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Scrub typhus, caused by Orientia tsutsugamushi, is a serious public health

problem in the Asia-Pacific region, threatening the health of more than one

billion people. China is one of the countries with the most serious disease

burden of scrub typhus. Previous epidemiological evidence indicated that

meteorological factors may a�ect the incidence of scrub typhus, but there

was limited evidence for the correlation between local natural environment

factors dominated by meteorological factors and scrub typhus. This study

aimed to evaluate the correlation between monthly scrub typhus incidence

and meteorological factors in areas with high scrub typhus prevalence

using a distributed lag non-linear model (DLNM). The monthly data on

scrub typhus cases in ten provinces from 2006 to 2018 and meteorological

parameters were obtained from the Public Health Science Data Center and the

National Meteorological Data Sharing Center. The results of the single-variable

and multiple-variable models showed a non-linear relationship between

incidence and meteorological factors of mean temperature (Tmean), rainfall

(RF), sunshine hours (SH), and relative humidity (RH). Taking the median of

meteorological factors as the reference value, the relative risks (RRs) ofmonthly

Tmean at 0◦C, RH at 46%, and RF at 800mm were most significant, with RRs

of 2.28 (95% CI: 0.95–5.43), 1.71 (95% CI: 1.39–2.09), and 3.33 (95% CI: 1.89–

5.86). In conclusion, relatively high temperature, high humidity, and favorable

rainfall were associated with an increased risk of scrub typhus.
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Introduction

Scrub typhus is an acute natural infectious disease caused

by Orientia tsutsugamushi (1, 2). Historically, scrub typhus

was only prevalent in the Asia-Pacific region, but with the

development of tourism and trade between continents, local

cases have also appeared in Europe, the Middle East, and Latin

America (3). Globally, at least 12 million people were infected

each year and it is probably the most common cause of non-

malarial fever in the Asia-Pacific region (3). In recent years,

the number of scrub typhus cases in China has continued

to increase, and outbreaks have frequently occurred in some

areas. The scope of new epidemic areas is gradually expanding,

and millions of people are at risk of Orientia tsutsugamushi

infection (4–7).

As an insect-borne disease, Orientia tsutsugamushi

selects rodent hosts (Apodemus agrarius and Suncus

murinus, etc.) as the main source of infection. Chigger

larvae are the vectors, and are transmitted to humans

through the bite of chigger mite larvae carrying

rickettsia (8, 9). Typical clinical symptoms include

high fever, toxemia, eschar, rash, and swollen lymph

node (10).

Seasonal and geographic differences may affect the

prevalence of scrub typhus by affecting the activity of

scrub typhus vectors and hosts. Climate is related to the

spread and prevalence of diseases, and global warming

may provide opportunities for the spread of vector-

borne diseases (11). For example, high RH, high Tmean,

and abundant RF favor chigger reproduction, which

provides excellent opportunities for the spread of chigger-

related diseases. Furthermore, climate affects the risk of

tsutsugamushi disease by affecting rodent populations,

the proportion of rodents infected with pathogens, the

number of chigger mites, and the frequency human exposure

(12, 13).

Both chigger and host density are affected by environmental

factors, many studies have proposed the relationship between

natural environment factors and the incidence of scrub typhus,

providing valuable information for us to understand the

prevalence and spread of scrub typhus (such as Tmean, RH

and RF) (5, 6). Through Poisson regression model, Wu et al.

found that forest cover, Tmean and RF would increase the

risk of scrub typhus (14). Yao et al. studied the risk factors

of scrub typhus in northern China from 1980 to 2013 and

found that abundant RF (over 400mm), SH (140–180 h),

suitable Tmean (9-14◦C), farmland and high RH (62- 65%)

significantly contributed to the spatial distribution of scrub

typhus and the increased disease risk (15). Interestingly, in

southern China, it was found to be more favorable for the

spread of scrub typhus when the Tmean was more than 15◦C

and the RH was <63%. Due to different in research areas,

methods, and the extent of data mining, these studies still

have many limitations and cannot fully reveal and explain

the reasons for the increasing incidence of scrub typhus

in China.

