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ABSTRACT 123 

Lung injury is a major determinant of survival after pediatric hematopoietic cell transplantation (HCT). A 124 

deeper understanding of the relationship between pulmonary microbes, immunity, and the lung epithelium 125 

is needed to improve outcomes.  In this multicenter study, we collected 278 bronchoalveolar lavage (BAL) 126 

samples from 229 patients treated at 32 children’s hospitals between 2014-2022.  Using paired 127 

metatranscriptomes and human gene expression data, we identified 4 patient clusters with varying BAL 128 

composition.  Among those requiring respiratory support prior to sampling, in-hospital mortality varied 129 

from 22-60% depending on the cluster (p=0.007). The most common patient subtype, Cluster 1, showed a 130 

moderate quantity and high diversity of commensal microbes with robust metabolic activity, low rates of 131 

infection, gene expression indicating alveolar macrophage predominance, and low mortality.  The second 132 

most common cluster showed a very high burden of airway microbes, gene expression enriched for 133 

neutrophil signaling, frequent bacterial infections, and moderate mortality.  Cluster 3 showed significant 134 

depletion of commensal microbes, a loss of biodiversity, gene expression indicative of fibroproliferative 135 

pathways, increased viral and fungal pathogens, and high mortality.  Finally, Cluster 4 showed profound 136 

microbiome depletion with enrichment of Staphylococci and viruses, gene expression driven by lymphocyte 137 

activation and cellular injury, and the highest mortality. BAL clusters were modeled with a random forest 138 

classifier and reproduced in a geographically distinct validation cohort of 57 patients from The Netherlands, 139 

recapitulating similar cluster-based mortality differences (p=0.022). Degree of antibiotic exposure was 140 

strongly associated with depletion of BAL microbes and enrichment of fungi. Potential pathogens were 141 

parsed from all detected microbes by analyzing each BAL microbe relative to the overall microbiome 142 

composition, which yielded increased sensitivity for numerous previously occult pathogens. These findings 143 

support personalized interpretation of the pulmonary microenvironment in pediatric HCT, which may 144 

facilitate biology-targeted interventions to improve outcomes. 145 

  146 
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BACKGROUND: 147 

Hematopoietic stem cell transplantation (HCT) involves high dose chemotherapy and/or radiation followed 148 

by infusion of autologous or allogeneic hematopoietic progenitor cells with the intention of correcting 149 

hematopoietic defects, rescuing chemotherapy-ablated marrow, or achieving a graft-versus-malignancy 150 

effect.1 HCT is often the only curative therapy for patients with life-limiting diseases such as malignancy, 151 

bone marrow failure, and inborn errors of immunity, hemoglobin, and metabolism. However, direct 152 

chemotherapy toxicity, opportunistic infection, and/or alloreactive inflammation can lead pulmonary injury 153 

in up to 40% of patients,2–6 which can lead to hospital mortality rates approaching 50% when mechanical 154 

ventilation is required.7–9  155 

Given the severity of lung disease in this population, a deeper understanding of the pulmonary 156 

microenvironment is needed to develop next-generation diagnostic tests and treatments that will improve 157 

survival rates. The lung microenvironment is a complex interaction between pulmonary microbes, 158 

immunity, and the lung epithelium and stroma, and significant questions regarding the role of pulmonary 159 

microbes in relation to each other remain largely unanswered as they pertain to human health. We and 160 

others have shown that the lungs are not sterile, and in fact contain a variety of microbes of varying 161 

pathogenic potential that continually populate the lung due to inhalation, aspiration, and in some cases of 162 

disease, hematogenous spread.10–12 Lung sampling through bronchoscopic bronchoalveolar lavage (BAL) 163 

is used clinically to detect common pathogens; however, many pathogens evade detection due to preceding 164 

antimicrobial treatment, lack of serologic immunity in the post-HCT setting, or limited preselected targets 165 

on multiplex assays, all of which may lead to delayed or missed diagnoses and prolonged broad-spectrum 166 

antimicrobial exposure.13,14 In addition, organisms of indeterminate significance or context-dependent 167 

virulence are frequently identified, leading to questions about the structure, composition, and significance 168 

of broader microbial communities in this population.11,15 169 

We previously reported that in a cohort of children preparing to undergo allogeneic HCT, both pulmonary 170 

microbial depletion and pathogen enrichment were associated with contemporaneously poor lung function, 171 
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concomitant inflammation, and the eventual development of fatal post-HCT lung disease.16,17 To expand 172 

these findings to the post-HCT setting, we prospectively enrolled pediatric HCT patients undergoing 173 

clinically-indicated BAL as part of evaluation for pulmonary complications. BAL underwent RNA 174 

sequencing to characterize the pulmonary microbiome landscape, surveil for occult pulmonary infections, 175 

and capture lung gene expression profiles. Overall, we found that depletion of commensal microbiome 176 

constituents was associated with pathogen enrichment, acute inflammation, fibroproliferation, and poor 177 

survival. We were able to distinguish common respiratory pathogens from commensals using a community-178 

structure analysis approach. Our results suggest a pathobiologic signature of dysbiotic lung injury that could 179 

be adapted into next-generation diagnostics and eventually leveraged in new therapeutic pipelines to 180 

improve outcomes. 181 

RESULTS: 182 

Patients: From 2014-2022, pediatric HCT recipients across 32 children’s hospitals in the United States, 183 

