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Abstract: In the aging process, the presence of interleukin (IL)-17-producing CD4+CD28-NKG2D+T
cells (called pathogenic CD4+ T cells) is strongly associated with inflammation and the development
of various diseases. Thus, their presence needs to be monitored. The emergence of attenuated total
reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy empowered with machine learning is a
breakthrough in the field of medical diagnostics. This study aimed to discriminate between the elderly with
a low percentage (LP;≤3%) and a high percentage (HP;≥6%) of pathogenic CD4+CD28-NKG2D+IL17+ T
cells by utilizing ATR-FTIR coupled with machine learning algorithms. ATR spectra of serum, exosome,
and HDL from both groups were explored in this study. Only exosome spectra in the 1700–1500 cm−1

region exhibited possible discrimination for the LP and HP groups based on principal component
analysis (PCA). Furthermore, partial least square-discriminant analysis (PLS-DA) could differen-
tiate both groups using the 1700–1500 cm−1 region of exosome ATR spectra with 64% accuracy,
69% sensitivity, and 61% specificity. To obtain better classification performance, several spectral
models were then established using advanced machine learning algorithms, including J48 decision
tree, support vector machine (SVM), random forest (RF), and neural network (NN). Herein, NN was
considered to be the best model with an accuracy of 100%, sensitivity of 100%, and specificity of
100% using serum spectra in the region of 1800–900 cm−1. Exosome spectra in the 1700–1500 and
combined 3000–2800 and 1800–900 cm−1 regions using the NN algorithm gave the same accuracy
performance of 95% with a variation in sensitivity and specificity. HDL spectra with the NN algorithm
also showed excellent test performance in the 1800–900 cm−1 region with 97% accuracy, 100% sensi-
tivity, and 95% specificity. This study demonstrates that ATR-FTIR coupled with machine learning
algorithms can be used to study immunosenescence. Furthermore, this approach can possibly be
applied to monitor the presence of pathogenic CD4+ T cells in the elderly. Due to the limited number
of samples used in this study, it is necessary to conduct a large-scale study to obtain more robust
classification models and to assess the true clinical diagnostic performance.

Keywords: aging; attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy;
interleukin (IL)-17; immunosenescence; sub-population CD4+ T cells
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1. Introduction

The aging process affects the function of various organ systems as well as the im-
mune system [1,2]. Age-related changes in the immune system, known as immunose-
nescence, are characterized by decreased immune responses leading to susceptibility to
infectious diseases, increased expression of pro-inflammatory cytokines contributing to
inflammation-related diseases, decreased vaccination response, and increased risk of au-
toimmune events [3–6]. Furthermore, multiple age-related alterations can occur in the
immune system (both innate and adaptive immune systems) [7,8].

In the adaptive immune system, age-related alterations in CD4+ T cell functions
include inappropriate T helper subset differentiation, diminished proliferative capacity,
and an increase in regulatory T cells [9,10]. Moreover, a notable alteration of CD4+ T cell
phenotype is characterized by loss of CD28, which is one of the hallmarks of immunosenes-
cence [11,12]. Previously, the frequency of CD4+CD28- T cells was significantly correlated
with age and, in individuals older than 65 years, the percentage of these cells could reach
50% of the total CD4+ T cells [11,13]. Similarly, in pathological conditions, CD4+CD28- T
cells aberrantly expressed surface molecules. One of them was the natural killer group 2 mem-
ber D (NKG2D) receptor [14,15]. Normally, CD4+ T cells possess a negative expression of
NKG2D [16]. A study conducted by Phoksawat et al. (2016) reported that a subpopulation
of IL-17-producing CD4+CD28-NKG2D+ T cells (identified as pathogenic CD4+ T cells)
existed in the circulation of subjects with type 2 diabetes mellitus (T2DM) [17]. A recent
study also reported that these pathogenic CD4+ T cells were expanded in the elderly and
could produce high levels of IL-17 and IFN-γ [18,19]. Evidently, this cell subpopulation
may associate with the pathogenesis, development, and severity of many diseases, in-
cluding T2DM [17] and cardiovascular diseases [19]. In aging, these cells may contribute
to low-grade inflammation and development of diseases; therefore, their presence in the
elderly urgently needs to be monitored.

Serum and its soluble bio components are pivotal elements defined as major sources of
biomarkers for monitoring health conditions [20–23]. Exosomes are nano-sized extracellular
vesicles (EV) secreted by different types of cells that circulate in biofluids [24–26]. Exosomes
contain various biochemical components (proteins, lipids, and nucleic acids) that play an
important role as a source of biomarkers [23,26,27]. Moreover, the biochemical components
within the exosome are determined by the physiological and pathological states of exosome-
secreting cells [28]. In the event of immunosenescence, there is a multitude of cellular
immune changes that lead to the alteration of exosome bio components [29,30]. It is also
likely that high-density lipoprotein (HDL) is a significant component in serum that can
be explored as a source of biomarkers [22,31,32]. Proteomics studies have identified more
than 85 HDL proteins that play a role in lipid transport and metabolism, hemostasis,
metal binding, vitamin transport, and immune response [33]. Aging conditions are always
accompanied by low-grade inflammation [34]. Under inflammatory conditions, it has been
reported that biochemical components of HDL underwent biochemical changes, especially
ApoA-1, a protein responsible for lipid transport. Furthermore, the liver expresses some
acute phase substances such as serum phospholipase A2 (sPLA2) and serum amyloid A
(SAA) that displace ApoA-I, ApoA-II, and other enzymes in HDL, leading to decreased
lipid transport, anti-oxidant, and anti-inflammation capacity [35].

Attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy has
emerged as a powerful tool in the medical diagnostic field [36,37]. ATR-FTIR has been
extensively explored to identify molecular vibrations of biomolecules in various biological
samples that are useful for monitoring health status [38,39]. Some advantages provided
by ATR-FTIR include the ease of handling samples with relatively short measurement
duration (only a few minutes), a small amount of required sample volume, a reagent-free
approach, and high signal to noise ratio output that facilitates chemometric analysis. In
addition, a single scan of the sample can provide information on the infrared spectrum
associated with biomarkers of various diseases [40,41].
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The combination of vibrational spectroscopy and machine learning algorithms has
been utilized as a diagnostic tool for various diseases with excellent discrimination results.
Chatchawal et al. (2021) explored the potential of ATR-FTIR combined with several machine
learning algorithms to identify cholangiocarcinoma from human sera. In their study, they used
various machine learning methods, such as partial least square discriminant analysis (PLS-DA),
support vector machine (SVM), random forest (RF), and neural network (NN). Furthermore, the
NN algorithm showed the best performance with a test sensitivity of 80–100% and specificity of
83–100% [42]. In addition, the application of ATR-FTIR combined with a neural network
could differentiate between sera from healthy subjects and from breast cancer patients
with a sensitivity of 92–95% and specificity of 95–100% [43]. Another finding reported the
possibility of ATR-FTIR coupled with deep learning to be applied for stratifying healthy,
allergic, and allergen-specific immuno-therapy in mice and humans [44]. Unfortunately, to
the best of our knowledge, ATR-FTIR empowered with machine learning algorithms has
not been widely applied to investigate immunosenescence.

In this study, we hypothesized that changes occurring in immunosenescence associated
with the presence of CD4+CD28-NKG2D+ T cells producing IL-17 could be observed in
spectra of serum, exosome, and HDL. We therefore demonstrated the possible use of
machine learning-empowered ATR-FTIR to discriminate the elderly groups with a low
percentage (LP; ≤3%) and a high percentage (HP; ≥6%) of these pathogenic CD4+ T cells.
In addition to the discrimination, we also investigated biochemical changes in serum,
exosome, and HDL samples as well as oxidative stress levels in the two groups.

2. Materials and Methods
2.1. Samples

Left-over sera were employed in this study. Sera were collected from elderly subjects
aged >60 years, and the percentage of IL-17-producing CD4+CD28-NKG2D+ (pathogenic
CD4+) T cells from peripheral blood mononuclear cells (PBMCs) was investigated by
flowcytometric analysis. Serum collection and flowcytometric analysis were conducted
by Sornkayasit et al. (2021) [18]. In this study, 21 and 22 serum samples from subjects
with a low percentage (LP; ≤3%) and a high percentage (HP; ≥6%), respectively, of these
pathogenic CD4+ T cells were selected. Subjects with a percentage of these pathogenic
CD4+ T cells with a range > 3 and <6% were considered as a gray zone group and not
included in this study. All sera were aliquoted and stored at −80 ◦C until use. This study
was approved by the Ethics Committee of Khon Kaen University (HE 631335).

2.2. HDL Isolation

HDL was isolated using the HDL purification kit (Cell Biolabs, Inc., San Diego, CA,
USA, cat no. STA, 607) with modifications referring to Praja et al. (2021) [45]. All solutions
used in this step were the same as in the original kit without any modifications. Modi-
fications were only done in terms of the kit solution volume used. Smaller volumes of
HDL purification kit and serum samples were employed. Briefly, 1 µL of dextran solution
and 10 µL of precipitation solution A were added to 200 µL of serum and then incubated
for 5 min on ice. The mixture was later centrifuged at 6000× g for 10 min (at 4 ◦C), and
the collected supernatant was transferred to a new tube. Twelve microliters of dextran
solution and 30 µL of precipitation solution A were added and incubated for 2 h at room
temperature. The mixture was centrifuged at 18,000× g for 30 min (at 4 ◦C). Sequentially,
the supernatant was discarded, and a pellet was resuspended using 100 µL of HDL resus-
pension buffer followed by centrifugation at 6000× g for 10 min (at 4 ◦C). The supernatant
was discarded, and the pellet was then mixed with 120 µL of 1X HDL wash solution and
shaken for 30 min at 4 ◦C. The supernatant was transferred to a new sterile tube, and 18 µL
of dextran removal solution was added, followed by incubation for 1 h at 4 ◦C. The mixture
was then centrifuged again at 6000× g for 10 min (at 4 ◦C). Finally, the isolated HDL in the
supernatant was transferred into a separate new tube and stored at −80 ◦C prior to use.
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2.3. Exosome Isolation

Exosome isolation was carried out using ExoQuick™ Exosome Precipitation Solu-tion
(System Biosciences, Palo Alto, CA, USA, cat no. EXOQ5A-1) with a modified method
according to Praja et al. (2021) [45]. Before use, to remove cell and cell debris, serum
samples were centrifuged at 3000× g for 15 min. Next, 50 µL of serum was transferred
to a new tube and 12.6 µL of ExoQuick™ was added and the mixture was refrigerated
for 30 min. The mixture was then centrifuged at 1500× g for 30 min. The supernatant
was discarded, and the pellet was centrifuged again at 1500× g for 5 min. The remaining
supernatant was discarded, then the pellet was resuspended using 1× phosphate buffer
saline (PBS). The isolated exosomes were stored at −80 ◦C until use.

2.4. FTIR Spectral Acquisition

Sample spectra were recorded using Agilent 4500 FTIR spectroscopy (Agilent Tech-
nologies, Santa Clara, CA, USA). Prior to spectrum collection, ATR-FTIR was cleaned
using deionized (DI) water and methanol. The background was measured by scanning
the diamond ATR surface. For spectrum collection, 3 µL of the sample was placed on the
surface of the ATR and dried using a hair dryer for 5 min. The FTIR spectra were obtained
at the wavenumber range of 4000–650 cm−1 with 64 scans and a spectral resolution of
4 cm−1. From each sample, three spectra were collected.

