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Abstract

Background: Most methods that integrate network and mutation data to study cancer focus on the effects of
genes/proteins, quantifying the effect of mutations or differential expression of a gene and its neighbors, or
identifying groups of genes that are significantly up- or down-regulated. However, several mutations are known to
disrupt specific protein-protein interactions, and network dynamics are often ignored by such methods. Here we
introduce a method that allows for predicting the disruption of specific interactions in cancer patients using somatic
mutation data and protein interaction networks.

Methods: We extend standard network smoothing techniques to assign scores to the edges in a protein interaction
network in addition to nodes. We use somatic mutations as input to our modified network smoothing method,
producing scores that quantify the proximity of each edge to somatic mutations in individual samples.

Results: Using breast cancer mutation data, we show that predicted edges are significantly associated with patient
survival and known ligand binding site mutations. In-silico analysis of protein binding further supports the ability of
the method to infer novel disrupted interactions and provides a mechanistic explanation for the impact of mutations
on key pathways.

Conclusions: Our results show the utility of our method both in identifying disruptions of protein interactions from
known ligand binding site mutations, and in selecting novel clinically significant interactions.
Supporting website with software and data: https://www.cs.cmu.edu/~mruffalo/mut-edge-disrupt/.
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Background
The impact of DNA mutations on the severity and
progress of cancer has been a long standing focus for
systems biology. On the one hand, several mutations to
key genes were shown to play a critical role in can-
cer development and progression [1–7]. However, most
mutations observed in cancer patients are unique, seen
only in the individual in which they were observed, mak-
ing it hard to determine their impact and to differentiate
between causal and driver mutations [8, 9]. To address
this issue, several network analysis methods have been
used to aggregate the impact of mutations within and
across patients [10, 11]. These methods operate under the
assumptions that genes in a specific neighborhood of an
interaction graph likely share a function or a pathway and
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so mutations in these genes, even if unique, may inform
us about the importance of that pathway to the specific
type of cancer being studied. An example of such net-
work based methods is network smoothing, which fuses
network structure with prior knowledge, and produces a
measure for each node that respects both the input data
and the structure of the network [12]. Such smoothing
methods are widely used, with applications ranging from
identification of cancer genes [13, 14], identification of
gained/lost cellular functions [15] and more [12].
Network smoothing methods are commonly used to

quantify the proximity of each node in the network to a
set of nodes of interest, e.g. genes that are mutated or
differentially expressed in a sample. While successful in
identifying cancer genes and pathways, these methods are
limited to using a static network that is shared between
samples, and are not designed to handle dynamic effects
(such as changes in interactions between samples). Muta-
tions may disrupt interactions between proteins through
a variety of mechanisms: alteration of protein structure
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impacting its function [16–18], affecting the ability of
a protein to bind DNA [19–22], impacting the regula-
tion of a gene, affecting its translation or degradation
efficiency [23–25] and more. Most work utilizing protein-
protein interaction networks in cancer do not adjust the
networks based on such individual mutation information
[26–28]. Thus, there is a need for methods that can per-
form comprehensive genome-wide prediction of protein
interaction disruption and can determine the impact of
such disruption on the resulting pathways and networks.
To enable the identification of mutations that signifi-

cantly alter edges in the network we extended network
smoothing algorithms to smooth not just node values but
also edge (interaction) values. We do this by adding a
set of nodes that represent the edges, assigning an ini-
tial value to each of these nodes and then performing
network smoothing on the (much larger) network. This
network adjustment has some conceptual similarities with
other graph operations such as graph powers, in which
transitive edges are added to an existing network; double
graphs, in which a graph is duplicated and “cross” edges
are added for each original edge; and line graphs, which
represent edges of the original graph as nodes. We discuss
the algorithmic and run time implications of the com-
bined node and edge smoothing method. We next applied
our method to study over a thousand mutation profiles
from TCGA breast cancer patients. As we show, the net-
work smoothing method was able to prioritize a subset
of the edges, based on the mutation information alone,
that were both better at predicting survival across patients
and correctly associated with known ligand bindingmuta-
tions. We discuss some of the top interactions identified
by the method and show that these indeed include mainly
known cancer related genes. Finally, for the subset of
the predicted edges for which we could find structural
information we tested the impact of the mutation on
the specific interaction predicted and show that the R2

correlation between the predicted and actual impact is
high.