Canada, and Australia (Figure 1A) who developed pulmonary complications and were preparing to 184 

undergo clinically-indicated bronchoscopic BAL were prospectively approached along with their 185 

parents/guardians for research consent to cryopreserve unused BAL (Figure 1B). The final cohort included 186 

n=278 BALs from n=229 patients (Table 1). Pulmonary symptoms developed or worsened a median 93 187 

days after HCT (IQR 23-278) and were frequently associated with hypoxia and abnormal chest imaging, 188 

often in the setting of other comorbidities such as GVHD and sepsis (Table 2). BAL was performed a 189 

median 112 days after HCT (IQR 36-329), at which point lymphopenia was prevalent (median ALC 420 190 

cells/uL, IQR 156-1,035, eFigure 1). Following each patient’s most recent BAL procedure, 121/229 191 

patients required intensive care (53%), 71 required ≥7 days of mechanical ventilation (31%), and 45 patients 192 

died in the hospital (20%). 193 

Cluster Derivation: BAL underwent mechanical homogenization, bulk RNA extraction, and sequencing, 194 

followed by parallel alignment to microbial and human reference genomes using the open-source CZID 195 

platform (czid.org) (Figure 1C, Methods).18 Microbial alignments were transformed from reads counts to 196 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23299130doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.29.23299130
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 9 of 53 

 

quantitative masses using a reference spike-in19, followed by stringent contamination subtraction20, and 197 

were summarized according to taxa, KEGG functional orthologs, richness, and diversity. Human 198 

alignments were characterized according to normalized gene expression, pathway analysis, cell type 199 

deconvolution, and T- and B-cell receptor alignments (Methods). We first used unsupervised analysis to 200 

identify underlying BAL subtypes with shared microbial-human metatranscriptomic composition. We used 201 

a two-step approach consisting of (1) multi-factor dimensionality reduction (mofa), followed by (2) uniform 202 

manifold approximation and projection with hierarchical clustering (umap) to assess BAL compositional 203 

similarity (Methods). Optimal fit statistics (eFigures 2-4) suggested that 4 clusters best fit the data structure 204 

(Figure 1D). 205 

Clinical Traits, Illness Severity and Outcomes: Clinical traits and outcomes were analyzed only after the 206 

clusters were assigned.  Demographics, medical disease, transplant regimens, and graft characteristics were 207 

similar among clusters, with the exception of more females in Clusters 3 and 4 (eTable 2). However, 208 

patients in Clusters 3 and 4 were generally sicker, as evidenced by greater need for respiratory support prior 209 

to BAL (p=0.004), higher rates of renal injury and GVHD (p=0.001 and p=0.019), and greater use of 210 

intensive care (p=0.001) or prolonged mechanical ventilation (≥ 7 days) after BAL (p=0.001, eTable 3). 211 

Using each patient’s most recent BAL, patients in Clusters 3 and 4 also had significantly higher in-hospital 212 

mortality than patients in Clusters 1 or 2 (33 and 35% vs 14 and 14%, log-rank p=0.005, Figure 1E). 213 

Among patients requiring respiratory support prior to BAL (44%), cluster-based mortality differences were 214 

pronounced and ranged from 22-30% in Clusters 1 and 2 to 50-60% in Clusters 3 and 4 (log-rank p=0.007). 215 

Findings were similar when analyzing only patients enrolled within 100 days post-HCT (eTable 4) and in 216 

a multivariable Cox regression model accounting for age, biologic sex, ANC, ALC, and presence of GVHD 217 

(p=0.023, eTable 5).  Of note, only 2 patients died within 48 hours of BAL (both in the setting of 218 

progressive septic shock).  219 

Microbial Taxonomy: To determine how microbiome composition drove differences between the clusters, 220 

we compared taxonomic mass, richness, and diversity. Cluster 1 was defined by moderate microbiome mass 221 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23299130doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.29.23299130
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 10 of 53 

 

and richness, high microbial diversity, and a low burden of viruses. In contrast, Cluster 2 showed high mass 222 

of all bacterial phyla, as well as high levels of taxonomic richness and moderate microbial diversity (Figure 223 

2A, 2B, Data File 1). Cluster 3 demonstrated a reduced quantity and diversity of typically oropharyngeal 224 

microbes with greater quantity of RNA viruses and the Ascomycota phylum of fungi, which contains 225 

medically-relevant pathogens such as Aspergillus, Candida, and Pneumocystis. In contrast, Cluster 4 226 

showed significant depletion of typical microbiome constituents with minimal diversity and richness and 227 

concomitant enrichment of Staphylococcus and the Pisuviricota phylum of RNA viruses, which contains 228 

numerous respiratory RNA viruses such as Rhinovirus. BALs representative of each Cluster are shown in 229 

eFigure 5. We next used an orthogonal supervised analysis to compare microbiome features among 230 

survivors and non-survivors. Consistent with the description of Clusters 3 and 4, non-survivors showed 231 

broad bacterial depletion of commensal taxa, higher quantities of fungal and viral RNA (Figure 2C, Data 232 

File 2), and decreased BAL richness (p=0.025) and diversity (Shannon diversity p=0.006; Figure 2D). In 233 

contrast, survivors showed replete and bacterially diverse pulmonary microbiomes, consistent with 234 

description of Cluster 1. 235 

Microbial Function: Transcriptomic markers of metabolic activity of microbial communities may 236 

complement taxonomic composition.21 Therefore, we next characterized the 4 clusters according to KEGG 237 

functional annotations. Cluster 1 showed moderate transcription of myriad microbial metabolic functions 238 

across the domains of carbohydrate, lipid/fatty acid, and amino acid metabolism (Figure 2E, eFigure 6, 239 

Data File 3). In contrast, the bacterially rich Cluster 2 showed greater transcription of these domains as 240 

well as of glycan biosynthesis pathways, including peptidoglycan, lipopolysaccharide, and other glycans 241 

that form bacterial cell walls (eFigure 7). Cluster 3 showed significantly lower microbial function across 242 

the spectrum of KEGG pathways, and consistent with a depleted microbiome, Cluster 4 showed minimal 243 

microbial metabolic activity. Select metabolic pathways are shown in Figure 2F. These results indicate that 244 

functionally, the two clusters highly associated with poor outcome showed relative loss of common critical 245 

microbial functions. 246 
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Pathogen Identification: Although some microbiome features were shared across clusters, such as the 247 

degree of quantity of oropharyngeal taxa, many patients in this cohort had a wide range of distinct 248 

infections, thus lending unique elements to each microbiome. Therefore, we characterized the landscape of 249 

detected microbes with pathogenic potential relative to the clinical assay metadata from each patient 250 

