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Abstract

Dissolved organic matter (DOM) is a ubiquitous component of aquatic systems, impacting

aquatic health and drinking water quality. These impacts depend on the mixture of organic

molecules that comprise DOM. Changing climates are altering both the amount and charac-

ter of DOM being transported from the terrestrial system into adjacent surface waters, yet

DOM composition is not monitored as often as overall concentration. Many DOM characteri-

zation methods exist, confounding comparison of DOM composition across different stud-

ies. The objective of this research is to determine which parameters in a suite of relatively

simple and common DOM characterization techniques explain the most variability in DOM

composition from surface and groundwater sites. Further, we create a simple visualization

tool to easily compare compositional differences in DOM. A large number of water samples

(n = 250) was analyzed from six Canadian ecozones for DOM concentration, ultraviolet-visi-

ble light absorbance, molecular size, and elemental ratios. Principal component analyses

was used to identify quasi-independent DOM compositional parameters that explained the

highest variability in the dataset: spectral slope, specific-UV absorbance at 255nm, humic

substances fraction, and dissolved organic carbon to dissolved organic nitrogen ratio. A

‘Composition Wheel’ was created by plotting these four parameters as a polygon. Our

results find similarities in DOM composition irrespective of site differences in vegetation and

climate. Further, two main end-member Composition Wheel shapes were revealed that cor-

respond to DOM in organic-rich groundwaters and DOM influenced by photodegradation.

The Composition Wheel approach uses easily visualized differences in polygon shape to

quantify how DOM evolves by natural processes along the aquatic continuum and to track

sources and degradation of DOM.

Introduction

Dissolved organic matter (DOM) is a pervasive component of aquatic environments and an

important determinant of overall water quality and ecosystem function. For example, DOM

dictates light, thermal, and pH regimes within lakes [1], complexes with and mobilizes metals
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[2], and acts as an important redox constituent for biogeochemical reactions [3]. Further,

DOM affects drinking water quality through taste, odour, and colour [4], consumption of

added oxidizing chemicals, and reactions with chlorine during drinking water treatment pro-

cesses to form carcinogenic disinfection by-products [5]. The overall reactivity of DOM is

determined by its mixture of thousands of organic molecules with differing structural and

chemical characteristics. Increased DOM concentrations have been observed in surface waters

across the United Kingdom, Europe, and North America [1, 6] and linked with declines to

water transparency [1, 7], that may, in turn have significant effects upon future drinking water

treatment options [8, 9]. Yet, little information is found on the processes that dictate DOM

composition and its impact on the surrounding environment [10]. Hence, quantifying changes

to both the amount and composition of DOM across temporal and spatial scales allows for a

better understanding of future changes to DOM and its influence upon water quality.

Both concentration and composition of DOM are used to identify the source, quality, and

fate of DOM within the environment. The overall DOM concentration is operationally quanti-

fied by the concentration of carbon in molecules passing through a chosen filter size (generally

between 0.2 and 0.7 μm), whereas DOM composition refers to the mixture of organic mole-

cules that comprise it. Differences in DOM composition have been used to quantify hydrologic

mixing and changes to redox potential [11]. Various options are available to characterize

DOM composition, but many are expensive, analyze only a subfraction of the DOM, require

complicated analysis, or are not widely accessible. For instance, Fourier transform ion cyclo-

tron resonance mass spectrometry (FT-ICR-MS) analyses provides insightful and novel infor-

mation on DOM composition [12, 13] but is not readily available. Alternatively, a number of

common and simple measures can provide compositional information on bulk DOM. Ultravi-

olet and visible light absorbance are used to estimate aromaticity and molecular size of light-

absorbing DOM [14–16], while fluorescence provides information on the amount of humic

and proteinaceous DOM [17, 18]. Simple elemental ratios, such as dissolved organic carbon to

dissolved organic nitrogen, indicate DOM lability [19], whereas comparison of various molec-

ular weight groupings can identify differences in DOM sources or processes (i.e. large humic

substances from soil-derived sources versus low-molecular weight components from enhanced

degradation) [20]. Thus, various characterization techniques can provide a holistic representa-

tion of the components that comprise DOM.