2.5. Spectral Band Area Analysis

This approach was done to quantitatively investigate biochemical components of
serum, exosome, and HDL samples from the LP and HP groups. Briefly, raw spectra were
preprocessed with baseline correction and a Savitsky–Golay algorithm with 3 polynomial
orders and 13 smoothing points. The standard normal variate (SNV) normalization was
employed to normalize the spectra [46]. Regions of 3000–2800 cm−1 (lipid), 1700–1500 cm−1

(protein), and 1270-960 cm−1 (nucleic acid) were selected for analysis [39,47]. The spectral
band area calculation was done with SpectraGryph version 1.2.14 (Dr. Friedrich Menges,
Oberstdorf, Germany).

2.6. Oxidative Stress Study by FTIR

To investigate oxidative stress levels in both LP and HP groups, lipid peroxidation and
protein carbonyl were analyzed. ATR-FTIR serum spectra were employed for this analysis.
The same preprocessed serum spectra in the spectral band area analysis were used in this
section. Lipid peroxidation was investigated by calculating ratio v C=O (1760-1720 cm−1)
to vas CH3 (2982–2942 cm−1) [48], and protein carbonyl was studied by calculating the
ratio of v C=O (1760–1720 cm−1) to amide II (1585–1480 cm−1) [49]. Calculation of the
spectral band area ratio was done using SpectraGryph version 1.2.14 (Dr. Friedrich Menges,
Oberstdorf, Germany).

2.7. Principal Component Analysis (PCA)

The Unscrambler®X software version 10.4 for Windows 64 bit (Camo Software AS,
Oslo, Norway) was employed for the analysis. Briefly, second derivative spectra were
calculated by the Savitzky–Golay algorithm with 13 smoothing points and 3 polynomial
orders. To normalize the spectra, data transformation was done using the standard normal
variate (SNV). Finally, PCA was generated to observe the trend of discrimination between
the LP and HP groups.

2.8. Spectral Data Analysis Using Multiple Algorithms

All preprocessed spectra from the LP and HP groups were combined. Furthermore,
all spectra were randomized and allocated to either a training set or a testing set with a
ratio of 70:30 using Weka software version 3.8.4. (The University of Waikato, Hamilton,
New Zealand). The first classification model built was partial least square-discriminant
analysis (PLS-DA) employing The Unscrambler®X software version 10.4 for Windows 64 bit
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(Camo Software AS, Oslo, Norway). Various other classification models, including the J48
decision tree, random forest (RF), support vector machine (SVM), and neural network (NN)
were created using Weka software version 3.8.4. with the same dataset used in PLS-DA.
Specifically, for NN algorithms, hidden layers in the range 1–20 were applied to obtain the
best classification model. After creating the classification models, the testing performance
of each classification model was measured in terms of % accuracy, sensitivity, specificity,
positive predictive value (PPV), and negative predictive value (NPV) (Figure 1).

Figure 1. Workflow of the development of classification models and their performance tests. All
spectra collected from two groups of samples were allocated with a ratio of 70:30 into two datasets for
training and testing. The training set was used for creating classification models and the performance
of the classification models was tested with a testing set.

2.9. Classification Model Evaluation

Classification model performance was evaluated in terms of % accuracy, sensitivity, speci-
ficity, positive predictive value (PPV), and negative predictive value (NPV) [42,50]. A confusion
matrix or 2 × 2 table (Table 1) was employed for calculations with the following formulas:

% Accuracy =

(
A + D

A + B + C + D

)
× 100 Sensitivity =

(
A

A + C

)
× 100 (1)

% Specificity =

(
D

B + D

)
× 100 % PPV =

(
A

A + B

)
× 100 (2)

% NPV =

(
D

C + D

)
× 100 (3)



Cells 2022, 11, 458 6 of 20

Table 1. The confusion matrix (2 × 2 table).

Predictive Model
Flowcytometric Analysis

HP LP

HP A B

LP C D

2.10. Statistical Analysis

Statistical analyses were performed using SPSS Statistics for Windows, version 17.0
(SPSS Inc., Chicago, IL, USA). Data collected in this study were tested for their distribution
by the Shapiro Wilk test. Data related to the integral area of spectra were analyzed using
independent sample t-test and Mann–Whitney test for normal and non-normal distribution,
respectively. Mean with standard error of the mean (SEM) was used for data with normal
distribution and median with 95% CI was used for data with non-normal distribution.

3. Results
3.1. Biomolecular Content Study by Spectral Band Area Analysis

In this study, 21 and 22 serum samples from elderly subjects with a low percentage (LP;≤3%)
and a high percentage (HP;≥6%), respectively, of IL-17-producing CD4+CD28-NKG2D+ T cells
were selected. Exosome and HDL were then isolated from sera. ATR spectra from serum, exosome,
and HDL samples were collected and then compared in terms of biochemical contents between
the LP and HP groups. We calculated the spectral band area of the region 3000–2800 cm−1

(lipid), 1700–1500 cm−1 (protein), and 1270–960 cm−1 (nucleic acid) (Figure 2A).
The spectral band area of serum, exosome, and HDL spectra was calculated with