Firstly, the relationship between scrub typhus and

meteorological factors has not been fully extrapolated. Secondly,

previous studies have rarely considered the lag effect of

meteorological factors, and the time unit setting of the lag effect

research is not detailed. Most of them selected some old models,

and the results obtained are not reliable. Inconsistent results

due to differences in models and regions, do not provide good

predictive power, and cannot be used as a decision-making

tool. A more suitable prediction model for scrub typhus

has not been found. One of the key reasons is that changes

in meteorological factors in different regions and degrees

have different effects on the occurrence and development

of diseases.

This study covered the epidemiological characteristics of

scrub typhus from January, 2006 to December, 2018. On the

basis of historical data, the DLNM was used to predict the

relationship between meteorological factors and the incidence

of scrub typhus in 10 provinces. To our knowledge, this is the

largest epidemiological study of scrub typhus to date, covering

the largest number of provinces and the longest period.

Humans generally lack immunity to scrub typhus and

no effective vaccine is available. Therefore, exploring the

relationship between climate change and scrub typhus will

help the public health department to grasp the pattern of

tsutsugamushi in multiple ways, take targeted prevention and

control measures more effectively. We aimed to investigate

the potential impact of various climatic variables on disease

transmission opportunities in areas with high tsutsugamushi

prevalence, taking into account the lag time. This will provide a

new insight into the potential impact of climate change on scrub

typhus transmission to help develop early warning systems.

Materials and methods

Data source and collection of case data

During the period from 2006 to 2018, monthly data of

scrub typhus of 31 provinces in China, including the number of

cases and incidence, were obtained from the National Notifiable

Disease Report System. These data are available from the China

Public Health Science Data Center (https://www.phsciencedata.

cn/Share/en/index.jsp). Population data were obtained from the

National Bureau of Statistics of the People’s Republic of China

(http://data.stats.gov.cn). All clinical diagnosis cases met the

criteria for scrub typhus (http://www.chinacdc.cn) issued by the

Chinese Center for Disease Control and Prevention in 2009.
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Meteorological data

The monthly meteorological data of each province from

2006 to 2018, including Tmean (◦C), average RF (mm), average

SH (h), average RH (%) were obtained from 272 sites enclosed

inmeteorological monitoring stations in China (http://data.cma.

cn/wa) (Supplementary Figure 1).

Statistical analysis

Although some provinces have large increasement in scrub

typhus incidence, the actual incidence was very low, so we

did not include them in the model. Finally, we selected top

10 average annual incidence provinces as study region in this

study. In the descriptive analysis, mean, standard deviation,

quartiles (P25, median, 75), minimum, andmaximumwere used

to describe the distribution of incidence of scrub typhus and

meteorological variables. Analysis of variance (ANOVA) test

was applied to analyze the values of meteorological among the

four seasons: spring (March to May), summer (June to August),

autumn (September to November), and winter (December to

February). A Kruskal-Wails test was used to examine the scrub

typhus incidences among the four seasons. The significance level

of all these analyses was set at 0.05 in two-tailed tests.

DLNMs, which can flexibly describe relationships and

explore underlying lag non-linear effects, were used to uncover

the association between meteorological and scrub typhus cases

(16). In order to reduce the confounding effects and avoid

collinearity in the DLNMs, three approaches were applied for

analyzing the data. First, we selected the 10 provinces with the

highest average annual incidence of scrub typhus as the research

objects. Second, we used pairwise observations to compute

the Pearson’s correlation coefficients between meteorological

and scrub typhus incidence. Finally, we observed the effects

of weather variables by single-variable and multiple-variable

analysis, which can help identify the effects of other variables.

When fitting the DLNM, the relative risks at different values

and lag months would be read out. The maximum number

of lag months was determined by the smallest quasi-Bayesian

information criterion (QBIC) in the multiple-variable DLNM.

Finally, 7 months were set as the maximum number of lag

months. Long-term cumulative risk referred to the cumulative

7-month risk.