Dissolved organic matter is the net product of varying sources and degrees of processing at

a point within the watershed. Quantifying changes to DOM composition along a hydrologic

continuum can provide information on dominant sources or processes that influence DOM

evolution [21]. For instance, DOM sampled from organic-rich substrates typically has high

concentrations of large molecular weight, aromatic DOM, while enhanced processing in

groundwaters shifts DOM towards smaller components [22–24]. Soil-derived DOM character-

istics dominate in headwater streams across various climatic regimes, as shown by higher UV-

absorbing properties and higher molecular weight components [18, 21]. Conversely, exposure

to sunlight and in-situ DOM production within surface waters produces DOM with lower

UV-absorbing, low-molecular weight components [15]. Once in the aquatic system, differ-

ences in DOM composition, or intrinsic controls, are thought to dictate DOM fate more-so

than extrinsic controls such as temperature, nutrients, and sunlight exposure [25]. Soil-derived

aliphatic components of DOM are preferentially lost as water moves from subsurface to sur-

face waters, at which point aromatic, high-nominal oxidation state DOM becomes further

degraded along the fluvial network to more aliphatic, low nominal oxidation state DOM [12,

25]. Increased degradation and processing of DOM along the hydrologic continuum reduces

its chemodiversity, with persistence of specific components linked to the original DOM com-

position [25–27]. Hence, compositional measures can be used to better understand how DOM
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composition varies, and the potential sources or processes that have resulted in the specific

mixture of DOM at that point of sampling.

Recent progress in the understanding of DOM and carbon cycling has led to recognition of

the importance of characterizing DOM composition along with concentration. Although char-

acterization techniques have improved [28], the final synthesis and discussion of various com-

positional DOM measures has generally relied on a matrix of scatter plots, requiring the user

to jump between graphs and build the comparison themselves. Given the direct impact of

DOM composition on water treatment and aquatic health, there is a need to relay composi-

tional information in an efficient and understandable manner to inform policy decisions. This

can be difficult if numerous graphs are needed in order to compare DOM differences, all with

units and scales specific to the method, especially if the target audience has little knowledge of

carbon chemistry or the characterization techniques.

Clear communication of science and its relevance to society is increasing in importance for

both informing the general public and supporting evidence-based policy decisions. Effective

data visualization can reduce the cognitive load required to understand and retain new knowl-

edge [29, 30], creating an accessibility to science that enhances scientific literacy [31–33].

Recently, scientists and graphic designers have collaborated to utilize large datasets and trans-

late data-driven conclusions using novel, creative techniques [34, 35]. In terms of DOM com-

position, graphics have not moved beyond various scatter plots. Further, comparison of

different DOM composition metrics have generally focussed on single hydrological environ-

ments (i.e. solely lakes [26] or rivers [36]) or on one or two measures across spatial scales or

varying environments. Given the complex mixture of organic compounds, and that different

measures of DOM composition record different attributes, the combined use of several com-

plimentary measures may provide a better characterization of DOM [37] and enhance public

outreach through presentation as a simple, effective image.

The objectives of this study are to select the best suite of readily accessible DOM characteri-

zation techniques, and to create a simple, effective visual tool that can be used to illustrate and

discuss differences in DOM composition across environmental gradients. These objectives will

be accomplished in three parts: 1) determine which broadly-used measures of DOM composi-

tion capture the most variability within a dataset of surface and groundwater sites in various

Canadian ecozones (groupings of similar areas of biodiversity [38]), 2) create a visualization

tool to allow facile comparison of DOM from different samples based upon a set of quasi-inde-

pendent composition measures, and 3) use the tool to explore DOM composition resulting

from differences in hydrological setting and climate across a range of northern environments.

Methods

Sites & sampling

Locations were selected where DOM was expected to differ due to differences in surrounding

watershed characteristics (e.g. land use, wetland coverage, climate, and vegetation). Various

surface and groundwater samples were collected between June to October from the Northwest

Territories (Yellowknife, Wekweètı̀, Daring Lake), high arctic Nunavut (Lake Hazen Water-

shed), and Ontario (IISD-Experimental Lakes Area) (Fig 1; S1 Table). Surface water samples

were collected 0.25 m below the surface from lakes, rivers, creeks, and ponds. Groundwater

samples from northern locations (Yellowknife, Wekweètı̀, Daring Lake, Lake Hazen) were col-

lected from the deepest extent of the mid-summer active-layer, just above the permafrost

boundary (0.1 to 0.5 m below surface). Additional samples were collected from Turkey Lakes

Watershed (ON), Nottawasaga River Watershed (ON), Grand River (ON), Mackenzie River

(NT), and Black Brook Watershed (NB) to expand the ranges of individual composition
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measures but only overall DOM concentration and select composition metrics are available at

these sites (Fig 1; S1 Table). A total of 250 samples were collected and analysed in this study.

