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Abstract

Although alcohol abuse is associated with a spectrum of pancreatic diseases from acute self-

limiting episodes of pancreatitis to recurrent acute pancreatitis, chronic pancreatitis and pancreatic 

cancer, the majority of those who drink excessive amounts of alcohol do not develop pancreatic 

disease. One overarching hypothesis is that alcohol abuse requires additional risk factors, either 

environmental or genetic, for disease to occur. However, another reason why alcohol abuse leads 

to pancreatic disease in so few individuals could also be a result of alcohol-induced activation of 

adaptive systems that protect the pancreas from the toxic effects of alcohol. We have turned to 

investigating the potential role of the unfolded protein response (UPR) of the endoplasmic 

reticulum (ER) to identify potential pathways that can lead to protection of the pancreas from 

pancreatic diseases with alcohol abuse. We discuss the pathways involved in protection as well as 

those involved in development of pancreatic pathology. The remarkable ability of the pancreas to 

adapt its machinery to alcohol abuse using UPR systems and continue functioning is the likely 

reason that pancreatitis from alcohol abuse does not occur in the majority of heavy drinkers. These 

findings additionally indicate that methods to enhance the protective responses of the UPR can 

provide opportunities for treatment of pancreatic diseases.

Introduction

Alcohol abuse is associated with a spectrum of pancreatic diseases from acute self-limiting 

episodes of pancreatitis to recurrent acute pancreatitis, chronic pancreatitis and pancreatic 

cancer.1–3 However, clinically detected pancreatic disease occurs in only a small minority of 

heavy drinkers.1 The reasons why most heavy drinkers do not develop clinically manifest 

pancreatic diseases are not known. One overarching hypothesis is that alcohol abuse requires 

additional risk factors, either environmental or genetic, for disease to occur.4–6 Of note, in 

animal models we and others also have found that alcohol by itself does not cause 
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pancreatitis but that alcohol feeding sensitizes that pancreas to pancreatitis caused by other 

pancreatic stressors.7, 8

Another reason why alcohol abuse leads to pancreatic disease in so few individuals could 

also be a result of alcohol-induced activation of adaptive systems that protect the pancreas 

from the toxic effects of alcohol. In other words, alcohol could activate both damaging 

effects and protective effects; and that disease occurs when the damaging effects outweigh 

the protective effects or when the adaptive mechanisms are impaired. Such a combination 

could also explain the combined actions of alcohol and another risk factor resulting in 

pancreatic disease.4–6, 9 That is, with an additional risk factor such as smoking or gene 

mutations, the alcohol-mediated protective responses are overwhelmed by the combination 

of its toxic effects and those of the second “hit.”

In order to pursue the hypothesis that alcohol intake induces both toxic and protective 

mechanisms in the pancreas we have turned to investigating the potential role of the 

unfolded protein response (UPR) of the endoplasmic reticulum (ER) in these dual actions of 

alcohol using animal models. In our research we have focus mainly on the acinar cell of 

exocrine pancreas. However, the mechanisms discussed here may also be relevant to the 

ductal and/or endocrine cells of the pancreas.

Pancreatic Acinar Cell Endoplasmic Reticulum (ER)

The acinar cell requires an extensive endoplasmic reticulum network and protein secretory 

system to sustain its high rate of digestive enzyme production. ER biogenesis, function and 

turnover are regulated according to the demands of the secretory pathway. The ER recruits 

translating ribosomes, translocates newly synthesized polypeptides into its lumin, and 

accommodates post-translational modifications including glycosylation and disulfide bond 

formation, and chaperone-facilitated protein folding. Correctly folded proteins are tagged, 

sorted into specific vesicular compartments, and transported to the Golgi, where they are 

further processed, sorted and stored in mature zymogen granules and other organelles. Upon 

neurohormonal stimulation, zymogen granules undergo exocytosis at the apical pole of the 

cell, secreting their contents into the acinar lumin and ductal system of the exocrine 

pancreas. Correct ER processing and sorting are especially critical to prevent inappropriate 

