
RESEARCH ARTICLE

Detection of Diffusion Heterogeneity in
Single Particle Tracking Trajectories Using a
Hidden Markov Model with Measurement
Noise Propagation
Paddy J. Slator1,2, Christopher W. Cairo3, Nigel J. Burroughs1*

1 Systems Biology Centre, University of Warwick, Coventry, United Kingdom, 2 Systems Biology Doctoral
Training Centre, University of Warwick, Coventry, United Kingdom, 3Department of Chemistry, University of
Alberta, Edmonton, Alberta, Canada

*N.J.Burroughs@warwick.ac.uk

Abstract
We develop a Bayesian analysis framework to detect heterogeneity in the diffusive behav-

iour of single particle trajectories on cells, implementing model selection to classify trajecto-

ries as either consistent with Brownian motion or with a two-state (diffusion coefficient)

switching model. The incorporation of localisation accuracy is essential, as otherwise false

detection of switching within a trajectory was observed and diffusion coefficient estimates

were inflated. Since our analysis is on a single trajectory basis, we are able to examine het-

erogeneity between trajectories in a quantitative manner. Applying our method to the lym-

phocyte function-associated antigen 1 (LFA-1) receptor tagged with latex beads (4 s

trajectories at 1000 frames s−1), both intra- and inter-trajectory heterogeneity were detected;

12–26% of trajectories display clear switching between diffusive states dependent on condi-

tion, whilst the inter-trajectory variability is highly structured with the diffusion coefficients

being related by D1 = 0.68D0 − 1.5 × 104 nm2 s−1, suggestive that on these time scales we

are detecting switching due to a single process. Further, the inter-trajectory variability of the

diffusion coefficient estimates (1.6 × 102 − 2.6 × 105 nm2 s−1) is very much larger than the

measurement uncertainty within trajectories, suggesting that LFA-1 aggregation and cyto-

skeletal interactions are significantly affecting mobility, whilst the timescales of these pro-

cesses are distinctly different giving rise to inter- and intra-trajectory variability. There is also

an ‘immobile’ state (defined as D < 3.0 × 103 nm2 s−1) that is rarely involved in switching,

immobility occurring with the highest frequency (47%) under T cell activation (phorbol-12-

myristate-13-acetate (PMA) treatment) with enhanced cytoskeletal attachment (calpain

inhibition). Such ‘immobile’ states frequently display slow linear drift, potentially reflecting

binding to a dynamic actin cortex. Our methods allow significantly more information to be

extracted from individual trajectories (ultimately limited by time resolution and time-series

length), and allow statistical comparisons between trajectories thereby quantifying inter-tra-

jectory heterogeneity. Such methods will be highly informative for the construction and
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fitting of molecule mobility models within membranes incorporating aggregation, binding to

the cytoskeleton, or traversing membrane microdomains.

Introduction
Single particle tracking (SPT), fluorescence recovery after photobleaching (FRAP), and fluores-
cence correlation spectroscopy (FCS) experiments have demonstrated that rather than moving
freely, molecules in the plasma membrane tend to exhibit heterogenous motion. This heteroge-
neity occurs on a variety of scales, and a number of potential mechanisms have been proposed
to explain the behaviour. These include: lipid microdomains [1, 2], compartmentalisation by
the cytoskeleton (so-called ‘hop diffusion’) [3, 4], protein-protein interactions [5], and inho-
mogeneity in the plasma membrane environment [6]. There are a number of mechanistic mod-
els which reproduce anomalous diffusion [7]. Current thinking suggests that multiple
mechanisms combine to form a hierarchical structure in the plasma membrane [8].

SPT experiments can directly observe the diffusion of lipids, proteins, and other complexes
in the cell membrane, providing significant insight into membrane structure. In an SPT experi-
ment the molecule of interest has an observable tag attached, allowing tracking of the tag’s 2D
position over a number of time steps. Possible tags include a gold nanoparticle [9], a quantum
dot [4], a fluorophore [10], or a latex bead [5]. Gold nanoparticle, quantum dot, and latex bead
experiments can image the particle at high temporal resolution (up to 40000 frames s−1 [3])
over a long period (seconds). However, the tags are large relative to the molecules they label,
with typical diameters of 10 nm for quantum dots [4]; 40 nm, gold nanoparticles [11]; 1000
nm, latex beads [5]. Other experiments have tracked single molecules by tagging with much
smaller fluorophores but, due to photobleaching, can only track for much shorter periods [10],
and thus provide shorter trajectories.

An open question is the extent to which the tracked tag represents the movement of the
molecule of interest. General artifacts that may be associated with the use of a tag for SPT
experiments include multivalent binding, drag, interaction with the extracellular matrix, and
the binding of the label itself [12]. Additionally, experimental artifacts could result from move-
ment of the particle out of the plane of focus or from the tracking algorithm which converts the
raw video data to a trajectory. There is evidence that beads affect the estimated value of diffu-
sion coefficients [13]. For example, results from gold nanoparticle experiments by the Kusumi
lab report the presence of very fast diffusion within membrane compartments [9], much faster
(by around a factor of ten) than in all other studies in the field. A possible explanation is that
the nanoparticles used by Kusumi make the diffusion coefficient of the tag-target complex sub-
stantially different than that of the untagged molecule [4]. The fact that the tag is diffusing in
solution whilst the molecule is in the membrane also causes a concern, potentially giving a
weighted average of these two diffusion coefficients. Another possible cause of bead artifacts is
crosslinking of proteins due to multivalent presentation. These issues highlight the importance
of decoupling the particle behaviour from that of the tag, including dealing with experimental
localisation error [14–16].

There are a number of techniques for analysing SPT data, including specific methods for the
detection of deviations from free diffusion. The simplest and most common approach is to use
a mean squared displacement (MSD) analysis. An unconfined random walk has a cumulative
MSD that is linear as a function of time [17], whilst a negative deflection in MSD (anomalous
diffusion) can be caused by movement in a confined environment, and a positive deflection
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suggests directed motion. MSD curves are often analysed for interpretable features such as the
linear gradient (diffusion coefficient) and intercept (localisation accuracy); however, the sub-
jectivity inherent in this approach has been suggested as the cause of discrepancies between
studies [15]. Alternatively, theoretical MSD curves can be fitted to the data for various physical
models (e.g. free diffusion, confined diffusion, hop diffusion, directed motion) [11, 18, 19]. Sta-
tistical analysis can be used to determine which theoretical model best describes the experi-
mental MSD curve [4, 20]. However, these techniques are limited since they can only detect
heterogeneity across multiple trajectories.

Methods for detecting heterogeneity within single trajectories (or ‘microheterogeneity’ [21])
have also been developed, most utilising statistics that detect deviations from random walk
behaviour. For example, local periods of confinement can be detected by particles spending a
significantly longer period of time within a fixed circle than a random walk [22–24], this has
been utilised to detect trapping in experimental data [25–27]. This method has been further
developed as a first passage time (FPT) analysis, which also gives an estimate of the size of con-
finement zones [21]. Other methods segment single trajectories based on transient changes in
diffusion modalities, including detection of changes in the diffusion coefficient [28], local con-
finement and directed motion [29, 30]. Meilhac et al. [31] developed an algorithm which
detects if a particle is moving between different confinement zones (i.e. exhibiting hop diffu-
sion). The majority of these methods use generic properties of Brownian motion (random
walks) to detect deviations, and thus, do not have an underlying mechanistic model. More
information (with a corresponding increase in statistical power) can potentially be extracted by
using a model that allows parametrisation of the heterogeneity and associated processes. Such
models have been proposed in a hidden Markov model (HMM) framework. For instance, Das
et al. developed a HMM for LFA-1 interacting with the actin cytoskeleton, where LFA-1 moves
between “free” and “bound” states, moving with a different diffusion coefficient in each state
[32]. Monnier developed a method which chooses between multiple modes of diffusion, such
as directed motion, and diffusion with a variable diffusion coefficient [33, 34]. Persson et al.
developed a HMM based method which takes multiple trajectories as input, and infers the
number of diffusive states, the diffusion coefficients and the state transition rates [35].

Here we develop an improved single trajectory analysis, based on the two-state diffusion
model of Das et al. [32]. We make two key changes to their analysis, firstly, we analyse each tra-
jectory separately; the pooled analysis of [32] assumes homogeneity across trajectories, which
we find is incorrect. This allows us to determine if individual trajectories have evidence for
switching between two diffusive states, as opposed to remaining in one state throughout. Sec-
ondly, we allow for localisation accuracy. We demonstrate that a failure to do so can lead to the
erroneous detection of a high degree of heterogeneity caused by structured measurement noise.
We use a Bayesian analysis for both model parameter inference and model selection, using
Markov chain Monte Carlo (MCMC) algorithms for both.