Surface water samples were collected using a 60 mL syringe and filtered in-field using

0.45 μm syringe-tip filters (Whatman GD/X 45mm) into 40 mL acid-washed, pre-rinsed glass

vials. Groundwater samples were collected using a peristaltic pump with an attached 0.45 μm

syringe-tip filter. Vials and filters were pre-rinsed with filtered sample water before collection.

Samples were kept cool (<4˚C) and in the dark until analysis at the University of Waterloo

within three weeks of collection.

DOM quantity & composition analyses

Dissolved organic carbon and total nitrogen concentrations were measured using a Shimadzu

Total Organic Carbon (TOC-L) Combustion Analyzer with TNM-1 module. Dissolved

organic nitrogen (DON) was calculated as the difference between total dissolved nitrogen con-

centration and the sum of inorganic nitrogen species (nitrate, nitrite, and ammonium). Inor-

ganic nitrogen species were measured using SmartChem 200 Automated Chemistry Analyzer

(Unity Scientific, MA United States). The DOC:DON ratio was calculated using molar concen-

trations of DOC (MC) and DON (MN).

Fig 1. Locations of sampling sites and ecozones. River locations (Grand River, ON; Mackenzie River, NT) are labelled at the mouth of the river.

https://doi.org/10.1371/journal.pone.0253972.g001
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Absorbance was measured in a 1 cm cuvette using a Cary 100 UV-VIS Spectrophotometer

(Agilent, CA United States) at 5 nm increments from 200 to 800 nm. Deionized water was

used to zero the instrument and run intermittently during analyses to correct for baseline

drift. The Naperian absorption coefficient (a; m-1) was calculated using:

al ¼
lnð10Þ � Al

L

where A is the baseline-corrected absorbance at wavelength λ and L is the cell length (m). A

suite of absorbance characteristics were then calculated (Table 1).

Molecular-size based fractions of DOM were determined using a size exclusion chromatog-

raphy technique (Liquid Chromatography–Organic Carbon Detection, LC-OCD) at the Uni-

versity of Waterloo. Detailed instrument setup and analysis is described elsewhere [20].

Briefly, the sample was injected through a size-exclusion column (SEC; Toyopearl HW-50S,

Tosoh Bioscience) that separated DOM based on hydrodynamic radii into five hydrophilic

fractions (from largest to smallest): biopolymers (BP; polysaccharides or proteins), humic sub-

stances fraction (HSF; humic and fulvic acid fraction), building blocks (BB; lower weight

humic substances), low molecular weight neutrals (LMWN; aldehydes, small organic materi-

als), and LMW-acids (LMWA; saturated mono-protic acids). A portion of the sample by-

passes the SEC for determination of the overall DOC concentration, here referred to as DOM

concentration in mg C/L. A number average molecular weight was derived only for the HSF

based on elution time. Duplicates run at six concentrations yield a precision for the LC-OCD

Table 1. Dissolved organic matter composition as described by chemical, absorbance, and molecular-size based measures used in this study.

Measure (common abbreviation) Equation Unit Characteristic Reference

Chemical
DOC:DON MC�MN - Stoichiometry [19]

Absorbance
E2:E3 A255�A365 - Inversely related to molecular size [39]

E4:E6 A465�A665 - Humic molecular weight and size [40]

SAC350
lnð10Þ�A420=L
½DOC�

cm2

mg� C� 103 Specific absorbance at 350 nm and attributed to colour [41]

SAC420
lnð10Þ�A420=L
½DOC�

L
mg�m Specific absorbance at 420 nm

SUVA lnð10Þ�A255=L
½DOC�

L
mg�m Correlated to degree of aromaticity [14]

S275-295 al ¼ al275
e� Sðl� 275Þ nm-1 Inversely related to MW (where S is the slope) [15]

S350-400 al ¼ al350
e� Sðl� 350Þ nm-1 Used with S275-295 to calculated SR [15]

SR
S275� 295

S350� 400

- Inversely related to overall molecular weight; integrative indicator of light-

absorbing DOM history

[15]