SpectraGryph v.1.2.14 (Dr. Friedrich Menges, Oberstdorf, Germany). All spectra were
preprocessed with baseline correction, the Savitsky–Golay 13 smoothing points with
3 polynomial orders, and the standard normal variate (SNV) normalization. We found
that lipid, protein, and nucleic acid contents in the sera of the LP and HP subjects were
not significantly different (p > 0.05). According to the spectral band area analysis of exo-
some spectra, it was identified that lipid and nucleic acid contents in the HP group were
significantly higher than in the LP group (p < 0.001 and p < 0.01, respectively). In contrast,
no significant difference was shown by the protein spectral band area of exosome spectra
(p > 0.05). Additionally, the spectral band area on the protein of HDL was significantly
different between the HP and LP groups (p < 0.05). However, no significant differences
were identified in terms of lipid and nucleic acid contents of HDL (p > 0.05) (Figure 2B–D).
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Figure 2. Results of spectral band area analysis of serum, exosome, and HDL spectra. Representative
spectra from serum (blue), exosome (red), and HDL (green). Regions selected for the spectral band
area analysis were 3000–2800 cm−1 lipid (orange region), 1700–1500 cm−1 protein (green region), and
1270–960 cm−1 nucleic acid (blue region) (A). The comparison of spectral band area between the LP
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3.2. Oxidative Stress Study

The levels of oxidative stress were investigated by calculating spectral band area of
ratio v C=O (1760–1720 cm−1) to vas CH3 (2982–2942 cm−1) corresponding to lipid peroxi-
dation (Figure 3A) and the ratio of v C=O (1760–1720 cm−1) to amide II (1585–1480 cm−1)
corresponding to protein carbonyl (Figure 3B). Data preprocessing were baseline correction
and Savitsky–Golay with 13 smoothing points and 3 polynomial orders. In addition, the
standard normal variate (SNV) was used to normalize the spectra. Analysis was done with
SpectraGryph v.1.2.14 (Dr. Friedrich Menges, Oberstdorf, Germany).

Figure 3. Oxidative stress levels based on the ratio of the spectral band area. A ratio of v C=O to vas
CH3 (lipid peroxidation) (A) and the ratio of v C=O to amide II (protein carbonyl) (B) All data are
shown as median with 95% CI.

The study of oxidative stress levels by using serum spectra showed that lipid peroxi-
dation and protein carbonyl levels were not statistically different between the LP and HP
groups (p > 0.05). However, the trend of the data showed that the LP group had lower
oxidative stress based on the ratio v C=O to vas CH3 and v C=O to amide II.

3.3. Differences between Spectra from the LP and HP Groups

In Figure 4, we present the absorbance bands mainly in lipids (3000–2800 cm−1)
(pale-pink box) and mixed region of protein/phospholipids/DNA/RNA/carbohydrate
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(1800–900 cm−1) (pale-grayish green box). All averaged second derivative spectra exhibited
similar spectral patterns for all regions by visual examination of the raw spectra. However,
some peaks were identified to have a different intensity in the exosome and HDL spectra. The
average of second derivative ATR-FTIR spectra with SNV normalization of the serum, exosome,
and HDL spectra for the spectral regions from 3000–2800 and 1800–900 cm−1 are shown.

Figure 4. Averaged second derivative ATR-FTIR spectra with SNV normalization in the regions
of 3000–2800 cm−1 (pale-pink box) and 1800–900 cm−1 (pale-grayish green box). Comparison of
averaged second derivative spectra between LP and HP groups in serum (A), exosome (B), and
HDL spectra (C). Comparison of band intensity was done by independent sample t-test. A significant
difference in band intensity is depicted by the arrow (→). Blue and red represent the elderly groups with
a low percentage (LP; ≤3%) and a high percentage (HP; ≥6%) of pathogenic CD4+ T cells, respectively.

By visual examination in the regions of 3000–2800 and 1800–900 cm−1, it was iden-
tified that the averaged spectral pattern of the LP and HP groups in serum spectra was
similar (Figure 4A), whereas the averaged spectra of exosomes in the 1800–900 cm−1 re-
gion had some different band intensities based on visual examination. However, in the
1800–900 cm−1 region of exosome spectra, only the band at 1107 cm−1 had significantly
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higher intensity in the HP group as compared to the LP group (p < 0.05) (Figure 4B). A
band at 1107 cm−1 was assigned to v (CO) and v (CC). Through a visual observation in the
HDL spectra, peaks 1058 and 984 cm−1 in the fingerprint 1800–900 cm−1 region seemed
higher in the LP group compared to the HP group. Furthermore, the independent sample
t-test revealed a significant difference only at the band 984 cm−1 assigned to uracil ring
motions of RNA [51] (Figure 4C).

3.4. Discrimination by Unsupervised Analysis: Principal Component Analysis (PCA)

A total of 129 serum, exosome, and HDL spectra from the elderly with different per-
centages of IL-17-producing CD4+CD28-NKG2D+ T cells (LP; ≤3% versus HP; ≥6%) were
analyzed by principal component analysis (PCA) for identifying whether any clustering
of spectra could be observed and discriminated in each group. Spectra regions used for
PCA were lipid region (3000–2800 cm−1), mixed region (1800–900 cm−1), protein region
(1700–1500 cm−1), and fingerprint region (1500–900 cm−1). Among all regions of the serum,
exosome, and HDL spectra analyzed using PCA, most of the regions employed could not
show discrimination between the two groups as exhibited by representative score plots
(Supplementary Figure S1A,B). However, the wave-number around 1700–1500 cm−1 of
exosome spectra showed a possible separation between the LP and HP groups (Figure 5).
These results showed that the protein region could be used to discriminate between the LP
and HP groups. Additionally, a score plot representing most of the LP and HP groups were
separated along the PC-1 (59%) (Figure 5A).

Figure 5. PCA analysis of the 1700–1500 cm−1 FTIR exosome spectral range. PCA score plots (A) and
PCA loading plots (B). PCA score plots showed distinct clustering between the LP (blue box) and HP
groups (pink box). PCA loading plots identify specific important peaks for the LP and HP groups.

