinoline, and doxofylline) were identified as potential AAG
inhibitors. Moreover, two natural compound libraries purchased
from Push Biotechnology (Chengdu, China) were screened using
the TRES method (Figs. S7A and B). Several additional potential AAG
inhibitors were also identified, including anethole trithione, a bile
secretion-stimulating drug with relatively high AAG inhibitory ac-
tivity (Figs. S7C and D). A silver-staining assay was performed to
demonstrate the inhibitory effect of anethole trithione on AAG
(Fig. S8). Lanes 1-5 (isolated oligonucleotides F1 or R1, F1-R1
duplex, F1-R1 duplex with APE1 alone, or with AAG enzyme,
respectively) were consistent with the results of sunitinib. The
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Fig. 5. Sunitinib engages alkyladenine DNA glycosylase (AAG). (A) Stabilization of AAG, apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) or B-actin by sunitinib in cellulo.
10 UM sunitinib or dimethyl sulfoxide (DMSO) was added to T98G cell lysates for 30 min at 37 °C, followed by 8 min of heating at various temperatures between 45 and 70 °C.
Protein sample supernatants were collected and identified using Western blotting. (B) AAG, APE1 or B-actin content in the soluble fraction by densitometry analysis. “P < 0.05 by t-
test in comparison to DMSO group. (C) Isothermal titration calorimetric titration of sunitinib (500 uM) into recombinant AAG protein (20 uM). (D, E) The docking diagram of human
AAG complexed with sunitinib (D) and morin (E) based on the X-ray crystal structure of human AAG complexed with N-ethenoadenine DNA (PDB: 1EWN) using the internal

coordinate mechanics (ICM) method. DP: differential power.
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addition of anethole trithione (lane 6) prevented 3meA on F1 from
being excised, even in the presence of both AAG and APE1. In
contrast, in lane 7 (absence of anethole trithione), 3meA on F1 was
excised by the action of AAG and APE1 to release R1 and cleaved F1.
Moreover, addition of the positive control morin (lane 8) signifi-
cantly suppressed this event. These results support the hypothesis
that anethole trithione reduces the luminescence intensity of the
G-quadruplex probe system in the TRES screen by suppressing AAG
activity. Overall, the combined results demonstrated that the
developed TRES screening assay is a very effective screening plat-
form for AAG inhibitors and suitable for large-scale screening in the
future. Overall, the results indicate that the TRES screening tech-
nique can efficiently overcome the issue of background fluores-
cence, thereby avoiding false-negatives.

Among the eight potential AAG inhibitors, sunitinib showed the
highest AAG inhibition (Fig. 3A). The receptor tyrosine kinase in-
hibitor sunitinib is used to treat gastrointestinal stromal tumors
resistant to imatinib and renal cell carcinoma. Owing to the long-
lived luminescence lifetime of the probe, the inhibition of AAG
activity by sunitinib could be easily detected in the TRES mode
(Fig. 3B). In contrast, sunitinib showed no apparent inhibition in the
steady-state mode owing to its high intrinsic fluorescence; hence, it
was recorded as a false negative (Fig. 3C). A dose-response exper-
iment further confirmed the AAG inhibitory activity of sunitinib,
which showed even greater inhibition of AAG activity (81.2% at
10 pM) compared to the positive control morin (77.5%) [34]
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(Fig. 3D). These results indicated that sunitinib could be an effective
AAG inhibitor screened using the TRES method.

3.3. Sunitinib inhibited AAG activity by DNA polyacrylamide gel
electrophoresis

To verify the inhibitory activity of sunitinib on AAG, non-
denaturing polyacrylamide gel electrophoresis was employed
(Supplementary data and Fig. 4). Isolated F1 and R1 oligonucleo-
tides migrate more quickly on the gel (lanes 1 and 2), compared to
the F1-R1 duplex (lane 3). Neither APE1 (lane 4) nor AAG (lane 5)
could solely liberate the G-quadruplex fragment. 3meA on F1 was
excised in the presence of both AAG and APE1 to release R1 and
cleaved F1 (lane 6). However, the addition of either sunitinib (lane
7) or the positive control morin (lane 8) suppressed this effect.
These findings demonstrate that, as opposed to other mechanisms,
such as emission quenching, the reduction in luminescence in-
tensity of the G-quadruplex-probe system by sunitinib is likely
caused by the suppression of AAG activity.