We apply our methods to previously published LFA-1 SPT data [5, 21, 32], LFA-1 being a
cell membrane adhesion receptor on T cells that is known to interact with the cytoskeleton and
exhibits multiple states with different diffusion properties, as shown by previous SPT analysis
[5, 21, 32, 36]. LFA-1 has at least two affinity states, including a low affinity closed conforma-
tion and a high affinity open conformation, which are dependent on the cytoskeletal protein
talin [37]. Activation of T cells, e.g. with phorbol-12-myristate-13-acetate (PMA), causes a
number of changes in the behaviour of LFA-1, including a shift from the low to the high affin-
ity state [38, 39] with an associated change in mobility [5, 40, 41]. The protease calpain releases
LFA-1 from attachment to the cytoskeleton by cleaving the talin head domain [42]. By examin-
ing 4 treatments we find multiple modes of heterogeneity are present, including switching in
the diffusion coefficient within single trajectories.
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Methods

Consider a single particle trajectoryX ¼ fDXi;DtigNi¼1 with displacements ΔXi at discrete time
points i = 1, 2. . .N, where ΔXi = (ΔXi1, ΔXi2) is 2D. We aim to determine if a trajectory is con-
sistent with a single diffusion process throughout, i.e. a one-state diffusion with diffusion coef-
ficient D (to be determined), or if there is evidence of switching of the diffusion coefficient
between two (again, to be determined) values, D0 and D1, i.e. a two-state diffusion model,

D0 Ð
p01

p10
D1 ð1Þ

where p01, p10 are the probability of switching per frame. Both these models can be considered
with or without measurement noise giving 4 models. Using a Bayesian methodology, for each
model we developed an MCMC algorithm to sample the posterior distribution π(θjX,Mi) of
the modelMi and parameters θ, i.e. on individual trajectories we estimate the diffusion coeffi-
cient D for the one-state model, and the two diffusion coefficients D0, D1, with switching times
between the two states for the two-state model. We also computed the marginal likelihood π
(XjMi) (either analytically, through MCMC sampling or, for the models with measurement
noise, using an approximation). From the marginal likelihood we can compute the support for
each model from the data, and thus determine the posterior model probability ratio
pðM1DjXÞ=pðM2DjXÞ for each trajectory. Under an equiprobable model prior this is equivalent
to the Bayes factor pðXjM1DÞ=pðXjM2DÞ. These methods and associated algorithms are given
here and in S1 Algorithms, but the Results can be read without this section.

One-state diffusion model without measurement noise
For a particle diffusing with a diffusion coefficient D, the log likelihood of a trajectory X is

log epðXjDÞ ¼
XN
i¼1

log eNðDXi; 0; 2DDtiÞ: ð2Þ

Here and throughout we use the same notation for a probability distribution and its (joint) pdf.
We use a flat prior on D, π(D) = Unif(D; 0, Dmax), so the posterior is

pð1=DjXÞ / Gamma 1=D;N þ 1;
1

4

XN
i¼1

DX2
i

Dti

 !
1½0;Dmax �ðDÞ ð3Þ

where 1½0;Dmax �ðDÞ ¼ 1 if D 2 (0, Dmax) and 0 otherwise. We use this notation for the indicator

function throughout.
Appropriate statistics can be computed from this posterior, either analytically or using a

rejection sampler. For a rejection sampler the update is

1=D � GammaT N þ 1;
1

4

XN
i¼1

DX2
i

Dti
; 1=Dmax;1

 !
ð4Þ

where GammaT(α, β, xmin, xmax) denotes a truncated Gamma distribution with parameters α and
β, truncated at xmin and xmax. We sample K updates from this distribution to give samples

fDðkÞgK
k¼1, an estimate for the diffusion coefficient is then the posterior mean D̂ ¼ 1

K

PK
k¼1 D

ðkÞ.

The marginal likelihood for this model is

pðXjM1DÞ ¼
Z 1

0

dDpðXjD;M1DÞpðDÞ: ð5Þ
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Changing variables from D to D−1 and rearranging into a standard incomplete upper gamma
function gives

pðXjM1DÞ ¼
1

Dmax

YN
i¼1

1

4pDti

XN
i¼1

DX2
i

4Dti

 !1�N

G N � 1;
1

Dmax

XN
i¼1

DX2
i

4Dti

 !
: ð6Þ

where Γ is the upper incomplete Gamma function, see S1 Text.

Two-state diffusion model without measurement noise
We use the hidden Markov model described by Das et al. [32] with four model parameters, θ =
{D0, D1, p01, p10}, two diffusion coefficients D0, D1 and transition probabilities p10, p01 between
the two hidden states. Denoting the hidden state by zi at time frame i, the particle moves
between zi = 0 (diffusion with D = D0) and zi = 1 (diffusion with D = D1) for N time steps, giv-

ing a trajectory X and hidden state sequence z ¼ fzigNi¼1. The model can be written

zijzi�1
� Bernoulliðzi�1ð1� p10Þ þ ð1� zi�1Þp01Þ;DXijzi � Nð0; 2Dzi

DtiÞ: ð7Þ

We use conjugate priors, the full prior being

pðyÞ ¼ UnifðD0; 0;DmaxÞUnifðD1; 0;DmaxÞBetaðp01; a0; b0ÞBetaðp10; a1; b1Þ ð8Þ

pðz1jyÞ ¼ Bernoulli z1;
p01

p10 þ p01

� �
: ð9Þ

The prior on the initial state is the stationary distribution for the Markov chain. The posterior
distribution is then given by,

pðy; zjXÞ / pðyÞpðz1jyÞ
YN
i¼1

N ðDXi; 0; 2Dzi
DtiÞ

�
YN
i¼2

Bernoulliðzi; zi�1ð1� p10Þ þ ð1� zi�1Þp01Þ:
ð10Þ

We developed an MCMC algorithm to sample this posterior, specifically we can generate sam-

ples fDðkÞ
0 ;DðkÞ

1 ; pðkÞ01 ; p
ðkÞ
10 ; z

ðkÞgKk¼KB
from the posterior distribution using a Gibbs sampler, see

below and in S1 Algorithms as pseudocode. Here and throughout we denote the total number

of MCMC steps K and the length of the burn-in KB. The mean of these posterior samples {D̂0 ,

D̂1 , p̂01 , p̂10 , ẑ} is an estimate for the parameters and hidden state sequence.
We sample from the posterior distribution Eq (10) by sampling sequentially from the condi-

tional distributions. For D0 and D1 these are

pðD0jD1; p01; p10; z;XÞ / UnifðD0; 0;DmaxÞ
Y
zi¼0

N ðDXi; 0; 2Dzi
DtiÞ ð11Þ

pðD1jD0; p01; p10; z;XÞ / UnifðD1; 0;DmaxÞ
Y
zi¼1

N ðDXi; 0; 2Dzi
DtiÞ: ð12Þ
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Hence the updates are

D�1
0 � GammaT Z0 þ 1;

X
zi¼0

DX2
i

4Dti
;

1

Dmax

;1
 !

ð13Þ

D�1
1 � GammaT Z1 þ 1;

X
zi¼1

DX2
i

4Dti
;

1

Dmax

;1
 !

ð14Þ

where η0 = ∑zi=01 and η1 = ∑zi=11. We sample from the truncated distribution, by sampling
from the full Gamma distribution, then resampling if D0 or D1 is bigger than Dmax. If η0 = 0

then
P

zi¼0

DX2
i

4Dti
¼ 0, and the Gamma distribution is undefined, so we sample D0 from the prior

Unif(0, Dmax). If η1 = 0 we sample D1 from Unif(0, Dmax). For the transition probabilities let njk
be the number of transitions from state j to state k in the hidden state sequence z, i.e.

njk ¼
X

ijzi¼j;ziþ1¼k

1: ð15Þ

Since we have chosen conjugate priors the updates are

p01 � Betaða0 þ n01; b0 þ n00Þ ð16Þ

p10 � Betaða1 þ n10; b1 þ n11Þ: ð17Þ

The hidden state z is updated step by step. Since z is a Markov chain each zi depends only on
the neighbouring points zi−1 and zi+1, so the conditional distribution is

pðzijzi�1; ziþ1; y;XÞ / Bernoulliðzi; zi�1ð1� p10Þ þ ð1� zi�1Þp01Þ
�NðDXi; 0; 2Dzi

DtiÞ
�Bernoulliðziþ1; zið1� p10Þ þ ð1� ziÞp01Þ:

ð18Þ

By normalising Eq (18) we can compute the probabilities π(zijzi−1, zi+1, θ, X) for zi = 0, 1 which
gives the update

zijy;zi�1
� Bernoulliðpðzi ¼ 1jzi�1; ziþ1; y;XÞÞ: ð19Þ

The endpoint conditionals are slightly modified. For i = 1 and i = N we have

pðz1jz2; y;XÞ / N ðDX1; 0; 2Dz1
Dt1ÞBernoulliðz2; z1ð1� p10Þ þ ð1� z1Þp01Þ ð20Þ

pðzN jzN�1; y;XÞ / BernoulliðzN ; zN�1ð1� p10Þ þ ð1� zN�1Þp01ÞN ðDXN ; 0; 2DzN
DtNÞ: ð21Þ

Thus, we can sequentially update z by updating each zi for i = 1..N.
We also impose the condition D0 < D1, which we enforce after the MCMC run as follows: if

the posterior means D̂0 > D̂1 then we swap the D0, D1 chains, swap the p01, p10 chains, and
swap the 0 and 1 states in the hidden state z throughout the run. This is possible because
although state identity switching (0$ 1) is possible because of a permutation symmetry during
a run, it isn’t observed to occur.