Analysis of the PCA loading plots was used to determine the regions of the FTIR
spectrum which contributed the most to the clustering. Bands at 1670, 1629, and 1558 cm−1
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had a contribution to clustering the LP group in the PC-1 positive score plot. Bands at
1651 and 1541 cm−1 were important for the HP group (Figure 5B).

3.5. Establishment of Partial Least Square Discriminant Analysis (PLS-DA) Model for
Discrimination

According to PCA analysis, the trend of classification from exosome spectra was only
found in the protein region (1700–1500 cm−1). The PLS-DA analysis was then explored
for generating a possible classification model. Herein, exosome spectra were divided into
two datasets, a training set and a testing set, with a ratio of 70:30. A training set consisting
of 90 spectra was modeled by PLS-DA to produce a predictive model. The remaining
39 spectra employed as a testing set were predicted utilizing a generated PLS model with
the 1700–1500 cm−1 region. The performance of the generated PLS model was evaluated in
terms of % accuracy, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV). The PLS model generated using the 1700–1500 cm−1 region gave a
discrimination along with Factor-1 (x-axis) (Figure 6A). The regression coefficients exhibited
three important bands for the LP group, including 1670, 1626, and 1555 cm−1 (blue box).
Furthermore, wavenumber values at 1651 and 1541 cm−1 were significant for the HP group
(pink box) (Figure 6B).

Figure 6. PLS-DA analysis results. A score plot of PLS-DA of the 1700–1500 cm−1 FTIR exosome
spectral range (A), regression coefficient (B), and predictive results of PLS-DA generated using the
1700–1500 cm−1 region (C). False predictions are depicted with stars (*). Nine false-negative and five
false-positive predictions were identified with the PLS-DA predictive model.

Based on the PLS-DA model, exosome spectra from the HP group were set to a posi-
tive value (+1), whereas the LP group was assigned to a negative value (−1) (Figure 6C).
Regarding the predictive model, 14 false predictions consisting of nine false-negative and five
false-positive predictions were observed. The performance of the PLS-DA model run in the
1700–1500 cm−1 region exhibited 64% accuracy, 69% sensitivity, 61% specificity, 55% PPV, and
74% NPV as calculated based on confusion matrix (2× 2 table) (Supplementary Tables S1 and S2).
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As the PCA had a limitation in generating the classification model and the performance of
the PLS-DA model was not favorable enough to discriminate two groups of the elderly, we fur-
ther attempted to employ advanced machine learning algorithms to obtain better classification
results. For this further work, we utilized J48 decision tree, random forest (RF), support vector
machine (SVM), and neural network (NN) to generate better classification models.

3.6. Classification Model Using Advanced Machine Learning Algorithms

In an attempt to create better classification models, we employed several advanced
machine learning algorithms, including J48 decision tree, random forest (RF), support vector
machine (SVM), and neural network (NN). The classification models were then generated
using five spectral ranges: 3000–2800, 1800–900, 1700–1500, 1500–900, and combined
3000–2800 and 1800–900 cm−1. A ratio of 70:30 was selected to split the dataset (70% for
the training set and 30% for the testing set). The performance of classification models was
evaluated in terms of % accuracy, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV).

Overall, the analysis to discriminate between the elderly groups with LP and HP of
pathogenic CD4+CD28-NKG2D+IL17+ T cells using multiple advanced machine learning
algorithms gave better results than the PCA and PLS-DA models. The summary of discrim-
ination results in serum, exosome, and HDL spectra using multiple algorithms are shown
in Tables 2–4.

Table 2. Comparison of multiple advanced machine learning algorithms for classification models in
serum samples.

Sample Region (cm−1) Algorithm
Performance

Acc (%) Sens
(%)

Spec
(%) PPV (%) NPV

(%)

Serum

3000–2800

J48 Decision Tree 54 54 53 65 42
RF 51 53 50 50 53

SVM 44 46 38 60 26
NN (4) 51 53 50 50 53

1800–900

J48 Decision Tree 72 80 67 60 84
RF 92 100 86 85 100

SVM 77 79 75 75 79
NN (20) 100 100 100 100 100

1700–1500

J48 Decision Tree 69 75 65 60 79
RF 90 90 89 90 89

SVM 62 58 75 90 32
NN (14) 90 86 94 95 84

1500–900

J48 Decision Tree 56 60 54 45 68
RF 90 90 89 90 89

SVM 72 74 70 70 74
NN (12) 97 100 95 95 100

3000–2800 and
1800–900

J48 Decision Tree 74 81 70 65 84
RF 87 89 85 85 89

SVM 56 58 55 55 58

NN (11) 98 95 100 100 97
Abbreviations: Acc—accuracy; Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV—
negative predictive value; RF—random forest; SVM—support vector machine; NN—neural network. Values in
the parentheses after NN indicate the number of hidden layers used in the NN parameter. Values highlighted in
grey are the best model in each spectral region.
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Table 3. Comparison of multiple advanced machine learning algorithms for classification models in
exosome samples.

Sample Region (cm−1) Algorithm
Performance

Acc (%) Sens (%) Spec (%) PPV (%) NPV (%)

Exosome

3000–2800

J48 Decision Tree 85 79 93 95 74
RF 74 75 74 75 74

SVM 72 71 72 75 68
NN (14) 77 79 75 75 79

1800–900

J48 Decision Tree 82 81 83 85 79
RF 90 90 89 90 89

SVM 74 81 70 65 84
NN (10) 90 94 86 85 95

1700–1500

J48 Decision Tree 67 67 67 70 63
RF 79 83 76 75 84

SVM 72 76 68 65 79
NN (11) 95 95 95 95 95

1500–900

J48 Decision Tree 85 94 78 75 95
RF 87 86 89 90 84

SVM 72 76 68 65 79
NN (16) 92 90 94 95 89

3000–2800 & 1800–900

J48 Decision Tree 79 83 76 75 84
RF 90 90 89 90 89

SVM 82 84 80 80 84
NN (9) 95 91 100 100 89

Abbreviations: Acc—accuracy; Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV—
negative predictive value; RF—random forest; SVM—support vector machine; NN—neural network. Values in
the parentheses after NN indicate the number of hidden layers used in the NN parameter. Values highlighted in
grey were the best model in each spectral region.