Size Exclusion Chromatography
Biopolymers (BP) - % of

DOM

Polysaccharides, proteins [20]

Humic substances (HSF) - % of

DOM

Humic or fulvic-like components [20]

Building Blocks (BB) - % of

DOM

Degraded HS [20]

Low-molecular weight neutrals

(LMWN)

- % of

DOM

Aldehydes, small organic materials [20]

Low-molecular weight acids

(LMWA)

- % of

DOM

Saturated mono-protic acids [20]

HS molecular weight (HS MW) - g / mol Nominal average molecular weight of HS [20]

https://doi.org/10.1371/journal.pone.0253972.t001

PLOS ONE Visualizing differences in dissolved organic matter composition

PLOS ONE | https://doi.org/10.1371/journal.pone.0253972 July 9, 2021 5 / 19

https://doi.org/10.1371/journal.pone.0253972.t001
https://doi.org/10.1371/journal.pone.0253972


of<0.1 mg C/L for all fractions. Concentrations of each fraction were calculated using special-

ized software (ChromCALC, DOC-Labor, Germany) that integrated chromatograms from the

LC-OCD.

Statistical analyses & composition wheel design

Samples from sites with multiple sampling events were averaged to create a single value per

site. Data were analysed using unconstrained ordination analysis via principal components

analysis (PCA) on a subset of samples that contained all composition measures listed in

Table 1 (subset n = 130). Data were scaled before PCA and analysed using R Statistical Soft-

ware [42].

The Composition Wheel (CW) is a polygon drawn from axes of various composition mea-

sures that are independent of DOM concentration in order to focus solely on differences in

DOM composition. Composition Wheel parameters were chosen based on the highest contri-

bution of variables explaining the first two principal component axes (S1 Fig). Further, inde-

pendent measures of DOM composition were preferentially chosen to minimize overlap in

information between similar techniques. Each CW axis corresponds to a specific parameter.

For each axis, the individual value for each sample is normalized as a value between the maxi-

mum and minimum encountered for that parameter within the dataset. All R code and data

used to create the DOM CW, manuscript figures, and statistical analyses can be found at

https://github.com/paukes/DOM-Comp-Wheel.

Results

DOM concentration & composition

DOM concentrations ranged from 0.1 to 273 mg C/L, with highest mean values in boreal

groundwater, pond, and creek samples (Fig 2; S1 File). The highest DOM concentrations were

found in groundwater environments in Yellowknife, while the lowest concentrations were

found in high arctic environments (Fig 2). High arctic seeps, rivers, and lakes also generally

had the lowest average DOC:DON values, but higher average specific ultra-violet absorbance

at 255 nm (SUVA), spectral slope (S275-295), and HSF values than other locations. SUVA and

spectral slope values covered the known range as described broadly in the literature (SUVA:

1.1 to 21 L/(mg�m); spectral slope: 0.005 to 0.032 nm-1). Highest SUVA values (>11 L/

(mg�m)) were found at two sites: the anoxic bottom of a boreal lake and in the high arctic

groundwater, but absorbance may be affected by high iron concentrations [14, 43]. These two

sites have unusually high iron concentrations and were not included further in the discussion.

Values of DOC:DON ranged between 9 to 124, and were lowest in rivers and high arctic sam-

ples. Humic substances fraction (HSF) ranged from 14% to 85% and on average were lowest in

lakes. Overall, groundwater samples contained the highest DOC:DON and HSF values, and

lowest S275-295. Hence, both DOM concentration and composition varied across geographic

scales and hydrological environments.

PCA on DOM composition measures

The first three principal component axes explained 66% of the variance in DOM composition

using the measures contained in the dataset, with PC1 and PC2 accounting for 54% of the vari-

ability (Fig 3). Comparison of the first two principal components (PC) yield four distinct

groupings of strongly-contributing measures: I) SUVA, SAC420, SAC350; II) HSF, HS MW; III)

S275-295, E2:E3, and SR; and IV) BB, LMWN, and BP. Groups I and II were negatively associated

to groups III and IV. Highest contributions to PC1 and PC2 axes were HSF, SAC350, SAC420,
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SUVA, and S275-295. Variables with contribution to PC1 and PC2 lower than 2% were E4:E6,

DOC:DON, S350-400, and LMWA (S1 Fig). Absorbance parameters normalized to DOM con-

centrations (SAC350, SAC420, and SUVA) all plotted closely to each other and trended posi-

tively with measures of HSF, HSF molecular weight, and DOC:DON. Absorbance techniques

plotted perpendicular to LC-OCD size fractions (Fig 3).