There are a number of methods for estimating the marginal likelihood using MCMC sam-
pling, including that of Chen [43], utilising a single MCMC chain, and Chib [44], requiring
additional MCMC chains to be constructed. Typically we used both to check our algorithms,
but present the simplest approach in any given case. For this model the conditional posterior π
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(θjz, X) is normalisable; Chen’s formula then reads

pðXjM2DÞ ¼ log epðXjy�Þ � log e

1

K

XK
k¼KB

gðyðkÞjzðkÞÞ
pðy�Þ

pðy�jzðkÞ;XÞ
pðyðkÞjzðkÞ;XÞ

" #
ð22Þ

where y� ¼ fD�
0;D

�
1; p

�
01; p

�
10g is a suitably chosen fixed point, such as the maximum likelihood,

θ(k) and z(k) are samples from the MCMC run and g(θ(k)jz(k)) is an arbitrary distribution, but its
choice affects the variance of the estimate. If we choose g(θ(k)jz(k)) = π(θ(k)jz(k), X) then we
remove θ(k) from the right hand side, obtaining

log epðXjM2DÞ ¼ log epðXjy�Þ � log e

1

K

XK
k¼KB

pðy�jzðkÞ;XÞ
pðy�Þ

" #
: ð23Þ

Thus, the sum runs over z(k), the MCMC samples, and for each z(k) we have to evaluate π
(θ�jz(k), X)/π(θ�). The log likelihood term, loge π(Xjθ�), is calculated by the forward algorithm
described in [32]. For the π(θ�jz(k), X) term, we factorize

pðy�jzðkÞ;XÞ ¼ pðD�
0jzðkÞ;XÞpðD�

1jD�
0; z

ðkÞ;XÞpðp�01jD�
0;D

�
1; z

ðkÞ;XÞ
�pðp�10jp�01;D�

0;D
�
1; z

ðkÞ;XÞ
¼ pðD�

0jzðkÞ;XÞpðD�
1jzðkÞ;XÞpðp�01jzðkÞ;XÞpðp�10jzðkÞ;XÞ

ð24Þ

where the second line follows since the parameters are independent when z(k) is given.
The joint pdf is thus,

pðy�jzðkÞ;XÞ ¼ GammaT
1

D0

; Z0 þ 1;
1

4

X
zðkÞ
i

¼0

DX2
i

Dti
;

1

Dmax

;1

0
B@

1
CA

�GammaT
1

D1

; Z1 þ 1;
1

4

X
zðkÞ
i

¼1

DX2
i

Dti
;

1

Dmax

;1

0
B@

1
CA

�Betaðp01; n01 þ a0; n10 þ b0ÞBetaðp10; n10 þ a1; n11 þ b1Þ

ð25Þ

at a given value θ�, where Z0 ¼
P

z
ðkÞ
i ¼0

1 and Z1 ¼
P

z
ðkÞ
i ¼1

1, and zðkÞi is the ith term in the

sequence z(k). The normalisation term for the truncated distribution is

G 1
4Dmax

P
z
ðkÞ
i ¼0

DX2
i

Dti
; Z0 þ 1

� ��1

, where Γ is the upper incomplete gamma function. In practice,

the normalisation factor is very close to 1, since the choice of Dmax is sufficiently high.
Eq (25) is valid except when η0 = 0 or η1 = 0, in which case we have pðD�

0jzðkÞ;XÞ ¼
UnifðD0; 0;DmaxÞ or pðD�

1jzðkÞ;XÞ ¼ UnifðD1; 0;DmaxÞ respectively. The prior is

pðy�Þ ¼
D2

0

Dmax

D2
1

Dmax

Betaðp01; a0; b0ÞBetaðp01; a1; b1Þ if
1

D0

;
1

D1

2 ½ 1

Dmax

;1�

0 otherwise

8><
>: ð26Þ

which is easy to evaluate for each z(k) from the MCMC output. Hence we can evaluate Eq (23).

One-state diffusion model with measurement noise
We now add a localisation error to the previous one-state diffusion model. The true particle
position is hidden and denoted Ui, whilst the measured position is Ui up to a Gaussian noise
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with variance σ2, assumed known. In discrete time the model is

DUi � Nð0; 2DDtiÞ;XijUi
� NðUi; s

2Þ ð27Þ

where ΔUi = Ui+1 − Ui. In order to develop an MCMC sampler for π(D, UjX) we note that

pðD;UjXÞ / pðD;U1Þ
YNþ1

i¼1

NðXi;Ui; s
2Þ
YN
i¼1

NðDUi; 0; 2DDtiÞ: ð28Þ

We select a conjugate prior pðD;U1Þ ¼ UnifðD; 0;DmaxÞNðU1; mU1
; s2

UÞ, so the updates for D
and U are Gibbs moves. The update for D is

1=D � GammaT N þ 1;
1

4

XN
i¼1

DU2
i

Dti
; 1=Dmax;1

 !
: ð29Þ

The conditional distribution for Ui is a bridging distribution

pðUijUi�1;Uiþ1;D0;D1; p01; p10Þ / N ðDUi�1; 0; 2DDti�1 þ 2s2Þ
�N ðDUi; 0; 2DDti þ 2s2ÞNðUi;Xi; s

2Þ ð30Þ

comprising a product of three Gaussians. The update is thus,

UijD;Ui�1
� N ðmi; 1=tiÞ ð31Þ

where, for i = 2 to i = N the precision and mean are

ti ¼
1

2DDti�1

þ 1

2DDti
þ 1

s2
; mi ¼

Ui�1

2DDti�1

þ Uiþ1

2DDti
þ Xi

s2

� �
t�1
i ð32Þ

at the endpoints i = 1 and i = N + 1

t1 ¼
1

2DDt1
þ 1

s2
U

; m1 ¼
U2

2DDt1
þ mU1

s2
U

� �
t�1
1 ð33Þ

tNþ1 ¼
1

2DDtN
þ 1

s2
; mNþ1 ¼

UN

2DDtN
þ XN

s2

� �
t�1
Nþ1: ð34Þ

We used an approximation to compute the marginal likelihood; this involves ignoring the
covariance between the displacements ΔXi* N(ΔUi, 2σ

2) and ΔXi+1 * N(ΔUi+1, 2σ
2) that

arises because of the common measurement error Xi − Ui at time point i. In this case the hid-
den variables Ui integrate out to give the posterior

pðDjXÞ / pðDÞ
YN
i¼1

N ðDXi; 0; 2DDti þ 2s2Þ: ð35Þ

Wemodified the previous one-state MCMC sampler to sample from this distribution, detailed
in S1 Text and S1 Algorithms as pseudocode.

The sampler has a single Metropolis-Hastings move, so we calculate the marginal likelihood
directly from the MCMC output, as described by Chib [45]. The log marginal identity is

log ep̂ðXjM1DÞ ¼ log epðXjD�Þ þ log epðD�Þ � log ep̂ðD�jXÞ ð36Þ

where we take D� ¼ D̂, the mean of the posterior samples. We can evaluate loge π(XjD�) and
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loge π(D�) easily. We can write loge π(D�jX) as [45]

log epðD�jXÞ ¼ log e

E1 ½aðD ! D�ÞqðD ! D�Þ�
E2 ½aðD� ! DÞ�

� �
ð37Þ

where E1 is with respect to π(DjX) and E2 is with respect to q(D� ! D). From the MCMC out-

put we have K − KB samples from the posterior distribution π(DjX), fDðkÞgKK¼KB
. We then simu-

late K − KB samples from the proposal distribution q(D� ! D)* N(D�, SD), giving f~DðjÞgK�KB
j¼1 .

An estimate for loge π(D�jX) is then

log ep̂ðD�jXÞ ¼ log e

ðK � KBÞ�1 PK
k¼KB

aðDðkÞ ! D�ÞqðDðkÞ ! D�Þ
ðK � KBÞ�1 PK�KB

j¼1 aðD� ! ~DðjÞÞ

" #
: ð38Þ

Hence we can calculate p̂ðXjM1DÞ using Eq (36).

Two-state diffusion model with measurement noise
We now add a localisation error to the previous two-state diffusion hidden Markov model.
Again, the true position is hidden and denoted Ui. The model is given by,

zijzi�1
� Bernoulliðzi�1ð1� p10Þ þ ð1� zi�1Þp01Þ;

DUijzi � Nð0; 2Dzi
DtiÞ;

XijUi
� NðUi; s

2Þ
ð39Þ

i.e. there is both a continuous hidden state Ui and a discrete hidden state zi. We developed an
MCMC algorithm which samples from the full conditional distribution π(θ, U, zjX). Let θ =
{D0, D1, p01, p10}, the posterior for this model is (ΔUi = Ui+1 − Ui)

pðy;U; zjXÞ / pðy;U1; z1Þ
YNþ1

i¼1

N ðXi;Ui; s
2Þ
YN
i¼1

N ðDUi; 0; 2Dzi
DtiÞ

�
YN�1

i¼1

Bernoulliðziþ1; zið1� p10Þ þ ð1� ziÞp01Þ:
ð40Þ

The priors on θ and z1 are the same as the two-state diffusion model without measurement
noise, given in Eq (8), and we use a normal prior (with mean μU1

, variance s2
U) on U1. The full

prior is then

pðy;U1; z1Þ ¼ UnifðD0; 0;DmaxÞUnifðD1; 0;DmaxÞBetaðp01; a0; b0ÞBetaðp10; a1; b1Þ

�NðU1; mU1
; s2

UÞBernoulli z1;
p01

p10 þ p01

� �
:

ð41Þ

The MCMC updates are mostly identical to the two-state diffusion model without measure-
ment noise, but with the observed displacements ΔXi replaced by the hidden state displace-
ments ΔUi. Thus, for D0 and D1 we have

1=D0 � GammaT Z0 þ 1;
1

4

X
zi¼0

DU2
i

Dti
; 1=Dmax;1

 !
ð42Þ

1=D1 � GammaT Z1 þ 1;
1

4

X
zi¼1

DU2
i

Dti
; 1=Dmax;1

 !
ð43Þ
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where η0 = ∑zi=01 and η1 = ∑zi=11 as before. Similarly, in the z update we substitute ΔXi for ΔUi

in Eqs (18), (20) and (21),

pðzijzi�1; ziþ1; y;UÞ / Bernoulliðzi; zi�1ð1� p10Þ þ ð1� zi�1Þp01Þ � NðDUi; 0; 2Dzi
DtiÞ

�Bernoulliðziþ1; zið1� p10Þ þ ð1� ziÞp01Þ:
ð44Þ

pðz1jz2; y;UÞ / NðDU1; 0; 2Dz1
Dt1ÞBernoulliðz2; z1ð1� p10Þ þ ð1� z1Þp01Þ ð45Þ

pðzN jzN�1; y;UÞ / BernoulliðzN ; zN�1ð1� p10Þ þ ð1� zN�1Þp01ÞN ðDUN ; 0; 2DzN
DtNÞ: ð46Þ

The transition probability updates are identical to Eqs (16) and (17). The update for U is almost
the same as the one-state diffusion model with measurement noise. We have a Gibbs update