(summarized in eTable 6, pathogen list in Data File 4, patient-level data in Data File 5).  251 

Viruses: Clinically, most community-acquired respiratory viruses (CRVs) are detected with multiplex PCR 252 

and reported as present/absent. Clinical testing found CRVs in 18% of samples (n=49), whereas sequencing 253 

identified CRVs in 28% of samples (n=77), highest in Clusters 2, 3, and 4 (Figure 3A). In addition to 254 

common CRVs, several novel (< 90% nucleotide identity) or variant strains of common CRVs such as 255 

Influenza C and Rhinovirus C were detected (GenBank OQ116581, OQ116582, OQ116583).22–24 Clinical 256 

testing found herpesviruses (HVs) including CMV and HHV-6 in 13% of samples (n=35), whereas 257 

sequencing found HVs in 16% of samples (n=49), with greatest detection in Clusters 3 and 4. Sequencing 258 

also detected many viruses known to have respiratory transmission but not typically included on respiratory 259 

viral panels, including BK, WU, and KI Polyomaviruses, Bocavirus, Parvovirus B19, lymphocytic 260 

choriomeningitis virus (LCMV), and non-vaccine strain Rubella across 26 BALs from 23 patients. These 261 

viruses were most common in Clusters 3 and 4 and associated with 39% in-hospital mortality (n=9/23). The 262 

ubiquitous bystander torquetenovirus (TTV) and its variants were detected in 20% of samples (n=55), again 263 

higher in Clusters 2, 3, and 4 relative to Cluster 1 (eTable 7, p<0.001).  264 

Bacteria: Clinically, most pathogenic respiratory bacteria are detected with combination of selective culture 265 

media (blood, chocolate, and McConkey agar) optimized to grow certain pathogens above non-pathogenic 266 

background, although PCR, serology, and antigen tests may be used for certain organisms. In this study, 267 

clinical testing identified pathogenic bacteria in 51 samples, which were heavily overrepresented in the 268 

microbially-rich Cluster 2 (32 of 51 bacterial infections). In contrast, metagenomic sequencing is inherently 269 

unbiased regardless of organism pathogenicity and thus can detect microbes broadly. Since contamination 270 

is ubiquitous in low-biomass samples,25,26 we used a strict approach to adjust for background taxa using 271 
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internal spike-ins and a series of external controls (Methods).20,27 Still, many potentially pathogenic 272 

microbes were detected broadly; for example, S.pneumoniae, M.catarrhalis, H.influenzae, S.aureus, 273 

P.aeruginosa were detected in 34%, 21%, 21%, 16%, and 14% of samples (94, 58, 57, 44, and 39 samples), 274 

respectively. Since some microbes could be present as commensals or pathogens, depending on context and 275 

microbial burden, we then ranked bacteria according to RNA mass, dominance of the bacterial microbiome, 276 

and intra-cohort z-score in order to parse microbes most likely to be present in states of dysbiosis and thus 277 

potential infection (Figure 3B). Using a conservative threshold of RNA mass ≥10pg, bacterial dominance 278 

≥20%, and Z-score ≥+2, we found potentially pathogenic bacteria in 76 samples, again with nearly half of 279 

these in Cluster 2. In addition to new cases of common pathogens (e.g.: P.aeruginosa), numerous previously 280 

occult pathogens were identified above these thresholds, including B.cereus, C.freundii, C.pneumoniae, 281 

K.aerogenes, S.enterica, and U.parvum. 282 

Eukaryotes: As with bacteria, many potentially pathogenic fungi were detected broadly in this cohort; for 283 

example, Candida, Aspergillus, Fusarium, and Rhizopus were detected in 18%, 16%, 9%, and 5% of 284 

samples (50, 44, 25, and 13), respectively. By clinical assays, potentially pathogenic fungi were detected in 285 

9% of samples (n=25). Using sequencing with a threshold of mass ≥10pg and Z-score ≥+2, potentially 286 

pathogenic fungi were detected in 30% of samples (83), with high detection across clusters 2, 3, and 4 287 

(Figure 3C). Several relevant fungi were detected exclusively by metagenomic sequencing, including 288 

Cryptococcus and Pneumocystis. No BAL parasites were detected through clinical assays, whereas 289 

metagenomic sequencing detected Toxoplasma in 4 patients and Acanthamoeba in 3 patients, with 290 

predominance in Clusters 3 and 4 (Data File 5) and >50% mortality rate (n=4/7).  291 

Overall, clinical testing identified 173 pathogens in 116/278 samples (41.7%), while metagenomic 292 

sequencing using the above conservative thresholds identified 360 pathogens in n=196/278 samples 293 

(70.5%, McNemar’s p<0.001, eTable 8). Combined, clinical testing and metagenomic sequencing together 294 

identified 429 pathogens in n=209/278 samples (75.2%, eTable 6). Whereas clinical testing identified 295 

pathogens in 22/45 non-survivors (49%), sequencing identified credible pathogens in 36/45 non-survivors 296 
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(80%, p=0.002). In-hospital mortality was highest for those with a pathogen detected by both clinical testing 297 

and metagenomics and lower if a pathogens was detected by metagenomics alone or was not detected at all 298 

(27% vs 19% vs 13%, eTable 9, eFigure 8). 299 

Impact of Antimicrobial Exposure: Although the effects of antimicrobial exposure have been 300 

demonstrated on the intestinal, nasal, and oropharyngeal microbiomes, the effects of antibiotics on the 301 

bronchoalveolar microbiome are less clear, with some reporting a major effect28–35 and some reporting 302 

minimal effect.36,37 To investigate this, we quantified patient-level antibacterial exposure in the week 303 

preceding BAL by weighting the cumulative antibiotic exposure days (Figure 4A) with an agent-specific 304 

broadness score38 to yield an antibiotic exposure score (AES, Figure 4B, Methods). AES varied across 305 

clusters (p=0.005) and was lowest for the microbially-rich Cluster 2 and highest for the microbially depleted 306 