Based on contribution to the first two PC axes, we selected four DOM composition mea-

sures to define DOM composition. Further, these selected measures are quasi-independent as

Fig 2. Compositional measures versus total DOM concentration. Measures include A) SUVA, specific ultraviolet absorbance at 255 nm, B) S275-295, spectral slope

between 275 to 295nm, C) DOC:DON, and D) HSF; humic substances fraction. Colours represent geographical sampling locations (HZ: Lake Hazen Watershed, NU; DL:

Daring Lake, NT; WK: Wekweètı̀, NT; YK: Yellowknife, NT; MR: Mackenzie River, NT; ELA: IISD-Experimental Lakes Area, ON; TLW: Turkey Lakes Watershed, ON;

NW: Nottawasaga River Watershed, ON; GR: Grand River, ON; LP: Long Point, ON; BBK: Black Brook Watershed, ON) while shapes represent hydrologic environments.

Light grey circles represent two other published DOM characterization studies conducted at similar scales [16, 44].

https://doi.org/10.1371/journal.pone.0253972.g002
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they are based on different analytical principles or attributes (SUVA, S275-295: two different

absorbance aspects; HSF: size-exclusion chromatography; DOC:DON: stoichiometry).

Although the absorbance at different wavelengths within a sample are closely related [21], they

can be used to provide different information on DOM components as one characterizes the

amount of UV-absorbing components normalized to DOM concentration at a specific wave-

length (SUVA) while the other is associated with the shape of the absorbance spectra and var-

ies with the distribution of DOM molecular weights (S275-295). These four measures include

three high-contributing variables to PC1 and PC2 axes (HSF, SUVA, and S275-295). The length

of the CW axis, and thus CW size, is dictated by the range of each compositional measure

encountered in the entire dataset. Composition Wheels are then used as a basis for comparing

DOM.

Shapes of Composition Wheels

Different environments are characterized by CW different shapes. Ponds and lakes tend to

have lower values of SUVA and DOC:DON and higher S275-295, resulting in a triangle shape

elongated to the top-right corner (Fig 4). Groundwater DOM samples form a trapezoidal

shape due to higher HSF and SUVA values than other sites. Differences in shape are found

within locations between different hydrologic settings whereas similarities in shape are

found within hydrological setting across locations. For instance, Yellowknife pond sites are

similar in shape to groundwater DOM, while the creek, lake, and river shapes reflect DOM

with higher S275-295, lower DOC:DON, and lower HSF. Representation of different mea-

sures using these shapes allows for a facile comparison of DOM composition among

samples.

Shapes also help to visualize and highlight the most extremes in DOM composition for each

location. The spread of compositions is not evenly distributed between such extreme shapes at

any given site but sampling was not targeted a priori based on shape. Most surface water sites

contained a range in DOM composition between these extremes, forming either shapes similar

to groundwater DOM or thin, elongated triangles in the S275-295 direction. For this reason,

Fig 3. Principal component analyses for samples from different ecozones. Grey dots represent individual samples,

while vectors represent absorbance (red), elemental (green), and LC-OCD (purple) compositional measures.

https://doi.org/10.1371/journal.pone.0253972.g003
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extremes were highlighted in sites with many different shapes to help identify a continuum of

possible DOM sources or mixtures (Fig 4). Further, some sites did not conform to these end-

members, as seen by the ELA creek sample with high DOC:DON, allowing easy identification

of anomalous data or sites that may warrant further investigation.