Methods
Pre-processing the omics data
We obtained somatic mutation and clinical data from
breast cancer (BRCA) samples in TCGA [29], which we
used to construct features for prediction of interaction
disruption.
We constructed a binary mutation matrix M, with

samples as rows and genes as columns. We use C(A)

to denote the set of column labels of matrix A, so
that e.g. C(M) is the set of genes that appear in the
TCGA somatic mutation data. Similarly, we define R(A)

as the set of row labels of matrix A, corresponding
to the distinct samples (individuals) present in each
data set.

The mutation matricesM are defined as

M[ i, j]=
{
1 if gene j is mutated in sample i,
0 otherwise (1)

The TCGA BRCA data includes somatic mutations
in 22,232 genes across 1081 samples, including mis-
sense mutations, nonsense mutations, frame shifts, and
in-frame deletions and insertions. In addition to the
condition specific omics data we also use general inter-
action datasets. Our primary results use the HIPPIE
protein-protein interaction network [30] (version 2.0,
released 2016-06-24), which contains confidence scores
for 318,757 interactions between 17,204 proteins. We also
evaluate our method using the STRING network (v10.5),
using all edges included in the downloadable version
of that network: 4,724,503 edges between 17,179 nodes.
Edges in the STRING network must have a weight of at
least 0.15 to be included in the downloadable version of
the network; we use all available edges in this version
of STRING. Note that the network smoothing proce-
dure allows using these edges in a way that respects the
degree of confidence in those protein interaction – low-
weight edges contribute less to the result of the network
smoothing operation (Additional file 1: Supporting Meth-
ods). Results using the STRING network are shown in
Additional file 1.

Network construction and initial edge scores
Given an original PPI network G = (V ,E,w), with V as
the set of proteins, E as the set of edges, and edge weights
w(u, v) on every edge {u, v} ∈ E, we create an adjusted
network G′ = (V ′,E′,w′). With AdjG[ v] as the adjacency
list of v in the network G, we define V ′ and E′:

V ′ =V ∪ {uv : {u, v} ∈ E}
E′ = {{u,uv} : u ∈ V ∧ v ∈ AdjG[ v]

} (2)

That is, we add a dummy node uv in the middle of
each edge {u, v}, as shown in Fig. 1. These dummy nodes
in G′ represent edges in G, and allow assigning scores
to each edge by extending current network smoothing
procedures.
We define initial weights for our new edges in G′ as:

w′(u,uv) = w′(uv, v) = √
w(u, v) (3)

Protein interaction networks often use edge weights
w(u, v) ∈[ 0, 1] to denote the confidence in some edge
(u, v), and one can naturally define the reliability of a path
pst between nodes s and t as the product of edge weights
along this path [31].

r(pst) =
∏

(u,v)∈pst
w(u, v) (4)

Our choice of edge weights w′(u,uv) = w′(uv, v) =√
w(u, v) preserves the reliability of any path between



Ruffalo et al. BMC Cancer          (2019) 19:370 Page 3 of 10

Fig. 1 Simulation of the edge smoothing procedure. From left to right: the original protein-protein interaction network, the adjusted network with
dummy nodes (squares) for each protein-protein edge, somatic mutations shown as black nodes, and the result of the network smoothing procedure
applied to the adjusted network with dummy nodes. White and black nodes in the third panel show assignment of values 0 and 1 (respectively) to
nodes, and the fourth panel shows continuous node values in [ 0, 1], denoting the smoothed score for each protein and protein-protein interaction

two nodes s and t representing proteins in the network
G, giving the same reliability r(ps′t′) in G′ (Additional
file 1: Supporting Methods). We also evaluate our method
using an alternative assignment of edge weights, with
w′(u,uv) = w′(uv, v) = w(u, v)/2 (Additional file 1:
Supporting Results).
Once we assign an initial score to edges, we use

our adjusted network G′ to perform a standard net-
work smoothing procedure, as described in the following
section.