In the single-variable model, in addition to the weather

conditions, we further considered the factors of season, temporal

trends, quantile groups for average incidence and previous

month incidence.

The added variables in the multiple-variable model were

used to control the significant confounders including Tmean,

RH, RF, temporal trend, season factors, quantile groups for

average incidence and previous month incidence.

Package “dlnm” (version 4.1.3, https://cran.r-project.

org/web/package/dlnm/index.html) was used to specify the

intersection of quadratic splines of three meteorological

variables, predict and plot the results of the fitted model

(contour plots, cumulative exposure-response curves, and 3-D

plots) (17). DLNMwas used to calculate the relative risk of scrub

typhus under different meteorological factors with varying lag

times (0–7 months).

We defined the cross-basis matrices when building DLNM.

The cross-basis for weather factors was specified by B-

spline using the function bs from the package SPLINES in

R software (version 4.1.3, https://www.rdocumentation.org/

packages/splines/versions/4.1.3). Regarding the space of lags, we

evaluated the time lag from 0 to 7 months. The knots for the

spline for lags were placed at equally spaced value on the log scale

of lags, using the function lognots. The prediction values here

were centered at the median of each meteorological variable.

Sensitivity analysis

QBIC was used to select the optimal number and location

of nodes reduced to determine natural splines. The final model

should determine the minimum sum of QBICs for the ten

selected provinces. AIC was used to select time-degree variables,

including natural cubic splines of elapsed time, with one degree

of freedom (df = 1) per year to control for long-term trends in

meteorological factors across provinces. All statistical analyses

were performed by two-tailed tests with a significance level of

0.05, using the Joinpoint Regression Program (version 4.9.0.0)

developed by the National Cancer Institute (NCI), ArcGIS

10.2 (ESRI, Redlands, CA, USA) and R software (packages

“dlnm”, “mgcv” andDescTools) (version 4.1.3, R Foundation for

Statistical Computing, Vienna, Austria).

Result

Scrub typhus distribution in China from
2006 to 2018

This study consisted of 142,849 scrub typhus cases between

January 1, 2006 and December 31, 2018. The annual incidence

showed a significant upward trend (Cochran-Armitage trend

test Z = 280.82, P < 0.001), and the annualized average

incidence was 0.641 per 100,000 (Figure 1). The national annual

incidence of scrub typhus increased significantly from 0.095 per

100,000 in 2006 to 1.183 per 100,000 in 2014, with an APC of

38.02% (95% CI: 33.2–43.0%, P < 0.001), then increased to 1.93

per 100,000 in 2018, with an APC of 12.8% (95% CI: 1.8–25.0%,

P = 0.027) (Table 1; Figure 2; Supplementary Figure 2). Among

the 10 provinces with the highest incidence rates, Guangxi and

Jiangxi had a larger increase in the incidence of scrub typhus
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FIGURE 1

The incidence and number of scrub typhus cases reported in China from 2006 to 2018. Number of cases and incidence by year.

TABLE 1 The annual percentage changes (APC) and the joinpoint year

range for scrub typhus in China from 2006 to 2018.

Province Joinpoint year range APC, % P-values

National 2006–2014 38.0* (33.2, 43.0) <0.001

2014–2018 12.8* (1.8, 25.0) 0.027

Anhui 2006–2018 20.7* (11.6, 30.7) <0.001

Fujian 2006–2013 34.0* (22.8, 46.2) <0.001

2013–2018 8.6 (−6.1, 25.8) 0.228

Guangdong 2006–2013 37.7* (28.7, 47.3) <0.001

2013–2018 12.8* (0.8, 26.3) 0.039

Guangxi 2006–2014 61.5* (55.1, 68.1) <0.001

2014–2018 38.2* (23.0, 55.3) <0.001

Hainan 2006–2018 38.6* (24.0, 55.0) <0.001

Jiangsu 2006–2009 −15.4 (−58.6, 72.7) 0.573

2009–2015 67.3* (21.6, 130.2) 0.009

2015–2018 −22.4 (−62.0, 58.5) 0.404

Jiangxi 2006–2018 58.9* (45.0, 74.1) <0.001

Shandong 2006–2018 16.0* (8.6, 23.8) <0.001

Sichuan 2006–2018 29.1* (16.1, 43.5) <0.001

Yunnan 2006–2018 31.0* (27.4, 34.7) <0.001

*Statistically significant trends. APC, annual percentage change.

with an AAPC of 53.3% (95% CI: 47.3–59.6%, P < 0.001) and

58.9% (95% CI: 45.0–74.1%, P < 0.001), respectively.