Clusters 3 and 4. Greater AES was associated with reduced BAL microbial richness (Spearman rho -0.14, 307 

p=0.018); depletion of all the major bacterial phyla including numerous oropharyngeal-resident taxa; and 308 

enrichment of the fungal phylum Ascomycota (FDR<0.05, Figure 4C, Data File 6). In addition, AES was 309 

significantly greater among non-survivors (median 352, IQR 210-507 vs. 175, IQR 75-336, Wilcoxon rank-310 

sum p<0.001), with sequentially higher mortality with increasing AES quartile (eFigure 9). Using causal 311 

mediation analysis based on linear structural equation modeling (Methods), the association between greater 312 

AES and mortality was statistically mediated by an antibiotic-induced reduction in key commensal 313 

pulmonary bacteria including Actinomyces, Fusobacterium, Gemella, Haemophilus, Neisseria, Rothia, 314 

Schaalia, and Streptococcus (p<0.001), suggesting that the link between antibiotic exposure and mortality 315 

can at least partially be explained by effects of antibiotics on the pulmonary microbiome (eFigure 10, Data 316 

File 7). Many groups have found that anti-anaerobe exposure is associated with a depleted intestinal 317 

microbiome and progression of upper respiratory viral infections to the lower respiratory tract.39–41 Similar 318 

to above, anti-anaerobic exposure was higher in non-survivors (p=0.011) and was associated with BAL 319 

depletion of numerous anaerobes including Prevotella, Gemella, and Fusobacterium (Data File 8).  Anti-320 

fungal exposure appeared higher in the microbially-depleted Cluster 4, driven largely by higher exposure 321 
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to echinocandins (p=0.019), and anti-viral exposure appeared higher in Clusters 3 and 4, driven largely by 322 

higher exposure to cidofovir (p=0.045).  323 

Impact of Clinical Immune Status: The pulmonary microbiome exists in a state of reciprocal interaction 324 

with the lung epithelium, stroma, and immune system. To contextualize microbiome states according to 325 

systemic immunity, we analyzed each patient’s most recent blood absolute neutrophil count (ANC) and 326 

absolute lymphocyte count (ALC) measured prior to BAL. ANC was highest in the bacterially-rich Cluster 327 

2 (p=0.029, eTable 3) but was not associated with mortality overall (p=0.810). ALC did not vary across 328 

clusters (p=0.997) but was significantly lower in non-survivors (median 273, IQR 125-650 vs. 422, IQR 329 

179-1120, p=0.028). 330 

Pulmonary Gene Expression: We then compared BAL human gene expression across the 4 clusters. A 4-331 

way ANOVA-like analysis yielded 18,158 genes differentially expressed across the 4 clusters (Figure 5A, 332 

Data File 9). Select genes most differentially expressed in each cluster are displayed in Figure 5B. To 333 

assess the biological pathways represented by these genes, we compared GSVA enrichment scores for 334 

Reactome gene sets (Data File 10); select pathways most differentially expressed in each cluster are 335 

displayed in Figure 5C. Overall, Cluster 1 showed high expression of pathways related to antigen-336 

presenting cell activation; Cluster 2 showed high expression of genes and pathways related to neutrophil 337 

and innate immune activation, bacterial processing, and airway inflammation; Cluster 3 showed high 338 

expression of pathways related to collagen deposition and fibroproliferation; and Cluster 4 showed high 339 

expression of anti-viral and cellular injury genes. To replicate these findings using a different methodology 340 

unrelated to the above clusters, we performed a supervised analysis comparing gene expression among 341 

survivors and non-survivors and identified 1,253 differentially expressed genes (Data File 11). Consistent 342 

with the description of Clusters 3 and 4, BALs from non-survivors showed broad down-regulation of innate 343 

immune and antigen-presenting signals and a significant upregulation in collagen deposition, matrix 344 

metalloproteinases, alveolar epithelial hyperplasia, and fibroproliferative genes (e.g.: COL1A1, COL3A1, 345 

CXCL5, IL13, MMP7, SFTPA1, SFTPC, TIMP3). 346 
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BAL Cell Type Imputation: BAL contains an admixture of cell types in contact with the lumen of the 347 

lower respiratory tract, and thus varying cell proportions may account for differential gene expression 348 

detected by bulk sequencing. A multi-center study with small volume of BAL samples precluded single 349 

cell sequencing.  Hence, we used in silico cell type deconvolution with CIBERSORTx and the Travaglini 350 

lung cell atlas to impute cell fractions in each sample.42–44 Consistent with findings described above, Cluster 351 

1 showed high representation of antigen presenting cells including monocytes and macrophages, Cluster 2 352 

showed a greater fraction of neutrophils, Cluster 3 showed a paucity of innate immune cells and a higher 353 

fraction of CD4+ T-cells, and Cluster 4 showed a high fraction of CD8+ T-cells (eFigure 11). Given the 354 

findings of varying cellular fraction within the BAL clusters, we then imputed cell-type specific gene 355 

expression using CIBERSORTx (Methods). Monocyte-specific expression of the GOBP “Myeloid 356 

Leukocyte Activation” gene set varied across clusters, with higher activation of activation markers such as 357 

CSF1, IFNGR1, LDLR, TLR1, and TNF seen in Clusters 2, 3 and 4; notably, although Cluster 1 had a high 358 

monocyte/macrophage cell fraction, lineage-specific inflammatory gene activation was relatively low in 359 

this cluster (eFigure 12). Similarly, lymphocyte-specific expression of the GOBP “Lymphocyte 360 

Activation” gene set varied across clusters, with the highest levels of markers such as AKT1, BTK, CD4, 361 