Table 4. Comparison of multiple advanced machine learning algorithms for classification models in
HDL samples.

Sample Region (cm−1) Algorithm
Performance

Acc (%) Sens (%) Spec (%) PPV (%) NPV (%)

HDL

3000–2800

J48 Decision Tree 69 79 64 55 84
RF 44 45 42 45 42

SVM 56 56 57 70 42
NN (8) 72 70 75 80 63

1800–900

J48 Decision Tree 72 74 70 70 74
RF 85 85 84 85 84

SVM 74 73 76 80 68
NN (14) 97 100 95 95 100

1700–1500

J48 Decision Tree 79 83 76 75 84
RF 74 75 74 75 74

SVM 51 52 50 60 42

NN (8) 79 77 82 85 74

1500–900

J48 Decision Tree 92 95 90 90 95
RF 90 83 100 100 79

SVM 77 74 81 85 68
NN (9) 92 100 86 85 100

3000–2800 & 1800–900

J48 Decision Tree 90 94 86 85 95
RF 82 84 80 80 84

SVM 69 67 73 80 58
NN (15) 90 100 83 80 100

Abbreviations: Acc—accuracy; Sens—sensitivity; Spec—specificity; PPV—positive predictive value; NPV—
negative predictive value; RF—random forest; SVM—support vector machine; NN—neural network. Values in
the parentheses after NN indicate the number of hidden layers used in the NN parameter. Values highlighted in
grey were the best model in each spectral region.
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Based on the PCA and PLS-DA, separation between the LP and HP groups in serum
spectra from the five spectral regions were not found. Therefore, some advanced machine
learning approaches were employed to classify the LP and HP groups. According to Table 2,
the 3000–2800 cm−1 spectral range of serum spectra was an unfavorable region for generating
classification models because it had very low accuracy values even though we utilized several
advanced machine learning approaches. Classification models of serum spectra developed
using the J48 decision tree algorithm had an accuracy in the range of 54–74%. The best
performance of classification models by the J48 decision tree algorithm was in the combined
region of 3000–2800 and 1800–900 cm−1 with accuracy, sensitivity, and specificity of 74,
81, and 70%, respectively. Models by random forest (RF) provided better performance
than the J48 decision tree with the best accuracy, sensitivity, and specificity of 92, 100,
and 86%, respectively, in the 1800–900 cm−1 spectral region. We then further created
classification models based on the support vector machine (SVM) algorithm. The best
performance of the classification model by SVM was in the spectral range 1800–900 cm−1

with 77% accuracy, 79% sensitivity, and 75% specificity. Interestingly, in the 1800–900,
1700–1500, 1500–900, and the combined 3000–2800 and 1800–900 cm−1 regions, classifica-
tion models based on neural network (NN) possessed very high accuracy in the range of
90–100%. Predominantly, the performance of the classification model by NN in the
1800–900 cm−1 region exhibited a value of 100% for all parameters.

Of the five exosome spectral regions that we used to differentiate between the LP
and HP groups based on PCA, only the 1700–1500 cm−1 protein region showed possible
discrimination between the two groups. Unfortunately, the accuracy, sensitivity, and
specificity given by the classification model by PLS-DA were 64, 69, and 61%, respectively.
The results of PLS-DA in the 1700–1500 cm−1 region might not be satisfied although we
could observe the discrimination. We, therefore, explored the use of advanced machine
learning algorithms (J48 decision tree, RF, SVM, and NN) to classify the LP and HP groups.
Referring to Table 3, all spectral regions of the exosome spectra had good potential to
be used to differentiate between the LP and HP groups. Various classification models
created using various algorithms in the 3000–2800 cm−1 region showed an accuracy of
72, 74, 77, and 85% for SVM, RF, NN, and J48 decision tree, respectively. In the other regions,
1800–900, 1700–500, 1500–900, and 3000–2800 and 1800–900 cm−1, classification models by
the NN algorithm with different hidden layers provide varying accuracy of approximately
90–95%. Interestingly, the 1700–1500 cm−1 region and the combined region of 3000–2800 and
1800–900 cm−1 generated with different hidden layers of the NN algorithm showed the
same accuracy performance of 95%. Specifically, the best-hidden layer of the NN algorithm
for the classification model in the spectra region 1700–1500 cm−1 was 11; in the combination
region, the NN algorithm with nine hidden layers was the best parameter. In addition, there
were PPV and NPV differences between the classification models built based on the NN
algorithm in the 1700–1500 cm−1 spectral region and the combination of 3000–2800 and
1800–900 cm−1. Other algorithms used, such as RF and SVM, provided the potential
for differentiating LP and HP groups with varying accuracy ranging from 74–90% and
72–82% for RF and SVM, respectively.