From 2006 to 2018, scrub typhus predominantly circulated

in the south, southeast and southwest of China (Figure 3).

At least eight provinces in mainland China had more

than 5,000 scrub typhus cases, including 38,439, 35,420,

12,198, 11,718, 9,935, 9,299, 8,642, and 5,509 in Guangdong,

Yunnan, Anhui, Guangxi, Fujian, Jiangsu, Shandong and

Jiangxi, respectively.

A heat map was used to show seasonal patterns,

which displayed that the national incidence was

lower in winter (December to February) and

higher in autumn (September to November)

(Supplementary Figure 3).

Meteorological factors distribution in
China from 2006 to 2018

The national monthly Tmean and average RH were

13.29◦C and 66.30%. The RF was 77.63mm, and the SH

was 174.68 h (Table 2). In the selected 10 provinces, the

average RH was 74.19%, the RF was 115.96mm, and the

SH was 155.94 h (Supplementary Table 1). The boxplots of

meteorological conditions showed clear variations in the four

seasons from 2006 to 2018 (Figures 4A–D), and the incidence

of scrub typhus also showed seasonal variations, with the

highest average number of cases in autumn (Figure 4E).

The Tmean, RH, and RF were higher in summer. A

similar pattern was also found in the selected 10 provinces

(Supplementary Figure 4).
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FIGURE 2

Trends in incidence of scrub typhus and joinpoints in China from 2006 to 2018. *Statistically significant trends. APC, Annual Percentage Change.

FIGURE 3

Spatiotemporal distribution of scrub typhus in China from 2006 to 2018. Annual incidence of scrub typhus per 100,000 people in the 31 Chinese

provinces investigated.
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TABLE 2 Descriptive statistics for monthly scrub typhus cases and weather conditions in China from 2006 to 2018 (n = 4,836).

Variables Mean SD Min. P25 P50 P75 Max.

No. of cases 30 125 0 0 0 4 2,389

Tmean (◦C) 13.29 10.93 −23.21 6.07 14.78 22.11 31.96

RF (mm) 77.63 82.63 0.00 15.51 50.76 115.01 982.00

RH (%) 66.30 13.25 27.43 57.29 69.13 77.14 89.33

SH (h) 174.68 57.81 11.43 135.68 178.86 217.09 325.45

SD, standard deviation; Min, minimum; P25 , 25th percentile; P50 , median; P75 , 75th percentile; Max, maximum.

Relationship between weather condition
and scrub typhus

Pearson’s correlation analysis of ten high incidence provinces

revealed that the incidence of scrub typhus was significantly

positively correlated with three weather conditions, including

monthly Tmean (r = 0.19), RF (r = 0.19) and RH (r = 0.26)

(Figure 5).

In the DLNM, exposure-response curves showed a

substantial linear association between scrub typhus and

meteorological conditions with a lag of 0–7 months. In

the single-variable models, three meteorological conditions

were associated with scrub typhus incidence (Figures 6A–C;

Supplementary Figure 5). The RR of Tmean, RH and RF

were 0.15–2.16, 0.31–1.49 and 0.44–2.03, respectively. In the

multiple-variable models, the RR was 0.15–2.03 for Tmean,

0.27–1.71 for RH, and 0.60–3.33 for RF (Figures 7A–C;

Supplementary Figure 6). The maximum RR for Tmean at 0◦C

was 2.28 (95% CI: 0.95–5.43) with a lag of 1.4 months. The

maximum RR for RH at 46% was 1.71 (95% CI: 1.39–2.09) with

a lag of 4.8 months. The maximum RR for RF at 800mm was

3.33 (95% CI: 1.89–5.86) with a lag of 4 months.

