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Abstract

Bmi‐1 gene is well recognized as an oncogene, but has been recently demonstrated to

play a role in the self‐renewal of tissue‐specific stem cells. By using Bmi‐1GFP/+ mice, we

investigated the role of Bmi‐1 in cardiac stem/progenitor cells and myocardial repair.

RT‐PCR and flow cytometry analysis indicated that the expression of Bmi‐1 was signifi-

cantly higher in cardiac side population than the main population from

CD45−Ter119−CD31− heart cells. More Sca‐1+ cardiac stem/progenitor cells were

found in Bmi‐1 GFPhi subpopulation, and these Bmi‐1 GFPhi heart cells showed the

potential of differentiation into SMM+ smooth muscle‐like cells and TnT+ cardiomy-

ocyte‐like cells in vitro. The silencing of Bmi‐1 significantly inhibited the proliferation

and differentiation of heart cells. Otherwise, myocardial infarction induced a signifi-

cantly increase (2.7‐folds) of Bmi‐1 GFPhi population, mainly within the infarction and

border zones. These preliminary data suggest that Bmi‐1hi heart cells are enriched in

cardiac stem/progenitor cells and may play a role in myocardial repair.
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1 | INTRODUCTION

Polycomb complex protein Bmi‐1 is encoded by the BMI1 gene. A

number of previous studies have demonstrated the roles of Bmi‐1
in the development and progression of various types of malignant

tumours,1 such as leukaemia,2,3 colorectal cancer,4 and medul-

loblastomas.5 These studies have found that down‐regulation of

Bmi‐1 in cancer stem cells suppresses tumour growth.3,6,7 Beyond

its role as an oncogene, up‐regulation of Bmi‐1 in various tissue‐
specific stem cells,8-10 such as hematopoietic stem cells (HSC),2,3,8

intestinal stem cells,11 and epithelial stem cells in the pancreatic,

prostate, lung, and others,12-18 has been demonstrated to play

essential roles in the self‐renewal and the maintenance of stem-

ness. Reduced expression of Bmi‐1 has also recently been found

to enhance the beating of cardiomyocytes (CM) induced from

neonatal and adult mouse fibroblasts by directly reprogramming.19

However, little has been known about Bmi‐1 expression in cardiac

stem/progenitor cells.

Actually, the identity, origin and physiological role of endogenous

cardiac stem/progenitor cells in adult mammals are still debated. For

a long time, adult mammalian heart was thought to be a terminally

differentiated organ. However, considerable evidence has shown the

low turnover rate of CM.20,21 There are at least two possible

resources for the new born CM: preexisting CM22,23 or cardiac stem/

progenitor cells.24-27 By now, different markers and methods have

been applied for the identification and expansion of resident cardiac

stem/progenitor cells, such as the c‐kit‐positive cells,26 Sca‐1‐positive
cells,27 cardiac side population (SP),24 and cardiosphere derived

cells.28 Using an inducible genetic labelling approach, we have

recently defined cardioblasts, the small non‐myocyte cells express

cardiac transcription factors and sarcomeric proteins and form

mature CM in vivo after transplantation.25 Endogenous cardioblasts

are rarely evident in the normal adult mouse heart, but will be signif-

icantly activated after myocardial infarction. The cardioblasts do not

arise from haematogenous seeding, CM dedifferentiation, or mere

expansion of a preformed progenitor pool.25

In this study, we investigated the potential role of Bmi‐1 on car-

diac stem/progenitor cells by using Bmi‐1‐GFP‐knock‐in mice, in

which GFP was expressed under the endogenous transcriptional reg-

ulatory elements of the Bmi‐1 gene, and the levels of Bmi‐1 expres-

sion in cells could be quantified by GFP fluorescence.3 We found

that the subpopulations of cells with high expression of Bmi‐1 in

heart tissue enriched in SP and Sca‐1‐positive cardiac stem/progeni-

tor cells, and showed a significantly increase in number in response

to myocardial infarction.

2 | MATERIALS AND METHODS

2.1 | Animals and genotyping

The procedures for all animal experiments were approved by the

Animal Care and Use Committee of the Shanghai Ruijin Hospital,

Shanghai Jiaotong University School of Medicine, China and the

Cedars‐Sinai Medical Center, Los Angeles, CA, USA. All methods

were performed in accordance with the relevant guidelines and regu-

lations. Bmi‐1GFP/+ mice from JAX Lab, originally generated by Dr.