intracellular activation of digestive proenzymes in the acinar cell.10

In eukaryotic cells, protein folding is governed by an efficient team of ER molecular 

chaperones and folding enzymes that include disulfide isomerases, oxidoreductases and 

enzymes related to glycosylation of newly synthesized proteins. This process is monitored 

by quality control machinery to ensure that only properly folding proteins progress into the 

secretory pathway. Aberrant proteins are retro-translocated into the cytosol for proteosomal 

degradation by a process known as ER-associated degradation (ERAD). Autophagy is also 

an important mechanism for degradation of superfluous damaged or misfolded proteins and 

obsolescent organelles. Accumulated evidence underscores the importance of both ERAD 

and autophagy in preventing the accumulation of toxic proteins within the ER.11, 12

Protein-folding and chaperone functions within the ER are dependent on the presence of 

sufficient levels of intralimenal Ca2+ and ATP, and an oxidizing environment that favors 
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disulfide bond formation in folding polypeptides. Thus, major perturbations in ER luminal 

and cellular Ca2+ fluxes, ATP levels and redox that can occur in the pancreas induce ER 

“stress” by hindering chaperone and folding activities.13–18 Ca2+, ATP and a controlled 

oxidative environment are key factors to maintain ER homeostasis for protein synthesis, 

processing and transport.

The Unfolded Protein Response (UPR)

In order to adjust to changing demands encountered by the ER protein synthesis and 

processing machinery, eukaryotic cells have developed the Unfolded Protein Response 

(UPR) signaling system. The UPR is activated by accumulation of unfolded proteins in the 

ER lumin, a condition termed “ER stress”.19 ER stress has several sources, including a 

physiologic increase in the demand for protein folding, decreased chaperone function, 

accumulation of permanently misfolded mutant proteins, restricted ER-Golgi protein 

trafficking, decreases in cellular ATP levels or in [Ca2+]ER, and perturbed ER redox status. 

In particular, repeated cycles of folding-refolding of misfolded proteins via thioredoxin-fold 

protein disulfide isomerase (PDI) family and ER oxidase-1 (Ero1) activities consumes 

cellular energy reserves and generates high levels of reactive oxygen species (ROS) and 

redox imbalance. Thus, protein misfolding shifts the redox status of the lumin to more 

oxidizing, possibly favoring aberrant disulfide formation.

The UPR has three major outputs that coordinate to maintain ER homeostasis: 1) global 

reduction in mRNA translation decreases the demand for processing newly synthesized 

proteins; 2) increased transcription of numerous chaperones and foldases, and phospholipid 

synthesis to augment the ER folding and export capacity and to expand the ER network, 3) 

activation of ERAD and autophagic systems to eliminate accumulated unfolded and 

misfolded proteins, and 4) degradation of ER associated mRNAs to reduce protein folding 

load.12, 19–22 Three trans-membrane ER stress sensor-transducers are responsible for these 

UPR outputs.19, 20 Inositol-requiring protein-1 α (IRE1α), activating transcription factor-6 

(ATF6), and RNA-activated protein kinase (PKR)-like ER kinase (PERK). Each sensor 

transmits information from the folding status of proteins in the ER lumin to the nucleus by 

distinct mechanistic pathways (Figure 1).

Although these sensors can be simultaneously activated by ER stressors, the UPR signaling 

outputs vary depending on the nature and duration of the ER stress, and the cell type.23 For 

example, the IRE1 branch is critical for adaptation to long term ER stress.24 Upon its 

activation, endonuclease activity within the IRE1α polypeptide splices X-box binding 

protein-1 (XBP1) mRNA resulting in the translation of a multifunctional transcription 

factor, called sXBP1. sXBP1 regulates a broad spectrum of UPR genes involved in protein 

folding, including chaperones and oxidoreductases of the PDI family, protein degradation 

(ERAD), vesicular trafficking and redox metabolism, as well as lipid biosynthesis/

metabolism and ER/Golgi biogenesis, in a cell-specific manner.22, 25 The effects of sXBP1 

generally adapt to ER stressors and enhance normal function in many cells, but play an 

especially important supportive role in secretory cells (described in the next section).
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Activation of the PERK pathway by ER stressors results in inhibition of general protein 

translation by phosphorylation and inhibition of eukaryotic Initiation factor 2-α (eIF2α), a 

factor necessary for most protein translation. In the short term, this inhibition of protein 

synthesis relieves the cell of the demands of protein processing and can be beneficial. 