Fig 4. Composition Wheels for DOM from different hydrologic settings within each geographical site. Axes are a numerical value normalized relative to

the maximum and minimum encountered within the dataset for each parameter. Parameters for each axis found in bottom left. The orientation of the

composition wheel (CW) axes are arbitrary. Different samples from the same hydrological and geographic setting are plotted within the same CW. Two ‘end

member’ compositions are highlighted in sites with many samples to help visualize the continuum of DOM mixtures: groundwater-like DOM (low DOC:

DON, high SUVA and HSF) or photolyzed DOM (high S275-295).

https://doi.org/10.1371/journal.pone.0253972.g004
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Discussion

Comparison of DOM composition measures

Ranges in individual measures of DOM composition are large at both low and high concentra-

tions of DOM (Fig 4, S2 Table) making it difficult to consistently separate sites or hydrological

environments across different measures. For instance, accounting for both DOM concentra-

tion and DOC:DON may help differentiate some locations, but the range in DOC:DON values

across moderate DOM concentrations covers most sites (Fig 2). Hence, new techniques that

simultaneously consider different aspects of DOM composition, and are independent of con-

centration, are needed to compare variations in DOM composition across sample types and

environments.

Different characterization techniques provide different information on DOM. In particular,

the perpendicular relationship between absorbing and non-absorbing parameters observed

among the first two PC axes indicate a range in different DOM properties are captured. For

instance, all ELA creeks contain high and similar HSF values, yet we can use absorbance tech-

niques based on molecular weight or UV-absorbing capability (via SUVA; Fig 2) to differenti-

ate between these samples. However, correlations between size-based and absorbance

parameters do not mean causation. For example, higher SUVA values are not consistently

related to HSF proportions even though this is often assumed based on the higher aromaticity

and UV-absorbing capabilities of humic material [14, 45]. Daring Lake creeks have high

SUVA but low HSF. Although absorbance parameters are easily measured and helpful in com-

paring different DOM compositions, they do not accurately reflect non-absorbing compo-

nents (e.g. stoichiometry or functional groups) that could differ among samples.

Effects of DOM processes and CW end members

Similar DOM CW shapes were found within hydrologic settings even though samples were

collected from sites with varying climates and vegetation, spanning areas of boreal shield

watersheds (IISD-ELA) to high arctic (Lake Hazen). Further, the range in values across the

four CW measures compared well with DOM from other studies (i.e. similar DOM concentra-

tions and SUVA values to rivers in the United States [16, 44] and Canadian boreal lakes [46])

indicating that DOM composition and CW shape may not be unique to its locale. The similar-

ity in CW shapes across different locations may result from analogous drivers of DOM fate.

For instance, the proportion of biodegradable DOM was found to be a function of DOM com-

position and nutrients, rather than ecosystem or region-specific characteristics [47], suggesting

that differences in the quality of DOM may not result from location alone. Hence, CWs can be

used to amalgamate different compositional measures and quantify similarities in DOM

sources and processing across a range of geomorphic, climate, and vegetation environments.

Composition Wheels can be further used to determine the degree of DOM degradation and

facilitate comparisons of change along the aquatic continuum. This requires knowledge of the

effect of processing, as well as the end-members (e.g. original sources of DOM). Microbial deg-

radation of DOM induces a shift towards higher SUVA and lower DOC:DON (Fig 5; [48–51]

but not S275-295, resulting in a distinctive effect of microbial DOM transformation on the CW.

Photolytic processing of DOM results in an increase in S275-295 values and a general decrease

in the other three DOM quality measures [52–54]. Further, photolytic degradation affects all

four compositional axes, whereas microbial degradation only affects two axes (Fig 5), indicat-

ing that certain measures of DOM composition respond differently to different DOM degrada-

tion processes. This has important implications for studies using single-characterization

techniques as some parameters may not always faithfully serve as useful surrogates for others.
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For instance, microbial degradation changes SUVA but not HSF (Fig 5), even though SUVA

has been linked to DOM aromaticity in humic substances [14]. Thus, comparative differences

in a CW can help determine the dominant processes that produce the observed DOM compo-

sition of a sample. Further, knowing the degree DOM composition changes with photolysis

allows CW to be used in a quantitative manner to quantify the amount of degradation.

Although the quantitative response of DOM sources to photo- or microbial degradation is not

yet sufficiently known across different environments, in areas where these rates of change to

individual measures have been measured, CWs can be used in a quantitative manner to assess

the extent and major processes contributing to DOM loss.

Laboratory experiments are useful to assess DOM source composition prior to extensive

biotic or abiotic processing. Although this study did not conduct analysis on leachates, various

studies have used similar DOM composition measures to identify DOM leachates. Leachates

(organic matter steeped in de-ionized water) result in either low molecular weight, low aro-

matic DOM from mosses and coniferous sources [22, 55] or large, humic, aromatic DOM

components from other plant material and deciduous leaf litter [37, 57, 58]. DOM produced

from aquatic (primary production) consists of low molecular weight, high protein and nitro-

gen content, and low UV-absorbing components and is thought to be rapidly consumed [37,

56, 59, 60]. These parameters can also be represented by a CW (Fig 5b–using a range in values

based on what is presented in literature), and provide a shape to compare DOM origins from

aquatic primary production versus terrestrial plants.