3.4. Stability enhancement of AAG in vitro and in cellulo through
sunitinib

A cellular thermal shift assay (Supplementary data) was used to
investigate whether sunitinib targets AAG to achieve its effects. In
sunitinib-treated T98G cell lysates, clear shifts in the melting
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Fig. 6. Sunitinib/temozolomide (TMZ)/combination therapy inhibited glioblastoma (GBM) cell proliferation and stemness by targeting alkyladenine DNA glycosylase (AAG). (A)
Cytotoxicity effect of sunitinib/TMZ/combination therapy on T98G cells. The cytotoxicity of the cells was assessed using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetra-
zolium bromide (MTT) after 72 h of treatment with the indicated concentrations of sunitinib/TMZ/combination therapy. (B) T98G cell proliferation was inhibited by sunitinib/TMZ/
combination therapy through the colony formation assay. (C) Sunitinib/TMZ/combination therapy inhibited T98G 3D cell sphere formation. The data are shown as mean + standard

deviation (SD). P < 0.01 vs. dimethyl sulfoxide (DMSO) group.
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temperature of AAG were observed (Figs. 5A and B). However,
sunitinib had no obvious effect on the thermal stability of APE1 or
B-actin. This suggests that sunitinib directly engages and stabilizes
AAG even in the presence of complicated cellular debris. To further
explore the thermodynamic parameters of the interaction between
sunitinib and  AAG, isothermal titration calorimetric
(Supplementary data) was performed (Fig. 5C). The stoichiometry
of the interaction was determined to be N = 1.15 + 0.06, indicating
the presence of one sunitinib-binding site in AAG. Sunitinib and
AAG possessed an endothermic interaction (AH = 18.4 + 1.51 kcal/
mol), and a favorable entropic contribution (~TAS = +15.6 kcal/
mol) was compensated. The Kp value was determined to be
1.14 + 0.55 pM. In addition, to further verify the feasibility of our
assay, the X-ray crystal structure of human AAG complexed with
NO-ethenoadenine DNA (PDB:1EWN) [35,36] was used as a mo-
lecular model (Supplementary data) for virtual screening using the
internal coordinate mechanics (ICM) method (ICM-Pro 3.9-1b
program; Molsoft, San Diego, CA, USA). First, the positive control
morin was docked against the enzyme active site of AAG and was
predicted to form two hydrogen bonds involving tyrosine 163 and
alanine 34 with a high binding score of —17.18. The identified
compound sunitinib also displayed a similar binding mode with a
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calculated as a percentage. "P < 0.01 vs. dimethyl sulfoxide (DMSO) group. DAPI: 4',6-

comparative score of —15.13. This result supported the hypothesis
that sunitinib acts by targeting AAG in the TRES assay.

3.5. Inhibition of AAG activity inhibits cell proliferation and cancer
stem cell ability of GBM

However, the therapeutic potency of numerous antitumor
agents is hindered by their side effects on healthy tissues. Combi-
nation therapy can potentially increase efficacy and decrease
toxicity by allowing the use of anticancer agents at lower concen-
trations. As AAG depletion sensitized GBM cells to TMZ, the ability
of sunitinib to synergize with TMZ was explored. The proliferation
of T98G glioblastoma cells was measured using the 3-(4,5-
dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide
(Supplementary data) in the presence of sunitinib, TMZ, or their
combination (Fig. 6A). The ICsg of sunitinib against T98G cells was
3 uM, whereas TMZ alone showed no obvious antiproliferative
activity (ICsp > 100 uM). Interestingly, the combination of sunitinib
and TMZ exhibited ICsg of 0.1 uM. The combination index between
sunitinib and TMZ was <1, suggesting synergism between these
two compounds (Table S2). The colony formation experiment
(Supplementary data) also indicated that the combination therapy
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could significantly suppress T98G cell proliferation (Fig. 6B).