We used the median of weather factor as a reference and

calculated the relative variable in different lag months (Table 3).

In lag 3, Tmean was most significant at 30◦C (RR = 1.47, 95%

CI: 1.34–1.63). RH was most significant at 84% (RR= 1.24, 95%

CI: 1.17–1.31). RF was most significant at 800mm (RR = 2.63,

95% CI: 1.58–4.37).

Cumulative risks with a lag of 0–7
months

We found that the cumulative risks of meteorological factors

with a lag of 0–7 months were associated with scrub typhus

incidence. In the single-variable models, the Tmean at 19–23◦C,

the RH at 62–76%, and the RF at 0–8mm, 29–90mm and 612–

800mm were all positively associated with scrub typhus risk

(Figures 6D–F). In the multiple-variable models, the Tmean at

19–20◦C, the RH at 60–74% and 76–88%, and the RF at 0–7mm,

66–90mm and 570–800mm were all positively associated with

scrub typhus risk (Figures 7D–F).

Discussion

China is one of the regions where the incidence of scrub

typhus is relatively obvious, with cases mainly distributed in

Yunnan, Guangdong, Hainan, Fujian and other regions south of

the Yangtze River. Since 1986, the epidemic focus has begun to

appear in the area north of the Yangtze River. The distribution

of scrub typhus incidences varied among provinces and cities

in China, and the number of cases was uneven, which may

be caused by socioeconomic factors such as population density

and the difference in land use types or natural environments

such as temperature, precipitation, and vegetation. This study

conducted an epidemiological analysis on the top ten provinces

with scrub typhus incidence, and explored the relationship

between meteorological factors and the incidence through

the DLNM.

This study revealed that scrub typhus mainly existed in the

economically underdeveloped areas of southern China, such as

Yunnan, Guangxi, and Jiangxi, which led us to doubt whether

economic and social factors would affect scrub typhus (18). Shah

et al. found that the increase in agricultural land area and the

cultivation of oil palm and rubber in Southeast Asia reduced

the natural forest and provided more favorable conditions for

the breeding and life cycle of chigger mites, leading to an

increase incidence of scrub typhus (19). Ranjan and Prakash

also found that changes in land use, land cover types and

urbanization led to an increase in rodent populations, and

human activities such as hiking and camping increased human

exposure opportunities to chiggers, which caused a surge in

scrub typhus in India (20). By constructing a multiple regression

model, Wardrop et al. identified scrub typhus was positively

correlated with the proportion of agricultural population and

land coverage, and was negatively correlated with per capita

annual income. Interestingly, Li et al. also discovered a positive

correlation between GDP and scrub typhus incidence in

Guangdong, the major fruit producing area in southern China.

Guangdong had more exposure opportunities due to more

human planting economic behavior (21). It is currently known
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FIGURE 4

Boxplots of four meteorological conditions and the number of scrub typhus cases in four seasons from 2006 to 2018. (A–D) Seasonal patterns

of weather conditions. (E) Seasonal patterns of scrub typhus. The analysis of variance (ANOVA) test was applied to test whether the values

between the four seasons were statistically significant. The Kruskal-Wallis test was used to detect the cases of scrub typhus in four seasons,

spring (March-May), summer (June-August), autumn (September-November) and winter (December-February). Mean temperature (Tmean),

rainfall (RF), sunshine hours (SH), and relative humidity (RH).

that some socioeconomic factors play an important role in the

development of scrub typhus. How the level of socioeconomic

development affects the incidence of scrub typhus remains to be

further explored.