Weissman group in Stanford University were inbred in the animal

centre of Shanghai Ruijin Hospital, Shanghai, China. Eight‐ to 12‐
week‐old mice were used for experiments. Mice genotyping was ver-

ified by PCR of tail genomic DNA.3

2.2 | Evaluation of SP cells in heart cells and bone
marrow cells

Heart SP and main population (MP) were prepared as previously

described with modification.24 Briefly, heart tissue of Bmi‐1GFP/+ mice

was minced into about 1 mm3 pieces and digested with 0.1% collage-

nase B (Roche Molecular Biochemicals, Mannheim, Gemany) and

2.4 U/mL dispase II (Roche Molecular Biochemicals) at 37°C for

30 minutes. After passing through a 50 μm filter, the CM‐depleted
heart cells was washed and suspended in Hanks’ balanced salt solu-

tion (HBSS) buffer with 2% foetal calf serum and 10 mmol/L HEPES.

Bone marrow cells were obtained from the same Bmi‐1GFP/+ mice as

previously described.29 Single cell suspensions were incubated with

Hoechst 33342 (5 g/mL) (Sigma, Shanghai, China) at 37°C for 90 min-

utes in DMEM (Cellgro, New York, NY, USA) (2% foetal calf serum,

10 mmol/L HEPES) at a concentration of 106 nucleated cells/mL and

washed in cold HBSS before cell surface antigen staining.24 Cell sur-

face antigen staining was performed at 4°C for 30 minutes using flu-

orochrome conjugated monoclonal rat antimouse antibodies reactive

to Sca‐1, CD31, and CD45 (all from Pharmingen, Shanghai, China).

Respective isotype controls (Pharmingen) were used as negative con-

trols. 7AAD was added before fluorescence‐activated cell sorting to

exclude dead cells. Gates were established by forward and side scat-

ters to exclude cellular debris. Fluorescent compensation was per-

formed with single labelled controls. Quantitative flow cytometric

assays were performed with a Cyan flow cytometer with Summit

software (Beckman Coulter, Shanghai, China). Data were analysed

with FLOWJO software (Ashland, OR, USA).

2.3 | Cell culture and immunofluorescence staining

Purified CD45−Ter119−CD31− Bmi‐1 high‐expressing (Bmi‐1hi) cells
from heart cells were cultured in 1% fibronectin‐coated dishes with

Iscove's modified Dulbecco's medium supplemented with 10% FBS,

100 U/mL penicillin, and 100 μg/mL streptomycin at 37°C in humidi-

fied air containing 5% CO2. Differentiation of CD45−Ter119−CD31−

Bmi‐1hi cells was directed by supplementation of media of Tricho-

statin A.30 After 3 weeks cultured, cells were fixed by 4% PFA.

Cell were stained with rabbit polyclonal antibodies against Bmi‐1
(abcam), mouse monoclonal antibodies against cardiac Troponin T

(abcam) and SMMHC/myosin (smooth muscle myosin (SMM) heavy

chain; Biomedical Technologies), and then followed by fluorescence‐
labelled secondary antibodies (Invitrogen, Carlsbad, CA, USA). Images
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were observed by GE DeltaVision OMX or Leica TCS SP5 confocal

microscopy.

2.4 | RNAi and RT‐qPCR

Bmi‐1 and the negative control siRNA duplexes were transfected

into primary non‐CM cells using riboFECT™ CP (RIBOBIO) according

to the manufacturer's instructions, target sequence 5′‐GCAGAUUG-
GAUCGGAAAGUTT‐3′. The efficiency of the corresponding gene

silencing was validated by measuring the levels of mRNA expression

by real‐time reverse transcriptase polymerase chain reaction (RT‐
qPCR). Differentiation of cells was also directed by supplementation

of media with Trichostatin A.

RT‐qPCR analysis was performed with SYBR Green on an ABI

7700 real‐time PCR machine (Applied Biosystems, Shanghai, China)

according to the manufacturer's instructions. The expression level of

Bmi‐1 was normalized to internal control. Bmi‐1 primer sequence:

forward, ATCCCCACTTAATGTGTGTCCT; reverse, CTTGCTGGTCT-

CCAAGTAACG.

2.5 | Myocardial infarction model

To further investigate how the Bmi‐1 expression will be changed in

response to heart injury, myocardial infarction was made in Bmi‐1GFP/+

mice (8‐12 weeks old) by permanent ligation of the left anterior

descending coronary artery (LAD). Mice were randomly allocated into

either LAD ligation or sham operation group by random number table,

9 mice/group in total. Mice were performed with tracheal intubation,

tidal volume 0.7 mL, respiratory rate 120 breaths per minute. A left

thoracotomy was performed through the fourth intercostal space.