However, in the face of general translational inhibition, eIF2α favors translation of the 

transcription factor ATF4. ATF4 expression upregulates the proapoptotic transcription 

factor, C/EBP homologous protein (CHOP), as well as many target genes involved in 

translation, amino acid import and redox metabolism. The ER sensor ATF6 regulates the 

expression of XBP1 and several ER chaperones in response to short term ER stress, 

providing protective adaptation.

Whereas short term perturbations of ER function are normally resolved by the UPR, severe 

ER stress or defective UPR can lead to inflammation and cell death (10).27 Several 

intermediate responses have been identified. Sustained severe ER stress can trigger cell 

death downstream of PERK/CHOP and IRE1/JNK activation, and as a result of promiscuous 

IRE1α-dependent decay (RIDD) of ER associated mRNAs.2627

ER stress can favor translocation of proapoptotic Bax/Bak to the ER membrane causing 

Ca2+ release and mitochondrial dysfunction. This process can be positively regulated by 

Bim-only proteins such as Puma and Noxa that may be transcriptionally induced by ER 

stress.28 Notably, it was reported that Bax or Bak exogenous expression positively 

modulates the activity of IRE1α, possibly via the formation of protein-protein complexes.29 

Further, an ER membrane protein termed Bax inhibitor-1 (BI-1) exerts an opposite effect on 

IRE1α, such that in cells lacking BI-1, IRE1 activity is prolonged (ibid).30 Thus, IRE1 

activity is regulated by distinct ER proteins. The UPR can also promote NF-κB activation by 

limiting translation of inhibitor of κB proteins. As our knowledge of the regulation of ER 

function has evolved, more human disorders have been associated with ER stress and/or 

dysregulation of the UPR.

The presence of misfolded proteins and a pathological UPR response continue to emerge as 

common denominators in diabetes, although lipotoxicity and glucotoxicity also play roles in 

pancreas disease.31 Proteins implicated in diabetes and/or exocrine pancreas disease whose 

pathogenic mechanisms relate to mutation-induced misfolding include carboxyl ester 

lipase,32 colipase,33 proinsulin,34 and the K+ and other ion channel subunits.35 Mutant 

trypsins are established as monogenic causes of hereditary pancreatitis, a number of which 

induce ER stress in experimental models.36 Thus, the list of proteins misfolded within the 

ER that may contribute specifically to diabetes and pancreatitis appears to be growing 

longer. Other mechanisms of ER stress may also play a part. Specifically, regulation of 

protein chain elongation occurs at the level of EF2 kinase,37 a key protein whose regulation 

may contribute to pathology and represent a novel target of therapy. De novo biosynthesized 

elements of translation, glycosylation and protein trafficking machinery within the 

pancreatic acinar cell are susceptible to global changes in protein folding capacity. ER 

protein misfolding and associated UPR are mitigated by the actions of HSP70 chaperones, 

oxidative folding enzymes and chemical chaperones, and pharmacologic strategies to 

approach this issue are currently a focus of drug development.
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sXBP1 as a Mediator of Pancreatic Protection and its Secretory Phenotype

The most evolutionarily conserved arm of UPR signaling is that governed by IRE1α. Upon 

ER stress IRE1α homodimerizes and trans-auto phosphorylates, thereby enhancing its 

cytosolic RNAse activity to induce splicing of XBP1 and generate sXBP1.38 sXBP1 is a 

basic-region leucine zipper (bZIP) transcription factor of the CREB-ATF family with higher 

stability than the unspliced protein (uXBP1) that lacks transcriptional activity. As described 

above, IRE1α/sXBP1 signaling primarily mediates adaptive responses to reestablish cellular 

homeostasis. Adaptive responses needed in the acinar cell include sXBP1-induced 

upregulation of many ER chaperones, PDI family oxidoreductases, lipid synthases to expand 

the ER network, ERAD system components, and Mist1, a bHLH-family transcription factor 

required for normal organelle localization and Ca2+ signaling in the acinar cell.11, 39 