Our results showed that the high-incidence seasons of scrub

typhus in northern and southern China were different, which

may be related to the difference in the chiggers’ life cycle. The

main vectors in the southern region such as Guangdong, Fujian,

Yunnan were L.deliense with a 3-month life cycle (22, 23). The

main vectors in northern China such as Shandong, Jiangsu,

Anhui were L.scutellare, which involved a long life history of

more than 9 months (24, 25). It was worth noting that, as the
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main vector of scrub typhus in the southern summer, L.deliense

peaked in June-July in coastal Fujian and declined in September,

while in Guangdong it peaked in June-July and September-

October. The incidence of scrub typhus varies from place to

FIGURE 5

The Pearson’s correlation between four weather conditions and

scrub typhus incidence in China from 2006 to 2018. ***means

≤0.001; **means 0.01 ≥ p > 0.001; *means 0.05 ≥ p > 0.01.

Mean temperature (Tmean), rainfall (RF), sunshine hours (SH),

and relative humidity (RH).

place, suggesting that public health departments need to adapt

to local conditions and carry out targeted prevention efforts in

different regions (26).

Previous studies showed that temperature was an important

factor affecting the incidence of scrub typhus, which was

consistent with our discovery (10, 27). The analysis found that

the lag effect was obvious when the monthly mean temperature

was higher, and the risk of disease increased with temperature.

Scrub typhus was found to be positively correlated with higher

temperature, humidity and precipitation in Laos (27). Through

Poisson regression model and distributed lag non-linear model

(DLNM), Through Poisson regression model and DLNM, Wei

et al. found that the risk of scrub typhus increased by 3.8%

for every 1◦C increase in monthly surface temperature; the risk

of scrub typhus increased by 5.3% for every 1◦C increase in

daily temperature, with a lag of 7 weeks (10). Similar results

were seen in northern and northeastern Thailand, where scrub

typhus incidence was associated with a 2-month lag of mean

temperature (R = 0.55) and a 1-month lag of precipitation (R

= 0.46) (28).

The life cycle and reproduction characteristics of chiggers

may be one reason. Higher temperature and rainfall were more

suitable for the growth and reproduction of chigger larvae

(29), and the temperature range can affect the abundance

and distribution of chiggers (12). Interestingly, Xu et al.

found an intricate relationship between Scrub typhus growth

and temperature. For example, L.deliense was the most

representative chigger vector in southern China and Southeast

FIGURE 6

Contour plots and cumulative exposure-response curves of exposure-response relationships between scrub typhus incidence and three

meteorological conditions in the single-variable model. (A–C) The y-axis represents the lag period from 0 to 7 months. The x-axis represents

the range of observations for each variable. The color gradient represents relative risk (RR). Red represents RR > 1, blue represents RR < 1, and

white represents no di�erence when RR =1. (D–F) The y-axis represents the RR. The x-axis represents the range of observations for each

variable. Mean temperature (Tmean), rainfall (RF), and relative humidity (RH).

Frontiers in PublicHealth 08 frontiersin.org

https://doi.org/10.3389/fpubh.2022.992555
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Luo et al. 10.3389/fpubh.2022.992555

FIGURE 7

Contour plots and cumulative exposure-response curves of exposure-response relationships between scrub typhus incidence and three

meteorological conditions in the multiple-variable model. (A–C) The y-axis represents the lag period from 0 to 7 months. The x-axis represents

the range of observations for each variable. The color gradient represents relative risk (RR). Red represents RR > 1, blue represents RR < 1, and

white represents no di�erence when RR = 1. (D–F) The y-axis represents the RR. The x-axis represents the range of observations for each

variable. Mean temperature (Tmean), rainfall (RF), and relative humidity (RH).

Asia. When the temperature reached 23±1◦C, the hatching

rate of L.deliense was the highest (30). Too high or too

low temperatures would reduce the hatching rate. This was

consistent with our results that when the temperature was

<10◦C or more than 40◦C, the larvae of the L.deliense could

not develop. The difference in the incidence of scrub typhus

under different temperature may be related to the non-linear

relationship between different chigger species, host population

dynamics and natural environmental factors (31, 32).