After removing the pericardium, LAD was ligated with 7‐0 silk suture

under direct vision of surgical microscopy. Mice received a left thoraco-

tomy alone were used for control. All mice survived after the successful

surgical procedures, and no mouse died during the follow‐up period.

Six mice from each group were euthanized 1 week after surgery, and

the heart for evaluating the subpopulation of cells with high expression

of Bmi‐1 by flow cytometry as described above. Another three mice

from each group were euthanized 2 weeks after surgery, and excised

hearts were snap‐frozen for histological analysis, and cryosections

(10 μm) were stained following standard procedures. Images of histo-

logical staining were taken using Olympus microscope. All analyses

were conducted by individuals blind to treatment allocation.

2.6 | Statistical analysis

Data and statistical analysis were done by GraphPad Prism 6.0.

Results are presented as mean ± SEM unless specified otherwise.

Comparisons between any two groups were performed with two‐
tailed unpaired Student's t‐test. Each experiment was performed at

least three times and the differences were considered statistically

significant when P < 0.05.

3 | RESULTS

3.1 | Bmi‐1 GFPhi subpopulation enriched not only
in HSC but also in cardiac stem/progenitor cells

Based on the GFP fluorescence intensity, we divided the lineage‐
negative (Lin−) bone marrow cells from Bmi‐1GFP/+ mice into GFP

F IGURE 1 Hematopoietic stem cells were enriched in Bmi‐1 GFPhi population from bone marrow. Representative flow cytometry plots of
bone marrow cells from Bmi‐1+/+ mice (A‐D) or Bmi‐1GFP/+ mice (E‐H). (A) and (E) were from Lin− bone marrow population, then further
separate into Bmi‐1 GFP‐negative, intermediate or high population (B‐D and F‐H) based on the expression of Sca‐1 and c‐kit to get lin−C‐
kit+Sca‐1+ HSCs in different GFP expression population. BM: bone marrow

106 | SONG ET AL.



F IGURE 2 Relationship between Bmi‐1 GFPhi cells and cardiac stem/progenitor cells. (A) GE DeltaVision OMX images showed that the
coincidence of GFP with Bmi‐1 expression. Scale bars, 15 μm. (B) Representative flow plot for cardiac side population (SP) and main population
(MP) from CD45−Ter119−CD31− heart cells. (C) RT‐PCR indicated higher Bmi‐1 expression in cardiac SP than MP population. The grouping of
gels was from the same gel. (D) Flow cytometry plots showed Bmi‐1 GFPhi heart cells were enriched in SP population (red arrow).
Representative flow cytometry plots (E) and quantitative data (F) showed more Sca‐1+ cells in Bmi‐1 GFPhi than GFPint populations of heart
cells. Sca‐1+ cells were gated from CD45−Ter119−CD31− heart cells. *P < 0.05
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high (hi), intermediate (int), and negative (−) subpopulations (Fig-

ure 1). As congruent with previous report,3 HSC (Lin−c‐kit+Sca‐1+

HSCs) were dramatically enriched in the GFPhi cells when compared

to the GFPint and GFP− cells (Figure 1F‐H). Similarly, higher expres-

sion of GFP was also observed in the Lin−c‐kit+Sca‐1+ HSCs than

the Lin−c‐kit+ progenitors or Lin+ matured cells from bone marrow

of Bmi‐1GFP/+ mice (Figure S1).

We next examined whether Bmi‐1 will be also highly expressed

in cardiac stem/progenitor cells. Because almost all GFP+ cells were

Bmi‐1+ and 96.69% ± 2.61% of Bmi‐1+ heart cells expressed GFP

through immunofluorescent images (Figure 2A), we used GFP+ cells

to represent Bmi‐1+ cells in flow cytometry assay. After negative

deletion of matured hematopoietic cells and endothelial cells by

using antibodies against CD45, Ter119, and CD31, we divided these

CD45−Ter119−CD31− heart cells into cardiac SP and MP as the pre-

viously stated24 (Figure 2B). We found that the Bmi‐1 expression

was significantly higher in SP cells than in MP cells (Figure 2C). We

also tried to gate CD45−Ter119−CD31− SP cells by flow cytometry,

and then measured the Bmi‐1 expression by fluorescence intensity.

We could observe more Bmi‐1 GFPhi cells in SP population than MP

population (3.73 ± 0.76% vs 1.10 ± 0.38%, P < 0.05; Figure 2D).