Gene set network smoothing
Here we extend the network propagation/smoothing
method described in Vanunu et al. [32] that was ini-
tially only focused on nodes to smooth edge scores as
well. Given a network G = (V ,E,w) with V as the set
of proteins and new nodes for original edges, E as the
set of edges linking proteins with new edge nodes, edge
weights defined in Eq. 3, and a prior knowledge vector
Y : V →[ 0, 1] constructed from somatic mutation status,
we compute a function F(v) that is both smooth over the
network and accounts for the prior knowledge about each
node. Note that we do not perform this network smooth-
ing procedure directly on the protein-protein interaction
network; we compute smoothed node scores for our mod-
ified network that contains dummy nodes corresponding
to edges in the original network and thus allows for scor-
ing edges as well as nodes (Additional file 1: Supporting
Methods).

Ligand binding site mutations
The mutLBSgeneDB database [33] contains annotations
for genes with ligand binding site (LBS) mutations, and we
combine these annotations with TCGA somatic mutation
data. Of the 1081 TCGA samples with somatic muta-
tion data, 389 have at least one somatic mutation which
is contained in the LBS database, and 102 of these sam-
ples contain more than one LBS mutation, giving a total
of 550 LBS mutations across all samples, in 340 distinct
genes. We use these selected ligand binding mutations

to evaluate our ranking of interaction edges, in “Ligand
binding site edge scoring” section.

Protein structure alteration prediction
We use protein structures deposited in the RCSB
(Research Collaboratory for Structural Bioinformatics)
PDB database [34], and perform automated queries to
PDB for all ligand binding site mutations in our dataset.
We select edges which have a ligand binding site muta-
tion in at least one interacting protein, and for which
both interacting proteins have structures in PDB. This
produces 143 selected edges, across 24 distinct patients
and 98 distinct proteins. For these edges, it is possible, in
principle, to use structural alteration prediction to pre-
dict binding disruption – though the results of our PDB
queries require manual filtering to be usable for this task.
The mutLBSgeneDB database [33] includes specific

amino acid substitutions for ligand binding site mutations
in TCGA samples. We use the PyMOL tool [35] (ver-
sion 2.0.7) mutagenesis functionality to simulate the effect
of these amino acid substitutions on the relevant protein
structures. We then upload structures for these interact-
ing pairs to the ClusPro 2.0 [36] web service to predict
protein docking, running two docking prediction jobs for
each interacting pair: wild type of both proteins, and the
PyMOL-simulated mutated protein structure with wild
type of its interacting partner.

Results
We evaluate our edge scoring method in multiple ways.
First, we examine whether high-scoring edges (those
that we predict to be more disrupted based on muta-
tional scores) are more predictive of patient survival
than random sets of other edges. We then test whether
our edge scores show significant agreement with known
ligand binding site mutations. Finally we perform sim-
ulations of protein docking with and without ligand
binding site mutations, and compare our edge scores
to a measure of the disruption of specific protein
interactions.
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Identification of top scoring edges
To identify mutations impacting network edges we
extended network smoothing so that it can produce
smoothed scores for edges as well. We applied our method
to somatic mutation data from TCGA breast invasive car-
cinoma (BRCA) samples [29]. The dataset contains muta-
tion and survival information for 1081 patients. We use
version 2.0 of the HIPPIE protein interaction network [30]
to construct an expanded interaction network. The HIP-
PIE 2.0 network H = (VH ,EH) has |EH | = 314727 edges
between |VH | = 17204 nodes (genes), and our adjusted
networkH ′ = (V ′

H ,E′
H) has |V ′

H | = |VH |+|EH | = 331931
nodes connected by |E′

H | = 2|E| = 629454 edges. The
STRING v10.5 network S = (VS,ES) likewise contains
|ES| = 4724503 edges between |VS| = 17179 nodes,
and our adjusted network S′ = (V ′

S,E
′
S) contains |V ′

S| =
4741682 nodes and |E′

S| = 9449006 edges.
For each sample in the TCGA BRCA data, we compute a

smoothed mutational score for all nodes in H ′ or S′, using
somatic mutations to assign initial labels to nodes. This
produces a continuous score m[ v]∈ [0, 1] for each v ∈
V ′
H or V ′

S, which represents the proximity of that protein
or interaction to somatic mutations in that patient. For
each patient, we compute themedian andmaximum score
across all edges, and plot histograms of the median and
maximum for the HIPPIE network (Fig. 2) and STRING
network (Additional file 1: Figure S12).