DOCK8, JAK2, and IL7R seen in Clusters 3 and 4 (eFigure 13). Given the varying cell proportions and 362 

imputed activation levels of lymphocytes across the clusters, we next aimed to determine whether there 363 

might be differences in lymphocyte repertoires across the clusters. Using ImRep, we identified that the 364 

majority of CDR3 alignments were for TCRα, with many fewer alignments to β, γ, and δ as well as to BCR 365 

H, K, or L. Whereas the virally-enriched Cluster 4 showed the highest number of TRA clonotypes and 366 

diversity, Cluster 1 showed the lowest (eFigure 14). Notably, BAL TCRαβ clonotype numbers and 367 

diversity were not correlated with blood lymphocyte count (p=0.646), although BAL TCRγδ and BCR 368 

subtypes were higher in patients with higher blood ALC (p=0.041 and p=0.006, respectively). 369 

Cluster transitions: We next assessed whether original cluster assignments were stable over time. Thirty-370 

four patients had ≥2 BALs separated by a median of 79 days (IQR 21-243). Most patients who started in 371 
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the low-risk Cluster 1 moved out of Cluster 1 (17/26) to a higher-risk cluster, and patients who started 372 

outside of Cluster 1 rarely moved into Cluster 1 (8/49), driving an overall change in the cluster burden over 373 

time (p<0.001, eFigure 15, eTables 10-11). This suggests that, for the subtype of patients with recurrent 374 

or non-resolving lung disease, progression to an adverse BAL phenotype is common over time. 375 

Classification Model and External Cluster Validation: Finally, as cluster assignments cannot be directly 376 

applied to external cohorts, we used taxonomic and gene expression data to grow a random forest of 10,000 377 

classification trees with a maximum depth of 10 nodes to be used as a cluster classifier. Out-of-bag AUC 378 

was 0.923 indicating good cluster discrimination (eTable 12). Lung gene expression variables were 379 

significantly more important to cluster classification than were taxonomic variables, with the 500 most 380 

important genes showing significant enrichment for immune processes (Data Files 12-13). The random 381 

forest classifier was then applied to taxonomic and gene expression data from an independent cohort of 382 

n=57 BALs obtained from pediatric HCT recipients at the University Medical Center in Utrecht, the 383 

Netherlands, between 2005-2016 (clinical traits described in eTable 13). Although this cohort differed in 384 

geography, underlying diseases, allograft characteristics, and treatment protocols, 1-year non-relapse 385 

mortality was lowest among patients with BALs assigned to the low-risk Cluster 1 (9%, 2/21), was higher 386 

for patients assigned to the bacterially-rich Cluster 2 (36%, 4/11), and was highest for patients in the high-387 

risk Clusters 3 or 4 (52%, 13/25, p=0.009, eFigure 16, eTable 14), thus confirming the external validity 388 

and clinical significance of the BAL cluster profiles. 389 

DISCUSSION 390 

Lung injury in pediatric hematopoietic cell transplant patients is frequently fatal, yet a lack of investigable 391 

biospecimens has hindered progress in elucidating the pathobiology of disease. In this prospective 392 

multicenter study, we used BAL from children at 32 hospitals to identify microbe-lung transcriptomic 393 

signatures shared across patients. Although each BAL archetype was associated with undue morbidity, 394 

microbial dysbiosis, undetected infection, and subtypes of inflammation and fibroproliferation were 395 

identified as the primary hallmarks of fatal disease. Our findings come from a broad, international cohort 396 
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of children with poor immunity and high antimicrobial exposure and were replicated in an unrelated 397 

validation cohort, thus lending credence to the work. These findings extend our previous work in pediatric 398 

HCT candidates and suggest the possibility for precision pulmonary phenotyping as a key first step for 399 

future interventional trials. 400 

A major finding of our work is the identification of heterogeneous disease biology within a cohort of 401 

medically complex patients where disease classification has been historically difficult.2 BAL Cluster 1 was 402 

most common, had moderate microbial burden, low rates of infection, predominantly alveolar macrophage-403 

related signaling, and the lowest mortality rates. In contrast, Cluster 2 showed high rates of microbial burden 404 

and bacterial infections, higher blood neutrophil counts and BAL neutrophil-related gene expression, and 405 

moderate mortality. Cluster 3 showed general microbiome depletion with enrichment of viruses and fungi 406 

and fibroproliferative gene expression. Cluster 4 showed significant microbiome depletion with relative 407 

sparing of Staphylococci and enrichment of viruses, commensurate with lymphocytic inflammation, 408 

cellular injury, and the highest mortality rate. In the field of pulmonology, subclasses of asthma, acute 409 

respiratory distress syndrome, and chronic obstructive pulmonary disease have recently been associated 410 

with distinct clinical trajectories such that subclass-specific clinical trials are now emerging.45–47 The 411 

identification of heterogeneous clusters may be the first step in improving bedside phenotyping and 412 

ultimately enrolling pediatric HCT patients in biology-targeted interventional trials. 413 

A second major finding of our work is the illumination of the delicate balance between the pulmonary 414 

microbiome and mortality. The pulmonary microbiome is populated early in life by aerosolization of 415 

oropharyngeal microbes during tidal ventilation, gastric aspiration, and disease-related hematogenous 416 

spread.10,12,48,49 The near continuous exposure of the lungs to microbes introduces the opportunity for 417 

infection but also supports immune and epithelial education in the form of tolerance and memory.50,51 The 418 

ideal properties of the peri-HCT pulmonary microbiome likely require delicate balance between over-419 

population and eradication.10,12 Favoring the former, studies in cystic fibrosis and COPD have shown that 420 

an increase in pulmonary microbial mass is associated with neutrophilic inflammation and disease 421 
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exacerbations52–55, a paradigm similar to patients in our bacterial- and neutrophil-enriched Cluster 2. 422 