Sca‐1 was known as one of the common marker for stem/progenitor

cells. Our results also showed that Sca‐1+ cardiac stem/progenitor

cells were enriched in Bmi‐1 GFPhi population from

CD45−Ter119−CD31− heart cells (Figure 2E). The percentage of Sca‐
1+ cells gated from Bmi‐1 GFPhi heart cells was almost 2.5‐folds
higher than that of from Bmi‐1 GFPint population (19.98 ± 4.88% vs.

7.82 ± 2.77%, P < 0.05; Figure 2F).

So, our data from BM and heart cells indicated that Bmi‐1 GFPhi

subpopulation enriched not only in HSC but also in cardiac stem/pro-

genitor cells.

3.2 | Bmi‐1 GFPhi heart cells could differentiate
into SMM+ smooth muscle‐like cells and TnT+

CM‐like cells in vitro

We also purified CD45−Ter119−D31− Bmi‐1 GFPhi and GFP− sub-

populations from Bmi‐1GFP/+ mice heart, and then evaluated their

potency of myocardial differentiation in vitro (Figure 3). These Bmi‐1
GFPhi cells grew well after 7 and 14 days of culture, but cells were

rarely grown from the Bmi‐1 GFP− cells (Figure 3A). Immunostaining

showed that some cells grown from Bmi‐1 GFPhi cells were posi-

tively expressed with SMM heavy chain (12.96% ± 2.70%) and car-

diac Troponin T (TnT) (26.03% ± 3.58%), suggesting the

differentiation into smooth muscle‐like cells and CM‐like cells (Fig-

ure 3B,C).

3.3 | Bmi‐1 knockdown inhibited the proliferation
and myocardial differentiation of non‐CM cells

To confirm the role of Bmi‐1 on the proliferation and differentiation,

we tried to silence the expression of Bmi‐1 in non‐CM cells by

siRNA (Figure 4). The efficiency of knockdown was showed in

Figure 4A. The silencing of Bmi‐1 significantly inhibited the prolifera-

tion of non‐CM cells (170.5 ± 27.54 vs 630.5 ± 80.87 cells/mm2,

P < 0.001, Figure 4B,C) and differentiation of cTnT+ CM‐like cells

F IGURE 3 In vitro growth and differentiation of Bmi‐1 GFPhi heart
cells sorted from Bmi‐1GFP/+ mice. (A) Bmi‐1 GFPhi cells grewwell at day 7
and day 14, but no cells grew from the Bmi‐1 GFP− cells. Scale bars, 50 μm.
Representative confocal images (B) and quantitative data (C) indicated the
differentiation of Bmi‐1 GFPhi cells into SMM+ smoothmuscle‐like cells
and TnT+ cardiomyocyte‐like cells in vitro. Scale bars, 20 μm
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(5.76% ± 1.27% vs 14.16% ± 2.70%, P < 0.05, Figure 4D) at 5 days

after TSA treatment.

3.4 | Bmi‐1 GFPhi population increased in response
to myocardial infarction

To further evaluate the role of Bmi‐1 expression in myocardial repair,

we analysed the change of Bmi‐1 GFPhi heart cells in Bmi‐1GFP/+ mice

after LAD ligation. Interestingly, CD45−Ter119−CD31− Bmi‐1 GFPhi

population was significantly increased in the infarcted heart when

compared to the control heart received sham operation (4.04 ± 1.55%

vs 1.47 ± 0.12%, P < 0.05). However, myocardial infarction did not

induce significant changes in the GFPint and GFP− populations (Fig-

ure 5A,B). Immunofluorescence staining also clearly showed some

clusters of Bmi‐1hi cells within the infarction and border zones (Fig-

ure 5C). Moreover, many CM were observed around the clusters of

Bmi‐1hi cells. Although the absence of direct evidence, these results

indirectly suggested that the heart cells expressed with high level of

Bmi‐1 might be involved in myocardial repair after injury.