Evaluation of edge scoring procedure
To evaluate the scores assigned to edges, and to determine
if they indeed highlight key mutations that impact disease
progression, we used several complementary information
sources. We first examined the association between our
propagated edge scores and patient survival. For this, we

fit a univariate Cox regression model for each edge in
the network, relating patient survival to each edge’s prop-
agated mutation scores across patients. Cox models are
commonly used in survival analysis, as these allow for
dealing with censored survival data, in which exact sur-
vival times are known for some samples, but only lower
bounds are known for others (e.g. if the patient was alive at
their last follow-up, but no further information is known)
[37, 38]. We compute the R2 goodness-of-fit value for the
Cox model fit to each edge, and evaluate the difference
in survival fits between high-scoring edges and random
selections of the remaining edges.
We collapse propagated edge values across patients by

considering the 80th decile of propagated mutation scores
for that edge, i.e. the �1081/5	 = 216th-highest score
for that edge across any patient. These 80th-decile scores
produce a measure of network proximity of each edge
to somatic mutations in at least 20% of patients, and we
use these scores to produce a global ranking of edges
across all patients. We test whether the top 1000 edges
have significantly higher R2 values than a random sample
of 1000 edges. For each of the random sets we perform
a Mann-Whitney U test to determine whether our top
edges have higher R2 values than randomly chosen edges
(Fig. 3). As can be seen, when compared to most ran-
dom selections top scoring edges obtain a significantly
higher R2 value with survival indicating that mutations
related to these edges indeed impact disease progression.
We repeated this analysis with alternative edge scores
w′ = w/2 and using the STRING network (Additional
file 1: S10 and S16). In both additional of this survival
analysis, we again see that high-scoring edges show a
significantly higher R2 value when compared to random
selections.

A B

Fig. 2 Histograms of propagated edge scores. For each patient, scores are collapsed across all edges by computing the median or maximum edge
score in that patient. a shows the distribution of the median edge score in each patient, and b shows the distribution of the maximum edge score
in each patient
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Fig. 3 Histogram of Mann-Whitney U test P-values, comparing
survival R2 values for top-scoring edges and 1000 sets of
randomly-selected edges. The red vertical line shows P = 0.05, the
black vertical line shows P = 0.001. P-values from the 1000 M–W tests
are transformed to − log10-scale

Ligand binding site edge scoring

While survival analysis provides some evidence for the
relevance of the high scoring edges, it does not pro-
vide any mechanistic explanation or support for these
scores. To determine the relevance of the high scoring
edge mutations to the interactions of the edge proteins
(the two proteins on either side of the edge) we looked
at a database of ligand binding site (LBS) mutations
[33]. This database contains annotations for known lig-
and binding site mutations across the human genome,
including additional cross-database references such as
GO process terms, conservation information, and more.
Every (gene, amino acid substitution) pair in this database
is known to affect a ligand binding site in the protein prod-
uct of that gene; we extract these pairs and use them to
identify all somatic mutations in the TCGA BRCA cohort
that are also listed in the mutLBSgeneDB database, allow-
ing us to identify edges which are incident to these ligand
binding site mutations.
Figure 4a shows our assignment of labels to edges: edges

are assigned label 1 (shown in blue added node in the mid-
dle of the edge) if that edge is adjacent to a ligand binding
site mutation (red), and 0 otherwise. This labeling of edges
is imperfect; ideally we would label edges as 1 only if that
specific interaction is disrupted by a ligand binding site
mutation, but the mutLBSgeneDB database [33] does not
contain data with this level of granularity.
The total number of patient-model edges in our analysis

is 314,727. Of these, only a small fraction are LBS edges,
with counts per patient shown in Additional file 1: Figure
S3. We consider each of the 389 patients with LBS muta-
tions separately (details of mutation and gene counts in