Uijy;z;Ui�1
� N ðmi; 1=tiÞ ð47Þ

where, for i = 2 to i = N, the precision and mean are

ti ¼
1

2Dzi�1
Dti�1

þ 1

2Dzi
Dti

þ 1

s2
; mi ¼

Ui�1

2Dzi�1
Dti�1

þ Uiþ1

2Dzi
Dti

þ Xi

s2

 !
t�1
i ð48Þ

at the endpoints i = 1 and i = N + 1

t1 ¼
1

2Dz1
Dt1

þ 1

s2
U

; m1 ¼
U2

2Dz1
Dt1

þ X1

s2
U

 !
t�1
1 ð49Þ

tNþ1 ¼
1

2DzN
DtN

þ 1

s2
; mNþ1 ¼

UN

2DzN
DtN

þ XN

s2

 !
t�1
Nþ1: ð50Þ

The MCMC updates for this model are given in pseudocode in S1 Algorithms.
To compute the marginal likelihood we used the same approximation as the one-state diffu-

sion model with measurement noise, ignoring the covariance between the displacements ΔXi

* N(ΔUi, 2σ
2) and ΔXi+1 * N(ΔUi+1, 2σ

2). We failed to find an algorithm that could integrate
over both hidden states (Ui and zi) to allow the (exact) marginal likelihood π(XjM2D) to be
computed. In this case the hidden variables Ui integrate out to give a posterior

pðy; zjXÞ / pðyÞpðz1jyÞ
YN
i¼1

N ðDXi; 0; 2ðDzi
Dti þ s2ÞÞ

�
YN�1

i¼1

Bernoulliðziþ1; zið1� p10Þ þ ð1� ziÞp01Þ:
ð51Þ

Wemodified the two-state diffusion model sampler to incorporate the σ2 terms, see S1 Text
and pseudocode in S1 Algorithms. This sampler can be used with the method of Chen, rewrit-
ing Chen’s formula as

log epðXjM2DÞ ¼ log epðXjy�Þ � log e

1

K

XK
k¼1

gðykjzðkÞÞ
pðyðkÞÞ

pðXjy�; zðkÞÞ
pðXjyðkÞ; zðkÞÞ

pðzðkÞjy�Þ
pðzðkÞjyðkÞÞ

" #
ð52Þ

where g is any density function, θ(k), z(k) are samples from the posterior distribution, and θ� is
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a point of high density. If we choose g = π(θ(k)), then an estimate for the marginal likelihood is

log ep̂ðXjM2DÞ ¼ log eðXjy�Þ � log e½ 1

K

XK
k¼1

QN
i¼1 N ðDX2

i ; 0; 2D
�
z
ðkÞ
i

Dti þ 2s2ÞQN
i¼1 N ðDX2

i ; 0; 2D
ðkÞ
z
ðkÞ
i

Dti þ 2s2Þ

� Betaðp�01; n01 þ 1; n00 þ 1ÞBetaðp�10; n10 þ 1; n11 þ 1Þ
BetaðpðkÞ01 ; n01 þ 1; n00 þ 1ÞBetaðpðkÞ10 ; n10 þ 1; n11 þ 1Þ�:

ð53Þ

The log likelihood, loge π(Xjθ�), is calculated using a forward algorithm (S1 Text and pseudo-
code in S1 Algorithms). By computation of the marginal on multiple chains we found that its
variance was small despite using the prior for the distribution g, (relative sd< 0.0001%). Chib’s
method on selected trajectories also gave the same answer.

Priors
In all algorithms we use weak priors. Specifically D* Unif(0, Dmax = 106nm2s−1) for the one-

state diffusion model, and additionally U1 � N mU1
¼ 0

0

" #
; s2

U ¼ 106nm2 0

0 106nm2

" # !

for the one-state diffusion model with measurement noise. For the two-state diffusion model
we use: D0, D1 * Unif(0, Dmax = 106nm2s−1), p10, p01 * Beta(1, 1), with an initial (i = 1) hid-

den state, z1 � Bernoulli p01
p01þp10

� �
. Additionally, we used

U1 � N mU1
¼ 0

0

" #
; s2

U ¼ 106nm2 0

0 106nm2

" # !
for the two-state diffusion model with

measurement noise.

Convergence of MCMC runs
To assess the convergence of the two-state diffusion model with measurement noise we used a
multiple chain convergence diagnostic [46], specifically 12 chains with overdispersed initial
values. We initialised D0 and D1 by sampling values u0, u1 from Beta(0.1, 0.1), then setting D0

= u0 Dmax and D1 = u1 Dmax. The transition probabilities p01 and p10 were initialised from Beta
(1, 1). The hidden state z was initialised by simulating a Markov chain using the initial transi-

tion probabilities p01 and p10. The initial value of U was set to the observed trajectory fXigNþ1

i¼1 .
We considered the chains converged when the Gelman-Rubin diagnostic for each parameter
was less than 1.1 [47, 48].

Model selection between one-state and two-state diffusion models
We can calculate the log marginal likelihoods to compare the evidence for the one-state and
two-state diffusion models; this can be done with or without measurement noise. Hence for
each case we can calculate the log (base e) Bayes factor, loge B1D, 2D = loge π(XjM1D)) − loge π
(XjM2D). The extent to which a model is supported by the evidence (i.e. the observed trajectory
X) can then be assessed using a standard table such as in Kass et al., where a log Bayes factor of
3 is considered “strong” evidence for the relevant model [49]. We hence consider a value loge
B1D, 2D > 3 as preference for a one-state diffusion model, and loge B1D, 2D < −3 as preference
for a two-state diffusion model. The remaining trajectories (where −3< loge B1D, 2D < 3) have
no strong preference for either model.
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Results
Given a 2D trajectory, X, we developed MCMC algorithms (both with and without measure-
ment noise) for inferring the posterior distribution of the parameters and hidden states of a
two-state diffusion process, π(θ, zjX). The parameters, θ = {D0, D1, p01, p10}, are the diffusion
coefficients and frame transition probabilities, Eq (1), and z is the sequence of the inferred hid-
den diffusion state. Allowing for measurement noise propagates that uncertainty to the param-
eter estimates. We tested our algorithms on simulated data; S1 Fig shows an MCMC run of the
two-state model with measurement noise, demonstrating accurate reconstruction of the
parameters and hidden states. We also tested the sensitivity of the method to closely matched
diffusion states, S2 Fig. The two-state model with measurement noise algorithm can accurately
detect switching between regimes where diffusion coefficients differ by a factor of 1.5 (trajec-
tory parameters set to those typical for the LFA-1 data). To determine whether the trajectory is
better explained by this two-state model or a one-state diffusion (single diffusion coefficient D)
we used the marginals π(XjM); however, this proved difficult to calculate in our hands for the
two-state model (with measurement noise). Therefore, we used an approximate likelihood
(where the covariance between consecutive displacements is ignored, essentially a low mea-
surement noise limit) where the marginals are computable for both the one-state and two-state
models, see Methods. We used the Bayes factor of this approximation to determine if the two-
state model is supported by the data more than a one-state diffusion process. We tested the
model selection between the approximate one-state and two-state diffusion models with mea-
surement noise; both on trajectories simulated from the full measurement noise model, and
trajectories simulated without noise, S3 Fig. The model was able to successfully discriminate
between one-state and two-state simulations, with a very low false positive rate when the diffu-
sion coefficients were separated by a factor of 5 (0.005%, using loge Bayes factor equal to ±3 as
the threshold for model preference, see Methods). When separated by a factor of 2.5 there is a
bias towards the one-state model, especially on two-state model simulations without measure-
ment noise, S3B Fig. Thus, we may fail to detect some switching events between close diffusion
coefficients, underestimating the number of trajectories preferring a two-state model.

We used our algorithms to analyse SPT data sets for the LFA-1 receptor on Jurkat T cells (4
s trajectories at 1000 frames s−1 [5]). The receptor was tagged with 1000 nm latex beads coated
with the LFA-1 binding antibody TS-1/18. This dataset has been analysed previously [5, 21, 32]
demonstrating that LFA-1 diffusion is heterogeneous. We applied our methods to four treat-
ments: control (DMSO), treated with cytochalasin D (Cyto D), treated with phorbol-12-myris-
tate-13-acetate (PMA), and treated with PMA with calpain inhibition (PMA+Cal-I).
Cytochalasin D is an inhibitor of actin polymerisation, so effects due to the cytoskeleton should
be decreased, PMA is a T cell activator, moving LFA-1 to the high affinity conformational
state, and calpain releases LFA-1 from attachment to the cytoskeleton by cleaving the talin
head domain [42]. Thus, the first two treatments explore the effect of the cytoskeleton on the
predominantly low affinity LFA-1. PMA examines dynamics of high affinity LFA-1, whilst
PMA+Cal-I examines high affinity LFA-1 under conditions of enhanced interaction with the
cytoskeleton.

To determine the measurement accuracy, and whether measurement noise had to be incor-
porated into the model, we examined stationary beads (3 trajectories were available). These
beads are attached to the surface and thus represent thermal motion and instrument noise.
These beads are effectively stuck in a potential well and their movement is expected to be tem-
porally homogeneous; thus no two-state diffusion structure should be detected. As presented
below, we find that this is not the case unless a Gaussian measurement noise is incorporated
into the inference. Therefore, throughout we present the analysis of LFA-1 trajectory data
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using the measurement noise models, comparing between the one-state diffusion and two-state
diffusion model in the presence of noise. We use the approximate likelihood models for model
discrimination only; all inferred parameters refer to the exact models.