Favoring the latter, recent studies show that HCT patients with depleted or dysbiotic intestinal microbiomes 423 

develop higher mortality rates due to excess colitis, graft versus host disease, and even pulmonary disease, 424 

which is similar to patients in our Clusters 3 and 4.56–58 Our data show that a biodiversity and richness exist 425 

reciprocally with pathogenic taxa such as S.aureus, P.aeruginosa, fungi, and viruses, suggesting that 426 

commensal constituents may limit the ability for pathogens to expand,59,60 perhaps through local 427 

immunomodulation or by direct nutrient competition.54,61–65 We show that the transcriptional activity of 428 

BAL microbes is quite broad in patients with better clinical outcomes, raising the possibility that microbial 429 

metabolites might benefit airway health, as has been recently shown for the anti-apoptotic microbial 430 

metabolite indole-3-acetic acid (IAA).21,66,67 431 

Given the findings of commensal microbial depletion in non-survivors, we explored potential exposures 432 

leading to this state. Antimicrobial exposure, the most likely culprit, has been strongly associated with 433 

intestinal microbiome depletion and to a lesser extent pulmonary microbiome alterations mostly in the 434 

cystic fibrosis and COPD populations.28–35 Our unsupervised analysis showed the highest antibiotic 435 

exposure in the most bacterially-depleted BAL cluster 4, which complements the supervised analysis 436 

finding of a negative relationship between AES and the quantity of numerous commensal bacteria. Causal 437 

mediation modeling showed that association between AES and death was largely mediated by antibiotic-438 

induced contraction in BAL bacteria. Interestingly, we found that the quantity of the fungal phyla 439 

Ascomycota increased with greater AES, supporting existing evidence that depletion of commensal 440 

microbes may open a niche for opportunistic fungal growth.68–71 Increased AES was associated with greater 441 

BAL quantity of respiratory RNA viruses, consistent with previous associations between antibiotic 442 

exposure and viral expansion.40,72 Although other factors such as the conditioning regimen may influence 443 

microbiome composition,73 these data argue for the need for judicious use of antibiotics, which might best 444 

be achieved with rapid turnaround of clinical metagenomics assays in the future.74  Certainly for critically 445 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2023. ; https://doi.org/10.1101/2023.11.29.23299130doi: medRxiv preprint 

https://doi.org/10.1101/2023.11.29.23299130
http://creativecommons.org/licenses/by-nc-nd/4.0/


Page 19 of 53 

 

ill patients with unclear diagnoses, it will be difficult to feel confident in stopping antibiotics.  Therefore, 446 

microbiome-restorative therapies in patients necessarily antibiotic-exposed may be a crucial tool.75  447 

Over the past thirty years, numerous studies have confirmed that metagenomic sequencing for a wide range 448 

of indications, such as meningitis and encephalitis, can increase diagnostic yield for pathogens.76–78 449 

However, application of metagenomics to respiratory fluid has been hindered by difficulty discriminating 450 

when a normal microbiome constituent such as S.pneumoniae expands to function as a pathogen. To address 451 

this, we transformed our sequencing data from fractional to absolute using reference spike-ins and then 452 

compared each microbe’s detected level to that of other microbes in the sample (dominance) as well as to 453 

other samples in the cohort (z-score). By parsing microbes in the context of the broader microbiome, we 454 

provide a logical and intuitive approach to pathogen detection in non-sterile body sites. This approach 455 

nearly doubled the number of patients with detected infections, while also providing a safeguard against 456 

overcalling hits. Importantly, we identified novel viral strains, common and rare bacteria, and numerous 457 

fungi and parasites as previously undetected causes of lung injury. Pathogen detection was highest in the 458 

most dysbiotic clusters with the greatest commensal depletion and lowest richness and diversity, lending 459 

credence to the above findings that airway commensals may safeguard the lungs against opportunistic 460 

infections. Our data support the premise of a clinical trial using metagenomics to augment the clinical utility 461 

of hospital diagnostics specifically in the setting of HCT. While many newly detected microbes have 462 

existing effective treatments, many lack therapies at this time. Given our findings implicating antimicrobial 463 

exposure with dysbiosis and poor clinical outcomes, antibiotic de-escalation or avoidance of dysbiosis may 464 

be useful outcome metrics for such a trial.  465 

The relationship between the pulmonary microbiome, lung epithelium, and the transplanted immune system 466 

is characterized by a continuous and mutually influential interaction. In murine models of allogeneic HCT, 467 

immune responses to pathogens can be both impaired as well as exaggerated, leading to delayed 468 

phagocytosis, excessive myeloid cell recruitment and unremitting inflammation due to a lack of functional 469 

NK- and T-cells.79–82 Our data support this paradigm in human patients and reveal a complex and 470 
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heterogeneous immune response. Cluster 1, with a replete and diverse pulmonary microbiome, showed the 471 

lowest mortality rates, low levels of granulocyte activation, and low levels of lymphocyte diversity and 472 

lymphocyte-specific activation markers. In contrast, Cluster 2 showed neutrophil enrichment, and Clusters 473 

3 and 4 showed a diverse lymphocyte population with markers of activation. Clinically, these distinctions 474 

may be important, as patients might benefit from different approaches to immunomodulation. Notably, 475 

Cluster 3 showed numerous markers of fibroproliferation and cellular senescence, suggesting transition to 476 

a fibrotic phenotype that may merit treatment in upcoming clinical trials using novel anti-fibrotic agents.83 477 