“Methods, and Ligand binding site mutations” sections),
rank patients’ edges by propagated mutation scores,
and evaluate this ranking through three separate mea-
sures: ROC AUC, normalized discounted cumulative gain
(nDCG) [39, 40], and Spearman correlation P-values. For
each of these measures, we compute the real ranking for
each patient’s edges, with LBSmutations from themutLB-
SgeneDB database, with histograms of ranking measures
shown in blue in Fig. 4b and Additional file 1: Figures S4
and S5. We then generate 100 random sets by shuffling
LBS assignments and computing the rankings of these
random permutations. Note that as with other scale-free
networks, shuffling a patient’s LBS mutations can have a
large effect on the number of edges labeled 1 (shown in
blue in Fig. 4a, since this depends on the degree of the
nodes in the network. The performance across all 100
random permutations is shown in orange in Fig. 4b and
Additional file 1: Figures S4 and S5. As can be seen, for
all evaluation metrics we used the top ranked edges based
on network propagated scores are significantly more asso-
ciated with LBS mutations when compared to a random
set of edges. We additionally used the Mann-Whitney U
test to measure the difference in distributions between
our top propagated edges and those obtained via shuf-
fled mutations, for all three measures of the quality of this
ranking. The difference between real and shuffled nDCG
measures has M–W P = 3.28 × 10−222, and likewise the
ROC AUC and Spearman correlation P-value measures
produceM–W P-values of 7.19×10−283 and 6.90×10−176,
respectively.
Table 1 shows the unique interactions among the top

50 highest-scoring edges across all patients. The rank
of each interaction is computed as the highest rank of
that edge across all patients. The top-scoring edge here
involves HDAC8, a class I histone deacetylase which is
implicated as a therapeutic target in various diseases,
including cancer [41, 42], and tumor suppressors TP53
[43, 44] and TP63 [45, 46] both score highly. Cytochrome
P450 enzymes such as CYP2A7 and CYP2A13 score
highly as well, and these genes are implicated in
bladder cancer but not normally expressed in breast
tissue [47, 48].
Results for alternative edge weights w′ = w/2 are shown

in Additional file 1: Figures S7–S9, again with highly sig-
nificant differences between real and shuffled edge selec-
tions (M–W P = 1.59×10−225 for ROC AUC, P = 5.02×
10−213 for nDCG, and P = 4.12 × 10−181 for Spearman
correlation P-values). We likewise see highly significant
differences between real and shuffled edge selections with
the STRING network, shown in Additional file 1: Figures
S13–S15. These figures show significantly higher ROC
AUC and nDCG measures for selection of real LBS edges
vs. shuffled LBS assignments (M–W P = 1.12 × 10−230

and P = 3.04 × 10−228, respectively), though selection of
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a

b

Fig. 4 a Edge labels for ligand binding site scoring. b Histograms of ROC AUC for selection of ligand binding site (LBS) mutation related edges.
Scores from real LBS mutations are shown in blue, scores across the 100 shuffled LBS mutation assignments are shown in orange. Frequency values
are normalized so that the total area under each histogram sums to 1

real LBS edges shows significantly lower Spearman cor-
relation P-values than shuffled edge assignments (M–W
P = 1.12 × 10−230).