4 | DISCUSSION

As congruent with a previous report,3 our data indicated the per-

centage of lin−c‐kit+Sca‐1+ HSC were much higher in Bmi‐1 GFPhi

population compared to GFPint and GFP− cells in Bmi‐1GFP/+ mice

(Figure 1). On the other hand, Bmi‐1 GFP was highly expressed in

lin−c‐kit+Sca‐1+ HSC when compared with Lin−c‐kit+ progenitors or

Lin+ matured cells from bone marrow (Figure S1). Actually, the high

level of Bmi‐1 expression has been demonstrated to be critical on

the self‐renewal of HSC and the maintenance of hematopoietic

function.8,31

Although cardiac‐specific Bmi‐1 deletion during embryogenesis

does not affect cardiogenesis,32 it has been reported that querce-

tin could minimize doxorubicin‐induced cardiotoxicity by modulat-

ing Bmi‐1 expression.33 There is very limited information on the

role of Bmi‐1 expression in cardiac stem/progenitor cells. By using

Bmi‐1‐GFP‐knock‐in mice,3 we found that the expression with high

level of Bmi‐1 in heart cells enriched in cardiac stem/progenitor

cells. The knockdown of Bmi‐1 significantly reduced the total

number of non‐CM cells and the percentage of cTnT+ cells

in vitro. Furthermore, in response to myocardial infarction, only

the Bmi‐1 high‐expressing cells were increased about 2.7‐folds in

the infarcted heart, mainly observed in the infarction and border

zones, which suggests a potential role for myocardial repair after

injury.

Agreed with our findings, Valiente‐Alandi I et al has crossed the

Bmi‐1CreER/+ strain with Rosa26YFP/+ reporter mice to generate Bmi‐
1CreER/+;Rosa26YFP/+ (Bmi‐1‐YFP) mice for cardiac lineage tracing,

and demonstrated that Bmi‐1+ cells contribute to myocardial

renewal34 and myocardial repair following acute injury.35 Further-

more, Bmi‐1 expression is associated with reactive oxygen species

levels.36 But we made a more detailed distinction. In this study, we

used Bmi‐1‐GFP‐ transgenic mice which enable us to distinguish the

Bmi‐1 high‐expressing cells from the cells with intermediate level of

Bmi‐1 expression. Interestingly, among the Bmi‐1‐positive cells, only

these Bmi‐1 high‐expressing cells enriched in cardiac stem/progenitor

cells and was increased after heart injury (Figures 2C,F and 5A).

Our study has several limitations. First, although heart cells with

high level of Bmi‐1 expression enriched in cardiac stem/progenitor

cells, these Bmi‐1hi cells were partially expressed with common

stem/progenitor cell makers of Sca‐1 and also partially included in

the SP, suggested the heterogeneity of Bmi‐1hi cells. Therefore, it is
still asked to further rationalize the Bmi‐1 as a novel marker for the

F IGURE 4 Bmi‐1 knockdown inhibited
the proliferation and differentiation of non‐
cardiomyocytes. (A) Bmi‐1 mRNAs were
significantly reduced by siRNA
transfection. Representative phase contrast
images (B) and quantitative data (C)
showed the growth of cells at 5 days after
TSA treatments. Scale bars, 200 μm. (D)
The proportion of cTnT+ cardiomyocyte‐
like cells was at 5 days after TSA
treatments. NC: negative control.
*P < 0.05; **P < 0.005; ***P < 0.001
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identification of cardiac stem/progenitor cells. Second, it is impossi-

ble for us to exactly quantify the Bmi‐1hi cells in the whole heart

because we collected these small size heart cells for analysis by

removing the CM. Third, we do not know whether the subpopula-

tions of small size heart cells with the expression of Bmi‐1 at inter-

mediate and low levels are actually generated from these Bmi‐1hi

cells followed by a gradually reduction of Bmi‐1 expression during

the differentiation process.3 Finally, it is hard for us to collect

enough number of Bmi‐1hi heart cells for in vivo implantation into a

damaged heart. The role of Bmi‐1 is also required to investigate

in vivo by using Bmi‐1 knockout animals. So, the role of Bmi‐1hi

heart cells for functional myocardial repair is still questionable.

In summary, Bmi‐1 was expressed higher in cardiac SP than MP

from CD45−Ter119−CD31− heart cells. More Sca‐1+ cells were found

in Bmi‐1 GFPhi population, and more Bmi‐1 GFPhi cells in Sca‐1+ pop-

ulation. The CD45−Ter119−CD31− Bmi‐1 GFPhi cells from Bmi‐1GFP/
+ mice could differentiate into SMM+ smooth muscle‐like cells and

TnT+ CM‐like cells in vitro. The silencing of Bmi‐1 significantly inhib-

ited the proliferation and differentiation of heart cells. Bmi‐1 GFPhi

population increased in heart of mice 1 week after infarction and

some clusters of Bmi‐1hi cells were observed within the infarction

and border zones. Based on our data, heart cells with high Bmi‐1
expression seem to be enriched in cardiac stem/progenitor cells and

possibly play a role during myocardial repair.
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