Collectively, these gene products act to lessen ER stress and to reinforce critical aspects of 

ER protein folding and export to support the secretory pathway, as well as protein 

degradation systems (ERAD and autophagy). The importance of ER chaperone function for 

pancreatitis was underscored by the enhanced experimental pancreatitis severity we found in 

GRP78+/− mice.40

Genetic ablation of Xbp1 in mice results in embryonic lethality due to liver hypoplasia. Xbp1 

null mice expressing an Xbp1 transgene in liver to rescue embryonic lethality died shortly 

after birth due to poor ER development and digestive enzyme synthesis in the acinar cells 

and severe exocrine insufficiency.25 The critical importance of sXBP1 for the function of 

the pancreatic acinar cell is also supported by studies using Xbp1+/− mice10, 40 and acinar 

cell specific XBP1 null mice25, 41 (and Figure 2). XBP1 deficiency results in extensive 

acinar cell loss and inflammation (Figure 2) as well as severe pathology in the remaining 

acinar cells, as evidenced by reduced levels of ER chaperones, a poorly developed ER 

network and secretory system, marked reduction in zymogen granules and digestive 

enzymes, and accumulation of autophagic vacuoles.10, 40

Whereas IRE1α/XBP1 signaling primarily mediates adaptive responses to reestablish ER 

function, this protective signal can be prematurely attenuated during severe or prolonged ER 

stress resulting in upregulation of proapoptotic CHOP and cell death.23 Similarly, genetic 

ablation of Xbp1 in pancreas and other tissues is unequivocally associated with potent 

upregulation of CHOP and cell death.25, 40 Interestingly, Lin et al. demonstrated that forced 

and sustained IRE1α/XBP1 activity enhances cell survival in conditions of severe stress,23 

further supporting a protective role for sXBP1 signaling.

The PERK/CHOP Pathway

The PERK UPR branch rapidly adjusts the cell to ER stress causing a general attenuation of 

protein synthesis.19 Activated PERK becomes autophosphorylated at Thr980 and rapidly 

phosphorylates the eukaryotic translation initiation factor, eIF2α at Ser51.42, 43 This 

modification generally impedes eIF2α-mediated translation initiation. Much evidence 

indicates that PERK/eIF2α activation is protective, preventing depletion of ER resources 

during the ER stress response.14, 44, 45 In support of a protective role for PERK in the 

exocrine pancreas, acinar cell-specific PERK ablation in mice increased acinar cell death but 
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did not affect enzyme secretion.46 Sustained phosphorylation of eIF2α (by PERK or other 

kinases) leads to upregulation of the transcription factors ATF4, that targets genes involved 

in antioxidant activities including glutathione synthesis47, and CHOP that promotes ER 

stress-related cell death responses.48 Emerging data indicate that CHOP leads to cell death 

by upregulation of ER factors that govern protein folding resulting in excessive protein 

synthesis and ER ATP depletion.14 CHOP also promotes inflammation by regulating 

cytokine production and promoting the survival of inflammatory cells.49, 50 Importantly, we 

and others found that depriving the acinar cell from using the IRE1-sXBP1 to adapt to ER 

stress is associated with sustained activation of the PERK-CHOP pathway and development 

of pancreatic pathology.40 Indeed, Chop−/− mice exhibited less pancreatic inflammation and 

histological damage than wild type when challenged with cerulein and LPS.51 In sum, 

although the PERK branch can play a transient protective role, unresolved ER stresses (e.g., 

due to sXBP1 deficiency) upregulate CHOP and promote inflammation leading to pancreas 

pathology.