Protein structure alteration prediction
The above analysis focused on proteins with known
ligand binding mutations. However, as mentioned the
LBS database does not identify the interacting part-
ner(s) that may are disrupted by the mutation. To
test if we indeed can determine significant pairwise
events that affect cancer prognosis we next examined

the agreement between our patient specific edge dis-
ruption scores, the patient mutation profile and changes
in predicted binding affinity between pairs of proteins,
using the ClusPro 2.0 [36] tool. ClusPro 2.0 simulates
protein docking using sampling of billions of confor-
mations, followed by clustering of the lowest energy
structures (Additional file 1: Supporting Methods). We
started with 143 interactions which could potentially
be simulated based on the availability of structure data
for both proteins (“Methods” section). However, only a
few of these pairs were actually usable for this analysis.
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Table 1 Unique interactions from the top 50 scoring edges based
on the smoothed mutational score, pooled across all patients

Gene 1 Gene 2 Prop. score Top rank References

STEAP1B STEAP1 0.300938 1 [49–51, 57]

TAS1R2 TAS1R3 0.277285 2

SCGB3A2 MARCO 0.244833 3 [52, 53]

CYP2A7 CYP2A13 0.244117 4 [47, 48]

CNGB1 ABCA4 0.242088 6 [58, 59]

PLXND1 SEMA3E 0.229689 12 [60]

GSTA5 GSTA2 0.211860 14 [61]

UGT2B15 UGT2A3 0.210076 15 [62, 63]

CX3CR1 CX3CL1 0.206455 16 [64–66]

GFRA3 ARTN 0.204744 21 [67–70]

GRID2 GRID2IP 0.202544 33 [71]

PLXNC1 SEMA7A 0.199880 34 [60, 72]

HAS2 HAS3 0.199088 35 [73, 74]

OBP2B OBP2A 0.197566 37 [75, 76]

CD180 LY86 0.195079 39 [77, 78]

ZNF221 ZNF225 0.193870 42 [79, 80]

PSPN GFRA4 0.192038 45 [81, 82]

LIPE FABP9 0.190075 47 [83, 84]

KCNC1 KCNC2 0.189430 48 [85, 86]

References refer to prior information about the involvement of these proteins in
breast or other types of cancers. See Additional file 1: Table S2 for complete details
and more information

While 98 distinct proteins had at least one structure
available in PDB [34], few of these proteins had a compre-
hensive structure available for the entire protein, without
including other molecules in complex. Such structure is
required for an accurate docking of a pair. We eventually
were able to test 14 pairs.
We used our propagated mutational scores to rank the

pairs of proteins for which we could conceivably per-
form binding predictions, and hypothesized that higher
propagated mutation scores would correlate with higher
disruption of protein binding. To illustrate this anal-
ysis consider that the lowest-scoring (indicating little
impact) interaction was the pair (YWHAG, SKP1), with
YWHAG harboring a ligand binding site mutation caus-
ing amino acid substitution S46C; and the highest-scoring
pair, (PTGIS,PTGS2), with a ligand binding site mutation
in PTGIS that causes amino acid substitution F293L.
Additional file 1: Figure S6 shows the protein prod-

uct of the YWHAG gene, both wild-type (left) and after
using PyMOL [35] to simulate the amino acid change
S46C (right). Some small differences in structure are vis-
ible, especially in the bottom-left of each structure, but
this amino acid substitution shows little effect on the over-
all structure of the protein. Conversely, Fig. 5a shows the
protein produced from the PTGIS gene, with left and

a

b

Fig. 5 a Structure of prostaglandin I2 synthase, product of the PTGIS
gene. Left: wild type, from PDB structure 2IAG, right: simulation of
the impact of the high scoring edge mutation identified for this gene
(amino acid substitution F293L). b Binding analysis of high and low
scoring edges. For each edge we searched for protein structures for
the two proteins connected by the edge in PDB. For pairs we found
we simulated the impact of the mutation identified for that edge and
used the ClusPro 2.0 docking tool to compare WT and mutated
binding. Binding scores (y axis) represent ratio of maximum protein
binding cluster with mutation vs. wild-type proteins. The lower the
ratio the bigger the impact of the mutation. Curve is the best fit for a
polynomial of degree 2. The curve indicates that as the edge score
increases (x axis) the impact on binding increases as well

right showing (respectively) wild-type and the predicted
structure after amino acid substitution F293L. As can be
seen, in agreement with our assigned higher score, Fig. 5a
shows a much more significant alteration of protein struc-
ture, consistent with our increased prediction of edge
disruption.
We used ClusPro 2.0 to predict binding affinity for all 14

usable pairs of proteins (Fig. 5b). We compute the bind-
ing affinity for each of the 14 pairs that we can test, by
simulating docking for 1) the two wild-type protein struc-
tures, and 2) the simulated effect of the ligand binding
site mutation in one protein with the wild-type structure
of the other. For each pair of structures (wild-type and
wild-type, or wild-type and simulated amino acid substi-
tution), we run ClusPro twice, using each structure for
both “receptor” and “ligand” in the ClusPro algorithm. For
each {WT ↔ WT,mut ↔ WT} set of binding possi-
bilities, we compute the ratio of the maximum binding