Two dominant DOM compositional end-member shapes are evident in our dataset:

groundwater DOM sources and DOM altered by photolysis. Other shapes are intermediate

between these two distinctive end-members. Degradation in groundwater in organic-rich sub-

strates allows for the accumulation of large, aromatic components of DOM (high HSF, SUVA,

and low S275-295; [61]), resulting in a large trapezoid shape CW. This trapezoid shape is consis-

tent for groundwater DOM across most sites, supporting previous groundwater studies that

attribute the narrow DOM compositional range to groundwater processing [23]. In contrast, a

Fig 5. Changes to a composition wheel resulting from photolytic and microbial degradation (left) and differences in terrestrial versus aquatic DOM sources

(right). Changes to dissolved organic matter (DOM) (grey) with photolytic (orange; 12 to 18 day exposure to sunlight) or microbial (purple; 30-day experiment)

degradation based on experimental incubations of natural DOM samples [51] (left). The mean decrease in DOC concentration was 18% during photolysis and 10% during

microbial degradation experiments (n = 11, 9; respectively). Hypothetical differences in DOM sources (right) are based on various leachate experiments in literature [22,

37, 55–59].

https://doi.org/10.1371/journal.pone.0253972.g005
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‘kite-like’ shape results from the effects of photolysis (Fig 4), resulting in DOM with lower

molecular weight and less UV-absorbing components [15]. Further, photolysis end-member

CWs are similar in shape to the end-products of photolytic experiments (Fig 5; [51]), and are

clearly seen in surface waters across all sites (Fig 4). Hence, these end-member shapes may

constrain the possible range in CW shapes that can be found within aquatic environments.

The groundwater/photolysis end-member categorization frames our conceptual model (Fig

6) that quantifies how the two end-member CW shapes evolve depending on the aquatic-ter-

restrial hydrologic connection (Fig 6; pathway A-b) or exposure to sunlight (Fig 6. pathway

A-B). For instance, creeks with little to no processing of groundwater-derived DOM can be

identified by CW shapes similar to groundwater DOM, as seen in ELA and some Daring

Fig 6. Conceptual model of DOM evolution along the aquatic continuum using Composition Wheels. A conceptual model of a few select processes and sources of

dissolved organic matter (DOM) along the aquatic continuum. Two main hydrologic flowpaths are illustrated (A-B-C and A-b-c) and originate from the same source ‘A’.

However, each flowpath undergoes different processing within the environment. Arrows represent the transport or addition of DOM among groundwaters (dark purple)

and surface waters (light purple), while lowercase text highlights some of the specific processes and sources encountered. The wetland ‘b’ represents an area of organic

matter degradation and DOM accumulation within organic-rich groundwaters, resulting in the transport of large, aromatic DOM components into surface water ‘c’.

Conversely, DOM is rapidly transported down the river ‘B’ and into a large lake ‘C’, resulting in much higher exposure to sunlight. The use of Composition Wheels to

illustrate differences in sources and processing is shown on the bottom panel, comparing DOM from an organic-rich source with longer exposure to sunlight (A-B-C)

versus the same DOM with less sunlight exposure and greater microbial degradation (A-b-c).

https://doi.org/10.1371/journal.pone.0253972.g006
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creeks (Fig 4). ELA lakes have a wide gradient of CW shape and thus overall DOM quality (Fig

4). The use of CW to pair process-based knowledge of DOM composition with hydrologic

transport provides a framework that can be used identify key knowledge gaps (i.e. rates of deg-

radation, kinetics based on composition, relative organic source contributions, water residence

time) and quantify the relationship between DOM sources and degree of processing within the

environment.