The cumulative risk of rainfall in this study showed that the

monthly average rainfall involved first increase, then decreased,

and then increased sharply, indicating that suitable rainfall

was beneficial to the life activities of the hosts (rodents

and chigger larvae). Currently, many vector-borne infectious

diseases (HFRS, dengue fever, and bacillary dysentery, etc.,) are

found to be positively correlated with precipitation, and disease

transmission may be affected by the growth and development

of pathogens and vectors/hosts (33–36). When rainfall exceeds

a certain range, the sharp increase of scrub typhus may be

linked to the heavy rainfall that is beneficial to the survival and

reproduction of the host and human activities. Chigger larvae

migrate with flood caused by heavy rainfall, increasing their

range and exposure to humans (37, 38).

The lag analysis of humidity in this study displayed the

different results between the single-variable and multiple-

variable models. Results of single-variable model showed that

high humidity could increase the scrub typhus risk, but when

the humidity exceeded the critical value, it became an inhibitory

effect on the risk. High humidity was also thought to increase the

risk of scrub typhus. Yang et al. found that every 1% increase in

monthly relative humidity in the first twomonths was associated

with a 12.6% increase in monthly cases, which was consistent

with our results (39). Moreover, humidity was thought to be

related to the survival rate and egg-laying ability of chiggers. As

humidity decreased, the number or activity of chiggers would

decrease, and the spawning rate of adult chiggers would start

to decline or even stop (40). As the relative humidity increased,

the hatching rate of chigger larvae began to rise, and the larvae

always survived and reproduced well (10, 41, 42). However, Lu

et al. found that the results were not statistically significantly

different when the relative humidity was more than 72%, which

was consistent with the results of our single-variable study, but

the reason was unclear. The incidence of scrub typhus under

different humidity should be further explored (43).

In conclusion, (relatively) high temperature, high humidity

and sufficient rainfall were all associated with the incidence of

scrub typhus, and there was a certain cumulative lag effect.

Changes in natural and socioeconomic factors would have a

huge impact on the habitat of rodents and chiggers, thereby

affecting the population distribution of rodents and chiggers.

Therefore, in areas with high incidence of scrub typhus such

as Yunnan and Guangdong, targeted prevention and control

measures should be carried out during the epidemic season, and

health education and personal protection awareness should be

strengthened for vulnerable groups such as the middle-aged and

elderly, farmers and diaspora children. The health department
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TABLE 3 Maximum RR values and meteorological parameters under di�erent lag months.

Lag months Tmean (◦C) RR (95% CI) RH (%) RR (95% CI) RF (mm) RR (95% CI)

0 21 1.01 (0.96–1.06) 64 1.36 (1.17–1.57) 270 1.12 (0.99–1.26)

1 0 1.77 (0.80–3.93) 88 1.70 (1.46–1.98) 0 2.22 (1.09–4.54)

2 0 1.76 (0.89–3.50) 85 1.35 (1.25–1.44) 0 2.05 (1.08–3.89)

3 30 1.47 (1.34–1.63) 84 1.24 (1.17–1.31) 800 2.63 (1.58–4.37)

4 30 2.03 (1.78–2.31) 46 1.38 (1.13–1.70) 800 3.33 (1.89–5.86)

5 30 1.62 (1.42–1.84) 46 1.71 (1.41–2.07) 800 2.74 (1.61–4.67)

6 23 1.01 (0.95–1.07) 46 1.35 (1.19–1.54) 800 1.69 (0.89–3.19)

7 12 1.19 (1.07–1.32) 73 1.01 (0.99–1.04) 0 1.25 (1.00–1.57)

Tmean, mean temperature; RH, relative humidity; RF, rainfall.

should strengthen local scrub typhus monitoring to detect and

treat in time. At the same time, further studies should be

conducted to find out the key risk factors affecting the rise of

scrub typhus incidence, so as to provide a theoretical basis for

scientific and effective prevention and control of scrub typhus.

This study has several limitations. First, we lack the

epidemiological data of scrub typhus after 2018, and we cannot

analyze the prevalence of scrub typhus in recent years. Second,

we cannot extrapolate the short-term impact of meteorological

factors on scrub typhus frommonthly data. Third, data on some

socioeconomic factors, including GDP, urbanization level, etc.,

are not collected. In future, the impact of meteorological factors

and socioeconomic environment on scrub typhus needs to be

comprehensively considered.
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