Stationary bead analysis to determine measurement accuracy and the
importance of propagating measurement noise
Trajectories of stationary beads (immobilised on glass using cell-tak, imaged using the same set
up as the LFA-1 data [5]) were used to determine the signal to noise ratio (S/N) and to estimate
the measurement noise (σ2). For each trajectory (2 s at 1000 frames s−1) we calculated the vari-

ance of individual displacements fDXigN
i¼1 for both x and y directions, giving 6 estimates for

the localisation accuracy (29.09 nm2, 23.55 nm2, 65.01 nm2, 39.31 nm2, 30.27 nm2, 59.41 nm2).
This gives a mean σ2 = 41.09 nm2 which we used as an estimate of the localisation accuracy
throughout. The variance of individual displacements, ΔXi for the LFA-1 data are: DMSO,
133.5 nm2 (giving S/N 3.25); Cyto D, 133.7 nm2 (S/N 3.25); PMA, 135.1 nm2 (S/N 3.29); PMA-
+Cal-I, 89.4 nm2 (S/N 2.18), indicating that signal is present in these displacements at this
resolution.

The stationary beads also provide an opportunity to check that the measurement noise does
not affect model selection: stationary beads should prefer a one-state diffusion model since the
time series is homogeneous. If the two-state diffusion model is preferred then measurement
noise, the tracking algorithm, or instrument noise contributes to the heterogeneity in the tra-
jectory. We applied the one-state and two-state diffusion model algorithms (without measure-
ment noise) to the three stationary beads. The two-state diffusion model showed high
frequency switching behaviour (Fig 1A–1C), with two distinct (well separated) diffusion coeffi-
cients, (Fig 1D–1F). Crucially, the two-state diffusion model is strongly preferred for all 3 tra-
jectories (Fig 2, red asterisks). Therefore there is evidence that tracked bead displacements are
not unstructured and an analysis of LFA-1 trajectories using the models without allowing for
measurement noise may be unreliable, due to this inherent inhomogeneity.

The stationary bead data were then analysed with the approximate one-state and two-state
diffusion models with measurement noise using the estimated noise variance σ2 = 41.09nm2

(recall the approximate models ignore the covariance between displacements since the mar-
ginal cannot be calculated for the full model). The incorporation of localisation accuracy elimi-
nates the previous preference for a two-state diffusion model (Fig 2, green circles); preference
for the one-state diffusion model is in fact very strong. We also tested whether Gaussian noise
can cause deterioration of the model selection accuracy. We tested the model selection analysis
without measurement noise on a set (n = 240) of simulated stationary bead trajectories with
added Gaussian noise (the localisation error in the simulations was set to 41.09nm2). The
model selection has a very strong preference for the one-state diffusion model (Fig 2, blue bars)
so Gaussian noise alone causes a low false detection rate; the noise in the beads cannot there-
fore be Gaussian and/or independent.

There are two important conclusions: firstly, as pointed out by Michalet [15], the localisa-
tion accuracy is a potential source of bias, particularly for low signal to noise ratios, as found
here. Thus, in any SPT analysis the measurement accuracy should be separately determined
and an assessment made as to whether it affects the results. Secondly, the noise of the stationary
beads does not appear to be independent, having a temporal correlation. Thus, the localisation
accuracy is likely not constant along a trajectory. However, as shown here, incorporating
Gaussian measurement noise into the model inference removes the erroneous preference for
the two-state model for the stationary beads.
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Analysis of LFA-1 data: evidence of multiple diffusion states
We fitted the one-state and two-state diffusion models with measurement noise to each trajec-
tory in the four treatments (36–75 trajectories depending on treatment, 4 s trajectories at 1000
frames s−1), thereby estimating parameters for these models for each trajectory. Convergence
was confirmed using a multiple chain protocol, see Methods. An example of a fit to the two-
state diffusion model with measurement noise is shown in Fig 3; inference of the hidden state
shows clear evidence of state switching in this trajectory with a high probability of being in one

Fig 1. Fit of a two-state diffusionmodel without measurement noise to three stationary latex bead
trajectories.MCMC output from chains of 20000 MCMC steps with a 10000 step burn-in. (A-C) Inference of
the hidden state z shown as the probability of being in the low diffusion state. (D-F) Posterior distributions for
the two diffusion coefficients: D0 (red) and D1 (blue). See Methods for priors and initial conditions.

doi:10.1371/journal.pone.0140759.g001
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or other of the two diffusion states and tight switching times. There is a large separation in the
posterior distributions for the low and high diffusion coefficients, with the ratio of the posterior
mean estimates being around 10.

By calculating the marginal likelihood for the approximate one-state and two-state diffusion

models with measurement noise, and hence the Bayes factor B1D;2D ¼ pðXjM1DÞ
pðXjM2DÞ, we then ascer-

tained for each trajectory the evidence for a two-state compared to a one-state diffusion pro-
cess. As described in Methods, we used fairly stringent criteria: if the log (base e) Bayes factor is
smaller than -3 then we consider this preference for the two-state diffusion model, and greater
than 3 as preference for the one-state diffusion model [49]. The number of trajectories with
preference for each model was robust to the choice of Bayes factor threshold (S1 Table). Fig 4
shows the Bayes factor estimates for each condition, and the number of trajectories which pre-
ferred each model, grouped by treatment. There are a total of 16 DMSO (out of a total of 75,
21%), 8 Cyto D (out of 36, 22%), 13 PMA (out of 19, 33%) and 8 PMA+Cal-I (out of 46, 17%)
trajectories where the two-state diffusion model is preferred, Table 1. Thus, in all treatments
we detected evidence of switching within trajectories with a similar level of preference. How-
ever, a proportion of the trajectories that preferred the two-state diffusion model showed
extremely fast switching; we define fast switching as either p̂01 > 0:1 or p̂10 > 0:1, giving
counts: DMSO, 3 trajectories; Cyto D, 5 trajectories; PMA, 5 trajectories; PMA+Cal-I, 2 trajec-
tories, Table 1. Thus, over all treatments, for trajectories where the two-state diffusion model
was preferred, we saw fast switching in 33% of trajectories.

This fast switching was similar to that observed for the fixed beads, questioning whether it is
an experiment artifact or a true phenomena. We limited our analysis in the following to the
slow (clear) switching trajectories and non-switching trajectories since the fast switchers clearly
represent a different category of behaviour, irrespective of cause. Discounting those trajectories
which have no strong model preference or are fast switchers, the proportion of trajectories
where the two diffusion model was preferred over the one-state were: DMSO 13/64 (20%),
Cyto D 3/25 (12%), PMA 8/31 (26%), PMA+Cal-I 6/42 (14%), Table 1.

Fig 2. Model selection for one-state and two-state diffusion models on simulated stationary beads
and stationary latex bead trajectories. Blue bars: Bayes factors frommodel selection on simulated
stationary beads (n = 240) with added Gaussian noise (σ2 = 41.09nm2). Single data points on axis: Bayes
factors frommodel selection on stationary latex bead trajectories, both without (red asterisks) and with (green
circles, σ2 = 41.09nm2) measurement noise incorporated into the inference algorithm. Priors, see Methods.

doi:10.1371/journal.pone.0140759.g002
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We next analysed the consistency of the diffusion coefficient estimates between trajectories.
We note that the diffusion coefficients can be estimated below the measurement noise effective
diffusion coefficient of σ2/(2Δt) since estimates are based on multiple time points, the error fall-
ing as σ2/(2nΔt) for n displacements. On the 4000 time points this gives a lower threshold of
log(D) = 1.64, so well below the lowest inferred diffusion coefficient. For both sets of

Fig 3. Fit of a two-state diffusionmodel with measurement noise to an LFA-1 trajectory (PMA+Cal-I
treatment).MCMC output (12 independent chains of 20000 MCMC steps with a 10000 step burn-in). (A) The
posteriors for the two diffusion coefficients, (B) corresponding samples (12 chains plotted in the same colour)
for D0 (red) and D1 (blue) including burn-in (dashed line). (C) Posteriors for the switching probabilities per
frame, (D) corresponding samples (12 chains) for p01 (red) and p10 (blue) including burn-in (dashed line). (E)
State inference shown as the probability of being in the low diffusion state. (F) Trajectory coloured by the
probability of being in the low diffusion state. Colour scale represents π(z = 1jX) from 0 (blue, high diffusion
state) to 1 (green, low diffusion state). Colorbar length: 100nm. Priors, see Methods.

doi:10.1371/journal.pone.0140759.g003
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trajectories, those that preferred the one-state diffusion (D) or two-state diffusion (D0, D1), we
computed the posterior mean diffusion coefficient and pooled their posterior distributions (in
the full likelihood model, Figs 5 and 6). All four conditions demonstrated similar features:

• There are two distinct clusters in the D estimates (trajectories conforming to a single homo-
geneous diffusion): a high (mean) diffusion coefficient greater than 3.0 × 103 nm2 s−1, and an
essentially immobile state with a (mean) diffusion coefficient less than 3.0 × 103 nm2 s−1, Fig
5E. Over the four conditions this split is very consistent, (S4 Fig). We refer to these as the
mobile state, with D> 3.0 × 103 nm2 s−1 (loge(D)> 8), and the immobile state, with
D< 3.0 × 103 nm2 s−1 (loge(D)< 8) (classified on the posterior mean of the diffusion coeffi-
cient). The mobile state may further decompose into a ‘low’ and ‘high’ diffusing state as the

Fig 4. Model selection between approximate one-state and two-state diffusion models with
measurement noise on LFA-1 trajectories. (A) Box and whisker plot of log Bayes factors by treatment,
trajectories with log Bayes factor outside 1.5 times IQR are plotted as outliers (red crosses). The thresholds
±3 (red lines) are shown. (B) Stacked bar plot showing proportions for each preferred model and trajectories
which demonstrate fast switching between diffusive states. A log Bayes factor of ±3 ((A), red lines) is
considered preference for the relevant model. MCMC runs comprise 12 parallel chains of 20000 steps with a
10000 step burn-in. Priors, see Methods.

doi:10.1371/journal.pone.0140759.g004

Using a HMM to Detect Diffusion Heterogeneity in SPT Trajectories

PLOS ONE | DOI:10.1371/journal.pone.0140759 October 16, 2015 17 / 33



pooled D distribution is bimodal with separation at 2 × 104 nm2/s, (Fig 6). The pooled distri-
bution for D0 also suggests a mixed distribution, although the small number of trajectories
(29) makes it difficult to reliably interpret.