This study has several limitations. First, the cohort’s clinical heterogeneity requires interpreting findings 478 

broadly. Second, clinical protocols were not standardized and thus varying post-HCT care across centers 479 

could have influenced outcomes. Third, BAL collection was not standardized across centers and 480 

bronchoscope controls were not obtained. However, our approach to adjusting for contamination used 481 

ample internal and external controls. Fourth, detailed concurrent immunosuppressive regimens were not 482 

collected. Fifth, despite methods to identify likely pulmonary pathogens, we could not adjudicate the 483 

pathogenicity of each microbe or contribution to each patient’s pulmonary disease. Sixth, clinical 484 

microbiologic testing of BAL varied across hospitals and was not standardized. Seventh, while our work 485 

implicates pulmonary microbial depletion in the pathobiology of post-HCT lung disease, we cannot prove 486 

causality with correlative human studies, and cannot account for effects from other microbiomes such as 487 

the intestinal microbiome on lung health.84,85 488 

In summary, we present the largest investigation to date of the pulmonary microbiome and transcriptome 489 

in pediatric HCT patients. We identified four unique BAL clusters that combine microbiome and lung gene 490 

expression signatures. The worst outcomes were observed for those with commensal microbe depletion, 491 

viral or fungal enrichment, lymphocyte activation, and fibroproliferation. Overall, these findings represent 492 

a step forward in understanding lung disease biology in HCT patients and may be used to improve patient 493 

subtyping in preparation for a future biology-targeted clinical trial. 494 

 495 
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METHODS 496 

Patients: The derivation cohort was enrolled through the Pediatric Transplantation and Cell Therapy 497 

Consortium (PTCTC, NCT02926612) and the validation cohort was collected at the University Medical 498 

Center in Utrecht, The Netherlands. Participating pediatric centers screened all patients with a history of 499 

allogeneic (both cohorts) or autologous (PTCTC cohort only) HCT preparing to undergo clinically-500 

indicated bronchoscopic BAL for diagnostic assessment of pulmonary disease. Patients or their guardians 501 

were approached prospectively for consent under local IRB approval at each site and permission was 502 

obtained to collect leftover BAL fluid. Patients were excluded if there was a limitation of care such as do 503 

not resuscitate at the time of BAL. 504 

BAL specimen collection: Bronchoscopy and BAL were performed at the discretion of the treating team 505 

using local institutional protocols. All BAL were obtained by pediatric pulmonologists trained in fiberoptic 506 

bronchoscopy with anesthesia provided by anesthesiologists or critical care physicians. Lavage protocol 507 

was not dictated by the study but typically involved 3-6 aliquots of 10mL sterile saline inserted into diseased 508 

areas of the lung as determined by preceding chest imaging or physical exam.86 Percent of lavage returned 509 

was not routinely documented and lavage aliquots were typically pooled by the clinical team immediately 510 

after collection.87,88 After aliquoting for clinical testing, excess lavage was placed immediately on dry ice, 511 

stored at -70º, shipped to UCSF, and stored at -70ºC until processing.  512 

Clinical protocols and data collection: Clinical microbiologic testing was determined by the treating team 513 

and typically included culture for bacteria, fungus, and AFB; multiplex PCR for respiratory viruses; 514 

galactomannan antigen; and cytology for PCP. Additional molecular diagnostics such as PCR for atypical 515 

bacteria or fungi were used at the discretion of the site. After BAL, supportive care protocols were 516 

determined by the treating team; all patients were enrolled at centers with pediatric intensive care units. 517 

Patient demographics, medical history, and transplant-specific data were documented by trained study 518 

coordinators at each site. The most recent ANC and ALC measured clinically prior to BAL were 519 

documented. Results of clinical microbiologic testing on BAL were documented and not considered 520 
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complete until 4 weeks after collection. For the PTCTC cohort, all doses of antimicrobials administered in 521 

the 7 days prior to BAL were documented. Antibiotic exposure score (AES) was calculated by summing 522 

days of exposure to each antibacterial agent weighted with an agent-specific broadness score ranging from 523 

4 to 49.75 (e.g.: ampicillin 13.50, meropenem 41.50).38 Daily dosages were not collected. The number of 524 

anti-anaerobe days were calculated as the sum of preceding exposure to each of the following: 525 

Amoxicillin/clavulanic acid, Ampicillin/sulbactam, Pipercillin/tazobactam, Meropenem, Ertapenem, 526 

Imipenem, Levofloxacin, Clindamycin, Doxycycline, Tigecycline, or Metronidazole. Patients were 527 

followed until hospital discharge (PTCTC) or until at least one year post-BAL (Utrecht) with no loss to 528 

follow-up. 529 

BAL RNA Extraction: Samples were used on the first or second thaw. Samples underwent a previously 530 

described RNA extraction protocol optimized for BAL fluid.11 200 µL of BAL was combined with 200 µL 531 

DNA/RNA Shield (Zymo) and 0.5mm glass bashing beads (Omni) for 5 cycles of 25 seconds bashing at 532 

30Hz, with 60 seconds of rest on ice between each cycle (TissueLyser II, Qiagen). Subsequently, samples 533 

were centrifuged for 10 minutes at 4°C and the supernatant was used for column-based RNA extraction 534 

with DNase treatment according to the manufacturer’s recommendations (Zymo ZR-Duet DNA/RNA 535 

MiniPrep Kit). Resultant RNA was eluted in 5 µL sterile water and stored at -70°C until sequencing library 536 

preparation. 537 

BAL RNA Sequencing: Samples underwent a previously described sequencing library preparation 538 

protocol optimized for BAL fluid.19 First, BAL RNA was dehydrated at 40°C for 25 minutes in a 384 well 539 

plate (GeneVac E-Z2). Second, sequencing libraries were prepared using miniaturized protocols adapted 540 

from the New England Biolabs Ultra II RNA Library Prep Kit (dx.doi.org/10.17504/protocols.io.tcaeise). 541 

Reagents were dispensed using the Echo 525 (Labcyte) and underwent Ampure-XP bead cleaning on a 542 

Beckman Coulter Biomek NXP instrument. Libraries underwent 19 cycles of polymerase chain reaction 543 