Alcohol, ER Stress and Pancreatitis

Ethanol feeding in rodents induces structural changes in the acinar cell consistent with ER 

stress and impaired protein trafficking, such as extensive ER dilation and disorganization of 

the cellular location of zymogen granules.40, 52, 53 However, despite these morphologic 

changes, chronic ethanol-fed animals, as humans, do not develop pancreatitis unless 

challenged with other toxic factors.7, 5455 We found that pancreatic levels of sXBP1 were 

markedly increased in mice and rats fed ethanol-containing diets.40 In order to determine 

whether the upregulation of sXBP1 by alcohol feeding is necessary to maintain homeostasis 

and prevent pancreatitis, we used Xbp1 heterozygous mice. Compared to ethanol-fed wild-

type mice (XBP1+/+), histological analysis of pancreatic tissue in ethanol-fed XBP1+/− mice 

revealed morphologic features of ER dysfunction in acinar cells: disorganized and dilated 

ER, accumulation of dense material within the ER, and a reduced number of mature 

zymogen granules. These features were accompanied by accumulation of autophagic 

vacuoles, and activation of apoptotic signals including upregulation of CHOP within patchy 

areas of inflammatory pancreatitis.10, 40 In a separate study, Alahari et al found that mice 

deficient in MIST1, a sXBP1 gene target, are more susceptible to ethanol toxicity and 

displayed deficient UPR activity, supporting a critical role for sXBP1 in regulating ER 

function and UPR during chronic alcohol abuse.56

Conclusions

In conclusion, our work identifies sXBP1 as a key protective factor against ethanol induced 

toxicity in pancreas. Based on our data, we envision a model in which chronic alcohol abuse 

alters mitochondria and increases ROS levels producing changes in redox state of ER 

components and ER oxidative stress. This alters the redox structure and function of ER 

oxidoreductases as well as their client proteins, thereby compromising protein folding and 

trafficking through the secretory pathway. Acinar cells respond by activating IRE1/XBP1 

that acts to restore levels of ER chaperones and oxidoreductases needed for protein folding, 

trafficking, and degradation pathways. This sequence of events is adaptive and limits 

deleterious PERK/CHOP outputs that lead to cell death and inflammation. However, in the 
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presence of a second ER stressor such as a genetic mutation in one of the secretory proteins 

or an environmental factor such as smoking there may be an inability of the IRE1/XBP1 

pathway to adapt sufficiently to the stressors resulting in pathology. The remarkable ability 

of the pancreas to adapt its machinery to alcohol abuse and continue functioning is the likely 

reason that pancreatitis from alcohol abuse does not occur in the majority of heavy drinkers. 

These findings additionally indicate that methods to enhance the protective responses of the 

UPR can provide opportunities for treatment of pancreatic diseases. See Figure 3 

summarizing our hypothesis below.
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Figure 1. Activation and outputs of the Unfolded Protein Response (UPR)
The scheme summarizes the signaling pathways and outputs of the three branches of the 

mammalian UPR: IRE1α, ATF-6 and PERK. Upon disturbances of ER function, unfolded 

proteins accumulate within the ER lumin and the UPR sensors respond by activating 

adaptive signaling pathways. Cell growth arrest and cell death signaling prevail when ER 

stress is persistent or too severe.

Lugea et al. Page 10

Pancreatology. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Specific deletion of Xbp1 in the pancreatic acinar cell leads to a decrease in secretory 
capacity and acinar cell pathology
A–C. Control and Ela1-Cre-ERT2;Xbp1F/F mice received tamoxifen for 5 days to delete the 

Xbp1 gene specifically in acinar cells (Xbp1Δacinar). Then mice were sacrificed at 7 (a and 

b) or 17 days (c) after tamoxifen administration. Panels show pancreas histology in 

tamoxifen-treated control mice (panel a) and Xbp1Δacinar mice (panels b and c). As 

illustrated, acinar cells lacking XBP1 exhibit severe loss of secretory granules (closed 

arrow) and vacuolation (especially shortly after tamoxifen) followed by death and loss of 

acinar cells.
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Figure 3. Proposed mechanisms of sXBP1-related responses during pancreatitis
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