• Trajectories with switching of the diffusion coefficient typically involve switching between
two different mobile states; only 1 trajectory (out of 31) is observed to exhibit switching with
the immobile state (Fig 5A–5D).

• The variance in the diffusion coefficient estimate for each trajectory is smaller than the vari-
ance between trajectories, (Fig 6); this implies that the bimodality (‘low’, ‘high’ diffusion coef-
ficients) is further subdivided. This explains the distinct peaks in the pooled posterior
distributions, Fig 5. Thus, there is variability in the diffusion coefficient estimates suggesting
the presence of a heterogeneity amongst individual trajectories.

There are however differences between the four conditions. Most notably, the proportion of
time in the immobile state is highest in PMA+Cal-I (47%, Table 1). This is significantly higher
than DMSO (5%, p = 2.8 × 10−8), Cyto D (17%, p = 0.0091), and PMA (23% p = 0.031).

For trajectories where the two-state diffusion model was preferred, (excluding the fast-
switching trajectories), we examined if the diffusion coefficients between the two diffusive
states are related (Fig 7A). The correlation coefficient is high (r = 0.84), whilst a linear relation
is strongly suggested, D1 = 0.68D0 − 1.5 × 104 nm2s−1, independent of treatment, using all
points except the 2 outliers. This suggests that the switching events we are detecting are likely
due to a single process. We also examined the relationship between D0 and p10, D0 and the time

Table 1. Model selection and proportion of time spent in the immobile state.

Treatment DMSO Cyto D PMA PMA+Cal-I

Number of trajectories 75 36 39 46

Two-state model preferred 1 16/67 (24%) 8/30 (27%) 13/36 (36%) 8/44 (18%)

Two-state model preferred, fast switchers removed 12 13/64 (20%) 3/25 (12%) 8/31 (26%) 6/42 (14%)

D1 in immobile state 3 (two-state model preferred 12 ) 0/13 (0%) 0/3 (0%) 0/8 (0%) 1/6 (17%)

D in immobile state 3 (one-state model preferred 1 ) 3/51 (6%) 4/22 (18%) 7/23 (30%) 19/36 (53%)

Proportion of time in immobile state 4 0.05 0.16 0.23 0.47

Mean 5 D0 ×10
4 nm2/s 9.2 ± 1.8 9.4 ± 0.6 8.9 ± 0.8 7.0 ± 1.5

Mean 5 D1 ×10
4 nm2/s 3.9 ± 0.7 4.9 ± 0.5 5.0 ± 0.6 2.5 ± 1.2

Mean 6 D ×104 nm2/s 5.2 ± 0.4 5.5 ± 0.8 6.1 ± 0.9 5.1 ± 0.8

Mean 7 Dimmobile ×10
4 nm2/s 0.079 ± 0.025 0.057 ± 0.015 0.041 ± 0.007 0.062 ± 0.005

Diffusion coefficient units are nm2 s−1 with standard error based on the number of trajectories.
1 Model selection between approximate one-state and two-state diffusion models with measurement noise, see Methods, with trajectories with no strong

model preference (−3 < loge B1D, 2D < 3) removed.
2 Fast switching trajectories (p̂01 > 0:1 or p̂10 > 0:1) also removed.
3 Defined as loge D < 8 or loge D1 < 8, for mean posterior parameters D, D1 nm

2 s−1 from one-state and two-state diffusion models with measurement

noise.
4 Over all trajectories with either one-state or two-state model preference, with fast switching trajectories removed (i.e. Table notes 1 and 2 apply). For

one-state preference, the proportion in the immobile state is 0 if loge D > 8, 1 if loge D > 8. For two-state preference, the proportion is 0 if loge D1 > 8, and if

loge D1 < 8 the proportion of time that was spent in the z = 1 state (diffusion with D = D1), i.e. 1=N
PN

i¼1 pðzijXÞ.
5 Over all posterior samples, for trajectories with two-state model preference, with fast switching trajectories removed.
6 Over all posterior samples, for trajectories with one-state model preference, restricted to loge D > 8.
7 Over all posterior samples, for trajectories with one-state model preference, restricted to loge D < 8.

doi:10.1371/journal.pone.0140759.t001
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in the high (z = 0) diffusion state and D1 and the time in the low (z = 1) diffusion state, but
found no correlation, Fig 7B–7D.

We also examined the frequency of switching events for trajectories where the two-state dif-
fusion model was preferred, excluding fast switching trajectories. Fig 8A plots the exponentially

Fig 5. Posterior estimates of diffusion coefficients for single LFA-1 trajectories. (A-D) Pooled posterior
samples of loge D0 and loge D1 for trajectories preferring the two-state diffusion model (fast switching, p̂01 >
0:1 or p̂10 > 0:1, trajectories removed). The posterior means for loge D0 (red squares) and loge D1 (green
triangles), are also shown. Black line indicates value of σ2/2Δt. Dashed line indicates threshold used to
categorise immobile and mobile diffusion states. Treatments: (A) DMSO, two-state model preferred for 13
trajectories; (B) Cyto D, 3 trajectories; (C) PMA, 8 trajectories; (D) PMA+Cal-I, 6 trajectories. (E) Pooled loge
D estimates and posterior means (blue circles) over all treatments, for trajectories where one-state diffusion
model was preferred (132 trajectories).

doi:10.1371/journal.pone.0140759.g005
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distributed waiting times in each state (i.e. the reciprocal of the inferred transition probabili-
ties), demonstrating a broad range of values. Some trajectories exhibit fast transient switching
(Fig 8A, trajectories clustered around origin, example in Fig 8B), although slower than that in
stationary beads. Another group of trajectories switch less frequently, with the time in a single
state on the order of tenths of seconds (Fig 8C and 8D). We also observe trajectories with very
slow switching, Fig 8E is an example of a trajectory with a single switch point, whilst some tra-
jectories spend the majority of time in the z = 0 (fast) state, with transient switching to the z = 1

Fig 6. Pooled posterior distribution of diffusion coefficients for single LFA-1 trajectories. (A) Pooled
posterior samples of D for trajectories where one-state diffusion model was preferred, restricted to loge D > 8
(99 trajectories). The posterior distribution from a single trajectory (black line, DMSO treatment) is also
plotted, normalised to equal height. (B) Pooled posterior samples of D0 and D1 for trajectories where two-
state diffusion model was preferred, restricted to loge D1 > 8 (29 trajectories), with fast switching (p̂01 > 0:1 or
p̂10 > 0:1) trajectories removed. One data point with D0 > 2 × 105 nm2 s−1 not shown.

doi:10.1371/journal.pone.0140759.g006
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(slow) state (Fig 8F). This variety suggests that multiple processes are affecting the waiting
times since this range of behaviours would not be observed in a single exponential waiting time
model.

We examined the trajectories identified to be in the immobile state in the one-state model.
These trajectories show apparent phases of linear motion in arbitrary directions, Fig 9. Many
trajectories have periods of consistent linear drifts in one direction, (examples in Fig 10),

Fig 7. Dependences of parameter estimates from two-state diffusionmodel. (A-D) Scatter plots of posterior means for the two-state model with
measurement noise, for trajectories where the approximate two-state diffusion model was preferred (fast switching, p̂01 > 0:1 or p̂10 > 0:1, trajectories
removed). Treatments: DMSO, blue asterisks; Cyto D, red crosses; PMA, black circles; PMA+Cal-I, green triangles. In panel (A) the black solid line is a linear
fit with two outlier trajectories removed,D1 = aD0 + b, a = 0.68, b = −1.5 × 104 nm2 s−1; black dashed line is the double iterate, D1 = a(aD0 + b) + b.

doi:10.1371/journal.pone.0140759.g007
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having speeds around 110 nm s−1. Some trajectories also have distinct changes in direction,
(Fig 10B and 10C). Since the stationary beads do not show such drift, and the drift direction is
variable, this is not due to microscope or sample drift (Jurkat cells in this assay being immobile
[5]), but most likely reflects movements in the underlying actin cortex. These speeds are of the
same order as the retrograde flow of actin in Jurkat cells (50 nm s−1) [50].

Approximate versus exact models with measurement noise
We used an approximate model (low noise limit) to compute the Bayes factor to determine
which of the one and two-state diffusion models are preferred by each trajectory. This approxi-
mation is justified since it gives similar results to the (exact) model on individual trajectories
(S5 Fig). On the LFA-1 trajectories that prefer the approximate model the hidden state correla-
tion between these two algorithms is typically 80% or higher (S6 Fig). The diffusion coefficient
estimates are also highly correlated (Fig 11), although they are lower under the approximation

Fig 8. Mean waiting times and example trajectories showing confinement for two-state diffusionmodel fit to LFA-1 trajectories. (A) Mean waiting
time in seconds (1=ð1000p̂01Þ for z = 0 state, 1=ð1000p̂10) for z = 1 state) for trajectories where approximate two-state diffusion model was preferred (fast
switching, p̂01 > 0:1 or p̂10 > 0:1, trajectories removed). Treatments: DMSO, blue asterisks; Cyto D, red squares; PMA black circles; PMA+Cal-I, green
triangles. Labels B-F correspond to example confinement state trajectories in B-F. (B) DMSO treatment (mean waiting time in z = 0 state 0.02s, in z = 1 state
0.04s) (C) PMA treatment (z = 0 state 0.32s, z = 1 state 0.16s) (D) PMA treatment (z = 0 state 0.09s, z = 1 state 0.12s) (E) PMA+Cal-I treatment (z = 0 state
1.48s, z = 1 state 0.39s) (F) DMSO treatment (z = 0 state 0.04s, z = 1 state 0.72s).

doi:10.1371/journal.pone.0140759.g008
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(significantly in a one-tailed Mann-Whitney test, with p = 0.02 for D0 and p = 0.001 for D1),
indicating that failing to account for noise correlations in displacements introduces an estima-
tion bias; this may potentially reduce the ability to detect two-state diffusion processes when
the two diffusion coefficients are small (of order σ2/Δt). In fact we detect no intra-trajectory
switchings with both diffusion coefficients below 2 × 104 nm2s−1, Fig 5. However, trends are
similar under both analyses—in common with the one-state and two-state diffusion models
with measurement noise, we also see two clear subpopulations in the posterior mean and
pooled posterior samples (S7 Fig), and a linear relationship between the D0 and D1 posterior
means (S8 Fig). The approximate model therefore performs well on real data although it under-
estimates diffusion coefficients (Fig 11). Thus, we consider the approximate model sufficiently

Fig 9. LFA-1 trajectories categorised as immobile (loge D < 8 in the one-state model). Trajectories are
from different cells, with the first timepoints shifted to (0, 0). Treatments: DMSO (3 of 75 in immobile state),
Cyto D (4 of 36 in immobile state), PMA (7 of 39 in immobile state), PMA+Cal-I D (20 of 46 in immobile state).
Scalebars: 50nm.

doi:10.1371/journal.pone.0140759.g009
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accurate for model selection SPT analysis, although parameter estimates are biased so we used
the (exact) model for any estimates and interpretation after model selection.