According to Table 4, classification models of HDL spectra with various advanced
machine learning algorithms at wavenumber 3000–2800 cm−1 showed an unsatisfactory
potential for discrimination between the LP and HP groups, with the best accuracy of
72% by the NN with eight hidden layers. Classification models generated using SVM
and RF had good performance to differentiate between the LP and HP groups with >70%
ac-curacy in some spectral regions. However, the worst performance of the classification
model by RF was in the spectral region 3000–2800 cm−1 with an accuracy of 44%. The lowest
performance of SVM was in the HDL 1700–1500 cm−1 spectral range with an accuracy
of 51%. Interestingly, the classification models based on HDL spectra revealed that the
NN algorithm with a variety of hidden layers was the best algorithm for generating better
classification models in the various regions used. The accuracy performance shown by
the NN algorithm was 72–97%. A classification model based on the 1800–900 cm−1 region
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generated using the NN with 14 hidden layers gave the best model performance possessing
an accuracy, sensitivity, specificity, PPV, and NPV of 97, 100, 95, 95, and 100%, respectively.
Notably, the classification models in the region of 1500–900 cm−1 created using the NN and
J48 decision tree algorithms showed similar accuracy performance of 92%, but different in
terms of sensitivity, specificity, PPV, and NPV.

4. Discussion

This study explored the ATR-FTIR combined with machine learning algorithms to clas-
sify elderly subjects with different percentages of IL-17-producing CD4+CD28-NKG2D+ T
cells. For the LP group, the subjects were individuals with a percentage of these pathogenic
T cells of ≤3% (n = 21), whereas for the HP group, individuals with a percentage ≥ 6%
were selected (n = 22). Subjects with a percentage of pathogenic CD4+ T cells ranging
from >3 to <6% were not recruited (considered as a gray zone). Serum, exosome, and HDL
from both LP and HP groups were employed to collect ATR spectra. This study is the first
evidence in the field of immunosenescence discriminating the elderly with LP and HP of
IL-17-producing CD4+CD28-NKG2D+ T cells by utilizing machine learning-empowered
ATR-FTIR.

First, we analyzed the biochemical components in each sample of the LP and HP
groups. The spectral band area analysis of serum samples showed no significant difference
in lipids, proteins, and nucleic acids in the two groups (p > 0.05) (Figure 2B). Based on
the spectral band area analysis of exosome spectra, the nucleic acid of the HP group
was significantly higher than that of the LP group (p < 0.01). The components of nucleic
acids carried by exosomes include microRNA, long noncoding RNA, circular RNA, and
DNA [52]. Under systemic inflammation, pro-inflammatory exosomes are secreted and
circulate in the bloodstream, leading to inflammation of distant tissue. Moreover, those pro-
inflammatory exosomes were documented to carry various pro-inflammatory microRNAs,
including miR-15a, miR-27b, and miR-125a [53]. Therefore, the increase of nucleic acid
contents in exosomes might be correlated with the increase of pro-inflammatory miRNAs.
According to the statistical analysis, lipid levels in the exosome of LP group subjects were
significantly lower when compared to the exosome of HP group subjects (p < 0.001) and
there was no significant difference between the exosome proteins of the LP and HP groups
(p > 0.05) (Figure 2C). The different lipid levels in exosomes of the two groups might be
related to the immune status during inflammation. Generally, exosomes are capable of
transporting lipids, such as cholesterol, fatty acids, as well as eicosanoids from parent cells
to recipient cells, leading to inflammation or changes in immunity and metabolism [54]. A
study by Kakazu et al. (2016) demonstrated that pro-inflammatory exosomes were enriched
in ceramide (a sphingolipid family member) in the study of non-alcoholic steatohepatitis
(NASH) [55]. Another study also reported that ceramide and dihydroceramide in cystic
fibrosis extracellular vesicles (CF-EVs) were higher than in control EVs [56]. Furthermore,
excessive levels of ceramide could lead to inflammation [56,57]. As previously explained,
the exosome component depends on exosome-secreting cells [28]. In inflammatory diseases,
such as systemic lupus erythematosus (SLE), peripheral blood T cells isolated from subjects
with SLE had higher cholesterol and glycosphingolipid GM1 (a lipid raft biomarker)
levels in the plasma membrane than did healthy individuals. The study proved that
activated T cells in SLE subjects produce more cholesterol and GM1 [58]. Furthermore,
lipid components in the outer and inner layers of the exosome membrane are expected to
have similarities with the plasma membrane [59]. Cholesterol is the main lipid component
of exosomes, with levels around 42–63% depending on the parent cells [60]. However,
because exosomes carry different types of lipids [60], in this study we could not identify
exactly which lipid components were elevated in the exosome of the HP group.

For the HDL spectral band area analysis, no significant difference was found in
the lipid and nucleic acid contents (p > 0.05). Specifically, the protein content in HDL
was significantly higher in the HP group than that the LP group (p < 0.05) (Figure 2D).
CD4+CD28-NKG2D+ T cells producing IL-17 have been documented in inflammation-
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associated diseases, including T2DM [17] and cardiovascular diseases [19]. During in-
flammation, HDL protein biocomponents undergo alterations as the liver produces more
acute phase substances such as serum phospholipase A2 (sPLA2) and serum amyloid A
(SAA) that displace ApoA-I, ApoA-II, and other enzymes in HDL, causing reduction of
antioxidant, anti-inflammatory, and lipid transport capacity [35]. In addition, ceruloplas-
min was also identified to be increased in dysfunctional HDL. Furthermore, in those with
chronic disease characterized by inflammation and oxidative stress, HDL may promote
inflammation response [61]. Further research involving omics approaches (transcriptomics,
proteomics, and lipidomics) may be useful to deeply investigate biochemical differences
between LP and HP groups. Therefore, the exact biochemical differences could be obtained.
According to the lipid peroxidation and serum carbonyl analyses, the levels of oxidative
stress between the LP and HP groups were not statistically different (p > 0.05), although
the LP group tended to have lower levels of oxidative stress (Figure 3A,B).