Certain creeks and rivers from YK or WK do not fit into the end-member categories as they

contain shapes with larger right sides (higher S275-295 and SUVA than other samples), indicat-

ing other processes may be important in determining DOM composition. This may be a result

of our sampling of mostly oligotrophic systems that are dominated by terrestrial carbon. We

hypothesize that these different shapes represent surface water systems with greater in-situ, or

autochthonous, contributions of DOM, generally characterized by higher amounts of proteins

and smaller molecular weight components [62–64]. Thus, although our dataset was not com-

prehensive in terms of capturing the full range of DOM sources, the CW-informed conceptual

model provides an initial framework to build the factors leading to a specific DOM

composition.

Adaptability of DOM Composition Wheels

Expressing DOM composition with only four concentration-independent parameters excludes

advantages of other techniques not used in this study. However, agreement between multiple

parameters allows for selection of surrogates for the CW. LC-OCD is not as widely available

but many studies have traditionally used resins [16, 65, 66] or other size-exclusion columns

[67, 68] to characterize DOM. Further, LC-OCD fractions of humics have been well correlated

to measures of 13C-NMR and fluorescence measures such as HIX [12, 69, 70]. Although fluo-

rescence was not used in this study, strong associations between certain fluorescence parame-

ters and absorbance or molecular-weight groupings could be used to replace LC-OCD defined

fractions, such as using PARAFAC modelling to discern components most similar to HSF [12,

70] (Fig 7). These fluorescence parameters are also independent measures of DOM composi-

tion and could be readily substituted into the CW. Elemental ratios of DOC:DON are generally

positively correlated with humic-like fluorescence and negatively correlated to protein-like

Fig 7. Surrogate parameters for the DOM composition wheel.

https://doi.org/10.1371/journal.pone.0253972.g007
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components [71]. Other absorbance indices such as slope ratio and E2:E3 (Table 1) are poten-

tial surrogates for S275-295 (Fig 2), providing various parameters that can be substituted for one

another when comparing studies where only one of these measures is provided. Measurements

of SUVA could be substituted with SAC420, SAC350, or E4:E6 [25, 71]. However, although

SUVA has been correlated with HIX and to fluorescence component C3 [25, 71], the opposite

has also been found [70]. Composition Wheels can easily incorporate advanced techniques,

such as FT-ICR-MS, that can provide information on the molecular heterogeneity of DOM,

identification of either terrestrial-like (via condensed and polycyclic aromatics or polyphenolic

compounds) or in situ DOM sources (higher aliphatic and peptide-like compounds), or to

identify differences in H:C and O:C due to microbial or photodegradation [12, 13, 72]. Associ-

ations between different characterization techniques allow for mixing of techniques and com-

parison of different variables, indicating a wide-range of applicability of CW within

environmental sciences.

The CW visualization method provides an efficient communication tool not only among

scientists, but also between scientists and other stakeholders concerned with water quality,

including community members. Shapes from CWs show clearly how DOM differs, whereas

changes in the numerical value of multiple metrics are only easily grasped by those with famil-

iarity with the methods and environmental ranges. Further work could include pairing differ-

ent shapes of DOM with key DOM roles such as disinfection demand and by-product

formation, metal mobility, and mercury bioaccumulation. By reducing the complexity of inde-

pendent DOM measures and creating an easily comparable shape, differences in DOM com-

position can be easily grasped and communicated to larger audiences.
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solved organic matter quality: Evidence from a large-scale boreal lake survey. Glob Chang Biol. 2014;

20: 1101–1114. https://doi.org/10.1111/gcb.12488 PMID: 24343949

72. Ward CP, Nalven SG, Crump BC, Kling GW, Cory RM. Photochemical alteration of organic carbon

draining permafrost soils shifts microbial metabolic pathways and stimulates respiration. Nat Commun.

2017; 1–8. https://doi.org/10.1038/s41467-016-0009-6 PMID: 28232747

PLOS ONE Visualizing differences in dissolved organic matter composition

PLOS ONE | https://doi.org/10.1371/journal.pone.0253972 July 9, 2021 19 / 19

https://doi.org/10.1016/j.watres.2014.02.017
http://www.ncbi.nlm.nih.gov/pubmed/24602859
https://doi.org/10.1016/j.scitotenv.2016.02.095
http://www.ncbi.nlm.nih.gov/pubmed/26938320
https://doi.org/10.1111/gcb.12488
http://www.ncbi.nlm.nih.gov/pubmed/24343949
https://doi.org/10.1038/s41467-016-0009-6
http://www.ncbi.nlm.nih.gov/pubmed/28232747
https://doi.org/10.1371/journal.pone.0253972