Cancer stem cells (CSC) are the main cause of cancer drug
resistance. Our hypothesis suggests that the combination therapy
of sunitinib and TMZ could potentially be effective against the
characteristics of GBM CSC cells, despite their resistance to TMZ.
Three-dimensional (3D) tumor spheres exhibit CSC characteristics,
including high self-renewal ability, differentiation, and metastasis
[37]. Therefore, the influence of combination therapy using suni-
tinib and TMZ on spheroid formation and the capacity of tumor
sphere cells to self-renew was investigated using a 3D cell culture
assay (Supplementary data). Spheroid formation was induced in
T98G cells by seeding them in low-cell attachment dishes and then
treating them for 2 weeks with 3 pM sunitinib, 10 uM TMZ, or a
combination of both. As shown in Fig. 6C, the combination therapy
suppressed T98G 3D cell growth with superior potency compared
to sunitinib or TMZ alone.

3.6. Inhibition of AAG activity promotes DNA damage and cell cycle
arrest in GBM

The comet assay (Supplementary data) was performed to detect
DNA damage by 3.0 uM sunitinib, 10 pM TMZ, or their combination
in T98G cells. The results showed that the length of the tail and the
percentage of cells with a long tail increased in the combination
group, demonstrating the DNA damage-inducing effect of the
sunitinib and TMZ combination (Fig. S9). Importantly, compared to
the control group or single-treatment groups, the combination
group had greater efficacy in inducing DNA damage. The level of y-
H2AX, a sensitive DNA damage response marker, was determined
using immunofluorescence staining (Supplementary data) and
Western blotting (Supplementary data). As shown in Fig. 7A, y-
H2AX levels were markedly elevated following treatment with the
combination group, and the effects of the combination were greater
than those of the single treatment groups. In addition, Western
blotting results showed that y-H2AX expression was significantly
increased in the co-treated group compared to that in the sunitinib
or TMZ alone group (Fig. 7B). These findings suggest that the
combined treatment of sunitinib and TMZ can significantly increase
the level of DNA damage in T98G cells. DNA damage influences cell
cycle progression. To further understand the impact of sunitinib
and TMZ on cellular proliferation, a cell cycle analysis was con-
ducted (Supplementary data). As shown in Fig. 7C, sunitinib or TMZ
treatment partially induced cell cycle arrest at the G2/M phase in
T98G cells. Compared to the use of either sunitinib or TMZ alone,
the combination of these two agents resulted in a significant in-
crease in G2/M phase cell cycle arrest. Based on the findings from
the aforementioned experiments, it can be inferred that the com-
bined use of sunitinib and TMZ has the potential to induce cell cycle
arrest in GBM cells, thereby leading to a therapeutic effect in the
treatment of cancer.

4. Conclusion

In summary, we established a TRES method for the detection of
AAG inhibitor activity while circumventing the interference caused
by the fluorescence background of the samples. This study repur-
posed an US FDA-approved drug, sunitinib, as a new AAG inhibitor.
Moreover, sunitinib exhibited synergism with TMZ in triggering
DNA damage and slowing the growth of GBM cells. Significantly,
there are known anticancer properties of sunitinib that have been
documented in scientific literature, and the discovery that sunitinib
can inhibit AAG activity may potentially expedite the repurposing
of existing drugs as a strategy to combat anticancer resistance
conferred by specific targets. We anticipate that the effective
screening method will be easily modified for screening additional
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DNA repair enzyme inhibitors for potential therapeutic applica-
tions, including previously disregarded scaffold types that could
not be screened owing to their high intrinsic fluorescence, leading
to false negatives.
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