Discussion
We developed models and techniques for analysing single particle tracking data based on dis-
placements between frames, including a Bayesian model selection methodology to ascertain
whether the trajectory is more consistent with a one or two-state diffusion process. We con-
firmed the accuracy of our methods on simulated data. Two key elements of our analysis that
distinguish it from other methods is the demonstration that model parameters can be esti-
mated with high confidence from individual trajectories (1000 frames s−1 over 4 s), thereby not
requiring trajectories to be pooled, and the inclusion of measurement noise in the trajectory
inference, this propagating measurement error through to parameter estimates. We

Fig 10. Linear drifts in LFA-1 trajectories categorised as immobile (loge D < 8 in the one-state model).
(A) Vertical displacements for two example trajectories. Blue line: DMSO treatment, �vy ¼ 117 nm s�1; red line:
PMA treatment, �vy ¼ 110 nm s�1. (B-C) Displacements for a trajectory (PMA treatment) with a switch in drift
direction. Estimated velocities: �vx ¼ 64 nm s�1, �vy ¼ 80 nm s�1, (average between 0 s and 2.25 s), �v�y ¼
�79 nm s�1 (average between 2.25 s and 3.75 s), giving an average speed of 102 nm s−1.

doi:10.1371/journal.pone.0140759.g010
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demonstrate that failure to do so leads to an inconsistency on stationary beads, (Fig 1), while
use of the noiseless model on the LFA-1 trajectory data results in a doubling of the detection
frequency of switching within trajectories (S2 Table). In part this is a consequence of the low
signal to noise ratio in this data. An alternative method to deal with this low S/N is to subsam-
ple the data so that the signal is larger (S9 Fig). For example, modelling displacements over 4
time points reduces the effect of measurement noise. This unfortunately reduces the sample
size so a balance is needed between increasing the S/N without losing too much data. We sub-
sampled by applying a criteria per trajectory (see S2 Text and S10 Fig). This subsampling analy-
sis gave comparative results to those obtained for the model with measurement noise on the
whole data set, specifically similar numbers of trajectories showed preference for the two-state
model while there is a high correlation in the model preference for each trajectory (S3 Table).
This consistency between these two independent methods indicates that experimental or track-
ing artifacts are present, but effectively dealt with through these two alternative strategies.

Fig 11. Comparison of parameter estimates for exact and approximate two-state diffusion models with measurement noise. (A-D) Scatter plots of
two-state parameter estimates for exact model against approximate model, for 30 trajectories preferring the approximate two-state model (fast-switching,
p̂01 > 0:1 or p̂10 > 0:1 in the exact model, trajectories removed). Line of equality is shown as dashed. Treatments: DMSO (blue asterisks), Cyto D (red
squares), PMA (black circles), PMA+Cal-I (green triangles).

doi:10.1371/journal.pone.0140759.g011
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Our methods were applied to single trajectories of LFA-1 tagged with latex beads under four
conditions; this allowed us to show that a low but significant proportion of trajectories display
within trajectory diffusion heterogeneity with switching between two distinct diffusion coeffi-
cients over a range of values (1.6 × 102 − 2.6 × 105 nm2 s−1), while the majority of trajectories
conform to an homogeneous diffusion over the time scale of the trajectory. By treating each
trajectory individually, rather than pooling trajectories in the analysis, we separate the hetero-
geneity due to this diffusive switching from a heterogeneity across trajectories, i.e. there are
considerably more than two diffusive states. Previous LFA-1 studies that have pooled trajectory
data miss a large component of this variability because pooling averages the heterogeneity.
Basic trends are however consistent between the approaches, for instance Das et al., [32] dem-
onstrated switching between two states which are comparable to our estimates (e.g. 8.5×104

nm2s−1 and 3.1 ×104 nm2s−1 for DMSO treatment). Three states of LFA-1 mobility have also
been previously reported—“stationary”, “slow” and “fast” with estimated diffusion coefficients
1.4 ± 0.1 × 104 nm2 s−1 and 5.6 ± 0.2 × 104 nm2 s−1 for the slow and fast components respec-
tively [36]. These are broadly in agreement with the two main peaks in the diffusion coefficient
distribution (Fig 6A). However, our analysis demonstrates that fine detail of particle behaviour
can be detected in single trajectories, in particular the diffusion coefficients can be estimated
with high confidence thereby demonstrating that there is a large variability between the mobili-
ties in individual trajectories (Fig 7). The interpretation of the distribution of observed (mobile)
diffusion coefficients, (Figs 5E and 6) is subjective, for instance two Gaussians could be fitted to
model the main peaks in Fig 6A, thereby splitting the mobile trajectories into what could be
interpreted as slow and fast populations. However, as we demonstrate here the variability is not
due to measurement noise, but is intrinsic to the tagged-LFA-1 molecules, our confidence
intervals per trajectory being much smaller than the range. Thus, we prefer to interpret this as
a graded diffusion coefficient in a continuum. We demonstrated that for LFA-1 there is switch-
ing between diffusion states on time scales of 10–100 ms, consistent with previous analyses,
[21, 32]. The former demonstrated confinement within single trajectories, corresponding to
our observation of the diffusion coefficient being reduced by a factor of 1.6–23.2 under switch-
ing (S11 Fig). However, our analysis extracts finer details than these two studies, specifically we
show that there are multiple categories of behaviour, a low diffusion state consistent with
immobility, and a sequence of higher diffusion states; the existence of more than two states was
hinted at in the analysis of [32].

The high variability of the estimated diffusion coefficients among both fast and slow trajec-
tories may provide biological insight into the organisation of LFA-1 in the membrane. Cluster-
ing and cytoskeletal contacts are central to the regulation of LFA-1 in the membrane [51].
Previous work has found that the movement of clusters on live cells is dependent on the con-
formation of the receptor [5, 41]. We propose that the multi-state diffusion observed in the
current analysis is a result of changes in the size of clusters, or the number of cytoskeletal con-
tacts for those clusters. The relationship in Fig 7A suggests that the switching events we are
detecting are all due to a common process. One interpretation is that we are observing diffusing
aggregates of LFA-1, either in protein islands [52], or due to multiple attachments of LFA-1
molecules with the bead, a change in the aggregate size by 1 corresponding to a switch in the
diffusion coefficient. We hypothesise that the diffusion coefficient reflects the size of the aggre-
gate; the cross section of a receptor or complex in the membrane has a predictable effect on its
diffusion [53]. However, the variability in the (high) diffusion coefficients that we observe is
inconsistent with this process alone. Since diffusion coefficients are observed along the straight
line in Fig 7A, there is an heterogeneity that determines the diffusion coefficient by smaller
increments, and is presumably also responsible for the large variability in the switching fre-
quency, (Fig 8). We thus have a hierarchy of processes: on time scales less than 4 s we observe
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changes in the aggregate size producing large changes in the diffusion coefficient according to
Fig 7A, and these aggregates are also affected by a slower process that results in a finer hetero-
geneity (Figs 6 and 12). A potential mechanism is cytoskeletal attachment, with the number of
attachments increasing with aggregate size thereby increasing the drag, and a sufficiently large
number of these interactions making the receptor aggregate immobile, giving an interpretation
of the non-zero intercept of the D0/D1 relationship in Fig 7. This is consistent with calpain inhi-
bition having the highest level of immobility, Table 1, since calpain cleaves the talin head
domain and releases LFA-1 from the cytoskeleton [42]. The fact that the mobile diffusion coef-
ficient is reduced under calpain treatment, Table 1, also supports the fact that cytoskeletal
interactions are contributing to the aggregate drag. We also demonstrated that the immobile
states (detected predominantly as immobile throughout) typically have a slow linear drift, with
speeds of around 110 nm s−1. We suggest that these correspond to LFA-1 (possibly clusters)
strongly bound to the actin cortex, and these drift phases correspond to cortex remodelling
under actin (de)polymerisation, myosin contraction or retrograde flux, [50]. Such drift was
also detected by MSD analysis as super-diffusion (α> 1) [5].

Alternative interpretations are possible, we cannot discount the possible effect of the multi-
valent probe on the experiment. It is possible that changes in diffusive states are the result of
different numbers of contacts between the probe and receptors in the membrane. Resolving
these issues will require a larger amount of data, of the order of 100s of trajectories, and ideally
across different sized and variable Ab density beads.