Before performing the discrimination using unsupervised analysis and advanced
machine learning algorithms, we attempted to visually analyze the difference of spectra
from the LP and HP groups, employing the second derivative spectra (Figure 4). Un-
fortunately, the patterns of the second derivative spectra of serum, exosome, and HDL
from the two groups were similar. The differences were only found in the band intensity
of exosome (1107 cm−1 assigned to v (CO) and v (CC)) and HDL (984 cm−1 assigned to
uracil ring motions of RNA) [51]. Those differences in band intensities were not enough
to classify the LP and HP groups. The principal component analysis (PCA) and partial
least square-discriminant analysis (PLS-DA) uncovered several important bands from
spectra of exosomes to discriminate between the LP and HP groups (Table 5). The promi-
nent spectral bands and proposed biomolecular assignments for the HP group were at
bands 1651 cm−1 (α-helix amide I) and 1541 cm−1 (amide II). Bands at 1670, 1626, and
1555/8 cm−1 were bands associated with the LP group. A band at 1670 was a vibration
of amide I (anti-parallel β-sheet), v (C=C) trans, lipids, and fatty acids. Spectral peaks at
1629 and 1626 cm−1 were assigned to β-sheet amide I region structure. The last bands at
1555/8 consisted of ring base vibration [51,62–65]. In general, the spectral peaks associated
with the LP and HP discrimination from exosome spectra were associated with differences
in protein, lipid, and nucleic acid biomolecules. In agreement with our findings, several
studies employing exosome bio component analyses also found that proteins, lipids, and
nucleic acids underwent biochemical composition alterations under various inflammation
mediated diseases [66–68].

Table 5. Prominent ATR-FTIR exosome spectral bands for discrimination of the LP and HP groups
using PCA and PLS-DA [51,62–65].

PCA Band (cm−1) PLS-DA Band (cm−1) Group Assignment

1651 1651 HP Amide I (α-helix)
1541 1541 HP Amide II
1670 1670 LP Amide I (anti-parallel β-sheet) v (C=C) trans, lipids, and fatty acids
1629 1626 LP β-sheet amide I region structure
1558 1555 LP Ring base

Evidently, IL-17-producing CD4+CD28-NKG2D+ T cells were considered as one of
the contributors to inflammation in aging [18]. Thus, their existence may be additionally
monitored in the elderly. Generally, the presence of these pathogenic CD4+ T cells can be
investigated using flowcytometric analysis [17,18]. Although the flowcytometric technique
is commonly performed, it requires expensive antibodies, special tools, and more com-
plicated procedures. Furthermore, studies using FTIR combined with machine learning
approaches to study immunosenescence were poorly studied. In this study, ATR-FTIR
spectroscopy coupled with machine learning algorithms was developed to study these
particular CD4+ T cells by exploring serum, exosome, and HDL from the LP and HP
groups. Previously, a study of FTIR in the immunological field, specifically allergy, attempt-
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ing to classify healthy, allergic, and allergen-specific immuno-therapy was conducted by
Korb et al. (2020). Their classification models of the FTIR spectra of human sera generated
using deep learning showed an overall accuracy of 93.9%. Furthermore, the model they
established successfully discriminated against allergy, allergen-specific immunotherapy,
and healthy individuals with true positive rates of 93.3, 91.7, and 96.7%, respectively [44].
Another FTIR study classifying inflammatory fibrous hyperplasia (IFH) lesions and nor-
mal oral mucosa (NM) using the PCA-LDA approach had a sensitivity and specificity of
87.5 and 100%, respectively [69]. Our classification models using various types of advanced
machine learning algorithms, including PLS-DA, J48 decision tree, random forest (RF),
support vector machine (SVM), and neural network (NN) provided a variety of diagnostic
performances. The classification models generated by the NN algorithm resulted in the
best performance with an accuracy of 100% in serum (1800–900 cm−1), 95% in exosomes
(1700–1500 and 3000–2800 and 1800–900 cm−1), and 97% in HDL (1800–900 cm−1). The
different performances of a classification model in terms of % accuracy, sensitivity, and
specificity are not only influenced by the algorithm used, but also the input attributes, data
complexity, and sample size. Until now, there has been no agreement on the best method
of analysis [42]. A limitation of this study was the number of spectra used for building the
classification models. Ideally, to build a robust classification model using SVM and NN, more
than 1,000 samples are required [70–73]. However, in this study, only 129 spectra were em-
ployed. Thus, to obtain more robust classification models and to assess the real classification
model performance, a large-scale study is still needed to increase the sample size.

This study showed the advantages of ATR-FTIR spectroscopy combined with multi-
variate analysis and several advanced machine learning algorithms to classify the LP and
HP groups. Based on PCA and PLS-DA, exosomes are the most likely source of biomark-
ers. Particularly, the application of advanced machine learning algorithms exploring all
types of samples (serum, exosomes, and HDL) could be used to classify these two groups.
Conclusively, ATR-FTIR may be one of the effective alternative tools that can be used to
study changes in the immune system in aging. Additionally, ATR-FTIR may be suitable
for studying multiple biochemical alterations in biological samples where a single FTIR
spectrum can provide various biochemical information related to health conditions.

5. Conclusions

In this work, we presented that machine learning-assisted ATR-FTIR spectroscopy
could be effectively applied to investigate an immunological alteration in immunosenes-
cence. ATR-FTIR combined with advanced machine learning algorithms allows differenti-
ating the elderly with a low percentage (LP) and a high percentage (HP) of IL-17-producing
CD4+CD28-NKG2D+ T cells from serum, exosome, and HDL samples with favorable
performances. However, to improve the robustness of SVM- and NN-based classification
models and to assess the real diagnostic performance, a large-scale study with a larger
sample size is still needed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cells11030458/s1, Figure S1: The representatives of PCA results from serum and HDL samples,
Table S1: Confusion matrix of classification model built by PLS-DA using exosome spectra in the
1700–1500 cm−1 region, Table S2: Performance of classification model built by PLS-DA using exosome
spectra in the 1700–1500 cm−1 region.
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