Ruffalo et al. BMC Cancer          (2019) 19:370 Page 8 of 10

cluster sizes between the mutated pair and the wild-type
pair, and consider the minimum of the two ratios for the
two assignments of receptor vs. ligand.
Results are shown in Fig. 5b where lower values indicate

larger disruption in interaction. We see that the highest-
scoring pair, (PTGIS,PTGS2), has the largest disruption
in binding affinity, and that most low-scoring pairs have
relatively small disruption in binding affinity. An order-2
polynomial fit for the points is shown in the figure.

Discussion
In this work, we introduce a method that allows for pre-
dicting the disruption of specific interactions in cancer
patients using somatic mutation data and condition inde-
pendent protein interaction networks as input. To do
this, we extend traditional network smoothing techniques,
which have been previously used to study cancer networks
[12, 13, 32], and have also shown promise in the context
of network dynamics [15]. Prior network smoothing tech-
niques assigned scores to the nodes in a network based on
the measured biological data.(for example mutation status
or differential expression). We extended these techniques
to assign scores to edges in addition to nodes.
We apply this method to somatic mutation data from

the TCGA breast cancer [29] cohort, producing sample-
specific scores for each protein-protein edge. We focus
on breast cancer in this work due to the large number
of samples, but note that our method is general and can
be applied to any other cancer types as well. By using
somatic mutation data as the prior knowledge vector in
network smoothing methods (Supplementary Methods),
we quantify the proximity of each protein-protein edge to
somatic mutations in individual samples. We show that
edges which score highly in at least 20% of samples show
significantly higher association with patient survival when
compared with random selections of lower-scoring edges.
We evaluate the ability of our edge ranking to select inter-
actions involving known ligand binding site mutations
[33], and show that we consistently rank LBS mutation
incident edges significantly higher than others when com-
pared with random permutations of LBS mutations in
each sample. Docking simulations based on the WT and
mutants indicate that high scoring edges are indeed more
likely to correspond to mutations that can significantly
impact protein interactions.
The top 50 pairs ranked by their smoothed mutation

scores is presented Table 1 and Additional file 1: Table
S1. A number of the pairs and several proteins appear
multiple times in different patients. We examined all 38
unique genes in the top 50 interacting pairs for known
associations with cancer-related biological processes. As
we show in Additional file 1: Table S2, 34 of these 38
genes are indeed known to be associated with at least one
type of cancer, most of them with breast cancer and some

others with ovarian, prostate or colon cancer. For exam-
ple, STEAP1 is overexpressed in many cancers, including
breast [49–51]. SCGB3A2 has been identified as a marker
for pulmonary carcinoma in mice and humans [52], and
MARCO has recently been identified as a possible candi-
date for targeted antibody therapy in non-small cell lung
cancer [53].

Conclusions
While much of the analysis of coding region mutations
focused on their impact on protein structure [17, 54–56],
as we show many mutations are actually impacting inter-
actions with key partners. Network smoothing performed
across a cohort of patients can provide useful informa-
tion about such alternation and a mechanistic explanation
for the impact of these mutations on cell states. The
fact that top scoring edges were significantly correlated
with the ability to predict survival is a further indica-
tion for the impact that such changes in the interaction
networks can cause. With better understanding of under-
lying causes that lead to cancer, our ability to address
some of these issues with appropriate therapeutics would
hopefully improve as well.

Additional file

Additional file 1: Supplementary text. Results of alternative analyses,
including using the STRING protein interaction network and using
alternative edge weights. (PDF 670 kb)
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