Our analysis thus highlights the importance of large trajectory databases, with trajectory res-
olution and length reflecting the dynamics of the system. Quantum dots are an attractive
option, since they are smaller than typical labelling molecules, and provide long trajectories
[26, 54]. Ideally data on different tagging regimes is also needed to distinguish tag artifacts
from molecule dynamics. With such data, sophisticated (HMM) models of temporal heteroge-
neity can be utilised, extending for instance to multi-diffusion states, confinement zones and
drift, implemented with the algorithms and techniques demonstrated here to analyse individ-
ual trajectories. These methods applied to large trajectory databases of long high-resolution tra-
jectories will be an important contribution to the understanding of the complexity of
membrane organisation and the multiple diffusion modalities present in cells [8].

Supporting Information
S1 Text. Supplementary mathematical derivations. Step by step calculation of likelihoods,
marginal likelihoods, and MCMC algorithms, for one-state and two-state diffusion models
described in the Methods section.
(PDF)

Fig 12. Observed variation in the diffusion coefficient of LFA-1 in single particle tracking trajectories,
with proposedmechanisms.
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S2 Text. Subsampling trajectories to reduce the effect of measurement noise. Justification
and description of the subsampling approach described in the Discussion.
(PDF)

S1 Files. Single particle tracking trajectories in MAT and HDF5 file formats. All trajectories
are 1000 frames s−1. Treatments: DMSO, 75 trajectories of length 4 s; Cyto D, 36 trajectories of
length 4 s; PMA, 39 trajectories of length 4 s; PMA+Cal-I, 46 trajectories of length 4 s; station-
ary beads, 3 trajectories of length 2 s.
(ZIP)

S1 Algorithms. Pseudocode for algorithms. Pseudocode for one-state and two-state diffusion
model MCMC algorithms.
(PDF)

S1 Table. Model selection results for different Bayes factor thresholds.
(PDF)

S2 Table. Influence of noise and S/N on model selection preferences between one-state and
two-state diffusion models on LFA-1 data (157 trajectories).
(PDF)

S3 Table. Comparison of model selection for approximate measurement noise models and
subsampled trajectories.
(PDF)

S1 Fig. Fit of the exact two-state diffusion model with measurement noise to a simulated
two-state diffusion trajectory. (A) The posteriors for the two diffusion coefficients with true
D1 (red square) and D0 (blue asterisk) values plotted, (B) corresponding samples for D0 (red)
and D1 (blue) including burn-in (dashed line). (C) Posteriors for the switching probabilities
per frame, with true p01 (blue asterisk) and p10 (red square) values plotted (D) corresponding
samples for p01 (red) and p10 (blue) including burn-in (dashed line). (E) Diffusion state infer-
ence (blue, dashed) and true state (red) shown as the probability of being in the low diffusion
state. (F) Trajectory coloured by the probability of being in the low diffusion state. Colour scale
represents π(z = 1jX) from 0 (blue, high diffusion state) to 1 (green, low diffusion state). Color-
bar length: 100nm. (G,H) Mean inferred position of U (blue, dashed) and true particle position
(red). Simulated measurement noise and measurement noise for inference both set to σ2 =
41.09nm. Data from 20000 MCMC steps with a 10000 step burn-in. See Methods for priors
and initial conditions.
(EPS)

S2 Fig. Diffusion coefficients separated by a factor of 1.5 can be detected on the exact two-
state diffusion model with measurement noise. (A-D) The posteriors for the two diffusion
coefficients with true D1 (red square) and D0 (blue asterisk) values plotted; true D0, D1 differ by
a factor of 1.5 (A,C) and 2 (B,D), with low (A,B) and high (C,D) diffusion coefficients. (E-H)
Corresponding diffusion state inference (blue, dashed) and true state (red) shown as the proba-
bility of being in the low diffusion state. The transition probabilities for all trajectories were p01
= 0.005, p10 = 0.005. Measurement noise set to σ2 = 41.09nm for both the simulated data and
inference algorithm. Trajectories comprise 4000 frames. Data from 20000 MCMC steps with a
10000 step burn-in. See Methods for priors and initial conditions.
(EPS)

S3 Fig. Model selection between one-state and two-state diffusion models with measure-
ment noise on simulated trajectories. Box and whisker plots of log Bayes factors for simulated
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datasets (trajectories are length 4 s with 1000 frames s−1). Trajectories with log Bayes factor
outside 1.5 times IQR are plotted as outliers (red crosses). (A) Parameters for simulated data
(50 trajectories for each model): two-state and two-state with noise, D0 = 105 nm2s−1, D1 =
2 × 104 nm2s−1, p01 = 0.01, p10 = 0.01; one-state and one-state with noise, D = 105 nm2s−1. (B)
Parameters for simulated data (20 trajectories for each model): two-state and two-state with
noise, D0 = 5 × 105 nm2s−1, D1 = 2 × 104 nm2s−1, p01 = 0.01, p10 = 0.01; one-state and one-state
with noise, D = 5 × 105 nm2s−1. Measurement noise in the simulations was σ2 = 41.09 nm.
MCMC runs were 20000 steps with a 10000 step burn in, with measurement noise fixed as σ2 =
41.09 nm.
(EPS)

S4 Fig. Posterior estimates of diffusion coefficients for single LFA-1 trajectories. (A-D)
Pooled posterior samples of loge D for trajectories preferring the one-state diffusion model.
The posterior means (blue circles) are also shown. Black line indicates value of σ2/2Δt. Treat-
ments: (A) DMSO, one-state model preferred for 51 trajectories; (B) Cyto D, 22 trajectories;
(C) PMA, 23 trajectories; (D) PMA+Cal-I, 36 trajectories.
(EPS)

S5 Fig. Fit of the approximate two-state diffusion model with measurement noise to an
LFA-1 trajectory (PMA+Cal-I treatment). Compare to Fig 3 fitting the exact noise model to
the same trajectory. (A) The posteriors for the two diffusion coefficients, (B) corresponding
samples (12 independent chains plotted in the same colour) for D0 and D1 including burn-in
(dashed line), (C) posteriors for the switching probabilities per frame, (D) corresponding sam-
ples (12 chains) for p01 and p10 including burn-in (dashed line), (E) State inference shown as
the probability of being in the low diffusion state, (F) trajectory coloured by the probability of
being in the low diffusion state. Colour scale represents π(z = 1jX) from 0 (blue, high diffusion
state) to 1 (green, low diffusion state). Colorbar length: 100nm. Data from 12 parallel chains of
20000 MCMC steps with a 10000 step burn-in. Priors, see Methods.
(EPS)

S6 Fig. Comparison of hidden state inference for the exact and approximate two-state dif-
fusion models with measurement noise. (A) Correlation between inferred hidden state z for
each model, pooled across all treatments for 30 trajectories preferring the approximate two-
state model (fast-switching, p̂01 > 0:1 or p̂10 > 0:1 in the exact model, trajectories removed).
(B) Example hidden state posterior for approximate two-state model (blue) and exact two-state
model (red) for a single trajectory (PMA+Cal-I treatment).
(EPS)

S7 Fig. Posterior estimates of diffusion coefficients from fitting approximate two-state dif-
fusion model with measurement noise to LFA-1 trajectories. (A-D) Pooled posterior samples
of loge D (blue lines) for trajectories with one-state diffusion model preference, or loge D0 (red
lines) and loge D1 (green lines) for trajectories with two-state diffusion model preference (fast
switching, p̂01 > 0:1 or p̂10 > 0:1, trajectories removed). Also plotted are the posterior means
of loge D for each trajectory with one-state model preference (blue circles), and posterior
means of loge D0 (red squares) and loge D1 (green triangles) for each trajectory with two-state
model preference. Black line indicates value of σ2/2Δt. Treatments: (A) DMSO, one-state
model preferred for 51 trajectories, two-state model preferred for 14 trajectories; (B) Cyto D,
22 one-state, 5 two-state; (C) PMA 23 one-state, 14 two-state (D) PMA+Cal-I, 36 one-state, 7
two-state. (E) Pooled loge D estimates and posterior means for each trajectory over all treat-
ments for trajectories where one-state diffusion model was preferred.
(EPS)
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S8 Fig. Dependences of parameter estimates from approximate two-state diffusion model
with measurement noise. (A-D) Scatter plots of posterior means of stated parameters for
approximate two-state model with measurement noise inference, for trajectories where the
approximate two-state diffusion model was preferred, (fast switching, p̂01 > 0:1 or p̂10 > 0:1,
trajectories removed). Treatments: DMSO, blue asterisks; Cyto D, red squares; PMA black cir-
cles; PMA+Cal-I, green triangles. In panel (A) the black solid line is a linear fit with two outlier
trajectories removed, D1 = aD0 + b, a = 0.57, b = −1.3 × 104 nm2 s−1; black dashed line is double
iterate, D1 = a(aD0 + b) + b.
(EPS)

S9 Fig. Signal to noise against subsampling rate for LFA-1 trajectories. The “signal” is the
average variance of individual displacements of LFA-1 trajectories over all treatments, and the
“noise” is the average variance of individual displacements for three stationary latex bead tra-
jectories. Trajectories were subsampled at rate n by including only every nth timepoint, giving
a trajectory of length bNnc.
(EPS)

S10 Fig. Mean square displacement plots for three SPT trajectories. Red line is the straight
line fit to the optimum number of MSD points to use when estimating the diffusion coefficient
D [15]. (A) Stationary latex bead. (B) Slow diffusing LFA-1 trajectory (PMA+Cal-I treatment).
(C) Fast diffusing LFA-1 trajectory (PMA+Cal-I treatment).
(EPS)

S11 Fig. Posterior estimates of D0/D1 ratio for the two-state diffusion model with measure-
ment noise fitted to LFA-1 trajectories. Posterior mean D0/D1, for trajectories where two-
state diffusion model was preferred, pooled across treatments (fast switching, p̂01 > 0:1 or
p̂10 > 0:1, trajectories removed).
(EPS)
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