(PCR) amplification, size selection to a target 300 to 700 nucleotides (nt), and were pooled to facilitate 544 

approximately even depth of sequencing. Twenty-five picograms (pg) of External RNA Controls 545 
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Consortium (ERCC) pooled standards were spiked-in to each sample after RNA extraction and before 546 

library preparation to serve as internal positive controls (Thermo Fisher Scientific Cat. No 4456740). In 547 

addition, to identify contamination in laboratory reagents and the laboratory environment, each batch 548 

contained 2 samples of 200 µL sterile water and 6-8 samples of 200 µL HeLa cells taken from a laboratory 549 

stock and processed identically to patient samples, in order to account for laboratory- and reagent-550 

introduced contamination. These samples were processed at the same time as the patient BAL samples in 551 

order to use the same lot of reagents and minimize batch effect on control samples. Samples were processed 552 

and sequenced in 4 batches. Samples were pooled across lanes of an Illumina NovaSeq 6000 instrument 553 

and sequenced to a target depth of 40 million read-pairs with sequencing read length of 125 nt.  554 

Sequencing file processing  555 

All sequencing files were processed using the CZID pipeline v7.1 (https://github.com/chanzuckerberg/czid-556 

web).18 Briefly, .fastq files underwent a first round of human read subtraction (STAR to hg38) followed by 557 

Illumina adaptor removal (Trimmomatic), quality filtering (PriceSeq), duplicate read removal (CD-HIT-558 

DUP), and LZW complexity filtering. Next, sequencing files underwent a second more stringent round of 559 

human read subtraction (Bowtie2) followed by a third round of human read subtraction (STAR), 560 

subsampling to 1 million fragments, and a fourth and final round of human read subtraction (GSNAP). 561 

Human gene counts were produced using the CZID pipeline with alignment to hg38 as described above. 562 

60,590 total genes were detected across all samples (median 44,063, IQR 31,553-52,129), and were subset 563 

for 19,032 protein coding genes (median 18,259 genes per sample, IQR 16,988-18,871) and used in 564 

analyses below. Resultant human-subtracted sequencing files were then used in two ways for microbiome 565 

characterization: 566 

(1) Microbial taxonomic alignment: Human-subtracted sequencing files underwent alignment to the NCBI 567 

nt/nr database using GSNAP with minimum alignment length >36. Quality metrics for the sequencing run 568 

including percent of reads that passed the PriceSeq filter step and percent of reads that passed all steps were 569 

examined and samples with poor sequencing quality were re-sequenced. Taxa counts were generated with 570 
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associated metrics of percent identity, contig length, and e-value to the nearest NCBI hit. To reduce spurious 571 

associations due to ambiguous alignments, taxa were excluded if they (1) aligned to archaea or uncultured 572 

microbes, (2) had ≤6 total reads, (3) had <100 nt alignment length, or (4) had <80%, <90%, or <95% nt 573 

percent identity for viruses, eukaryotes, and bacteria, respectively. In addition, samples with low biomass 574 

(<100pg) were further filtered to keep only taxa with ≥10 transcripts forming a contig of ≥250 nt with ≥80% 575 

percent identity to the nearest NCBI hit. 576 

(2) Microbial functional alignment: Human-subtracted sequencing files were processed using FMAP 577 

v.0.1589 in order to profile the metabolic pathways present in each sample. FMAP_mapping.pl was paired 578 

with diamond v.0.9.2490 and FMAP_quantification.pl were used with default settings to identify and 579 

quantify associated proteins in the UniRef90 database.91,92 The gene assignments were regrouped by KEGG 580 

descriptors 93,94 and their annotation was summarized at levels 1 to 3. 581 

Microbial quantification and contamination 582 

Low biomass samples are susceptible to contamination.25,27 We previously showed that a positive control 583 

spike-in to each sample can be used to back-calculate the original RNA mass of the sample by solving the 584 

linear proportionality equation (total sample reads / total sample mass) ≈ (ERCC reads / ERCC mass), 585 

where sample reads and ERCC reads were detected by the above protocol and ERCC input was standardized 586 

as 25 pg.20 The calculated sample mass was then reduced by 25 pg (the ERCC input) to equal the original 587 

sample mass before ERCC addition. Since the input RNA mass of the water controls was determined to be 588 

about (5 pg presumably reflecting 5 pg of sequenceable contamination), we discarded samples whose total 589 

input mass was below 10 pg, as we were unable to reliably differentiate between contamination and true 590 

constituents. Since low biomass samples will preferentially amplify contaminants, we then used the ERCC 591 

spike-in to transform reads into estimated mass, allowing analysis of both fractional and absolute 592 

microbiome properties. Since each BAL microbiome consists of contributions from the patient and 593 

externally introduced contaminants, we then calculated the unique contamination profile of the water and 594 
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HeLa samples for each sequencing batch, and subtracted the mean + 2SD of each contaminant taxa from 595 

the patient samples processed in the respective batch. Mass-transformed and contamination-adjusted values 596 

were used for downstream analysis. 597 

Statistical Analysis 598 

(1) Unsupervised Clustering Analysis: Since microbiome data can be described using taxonomy, 599 

functional annotation, or summary measures, we used the Multi-Omics Factor Analysis to reduce 600 

dimensionality and identify a core set of factors.95 This approach accommodates different data structures 601 

and distributions and is tolerant of collinearity. Data were filtered to include phyla, genera, species, and 602 

KEGG pathways present in >15% of samples, underwent variance stabilizing transformation (vst, DESeq2), 603 

and were combined with aggregate metrics of total microbial mass, Simpson’s and Shannon’s alpha 604 

diversity (vegan), and richness, which was defined as number of species detected at a threshold of ≥ 1 605 

pg.96,97 MOFA was used to identify 15 core latent factors that together explained the most variance in the 606 

data structure. The matrix of latent factor values then underwent uniform manifold approximation mapping 607 

(umap) and BAL clusters were identified using hierarchical clustering of euclidean distances (eclust, 608 

factoextra). The ideal number of clusters was determined to be four using the silhouette, elbow, and gap-609 

statistic plots. 610 

(2) Clinical characteristics: Kaplan Meier survival analysis was used to plot in-hospital mortality by BAL 611 

cluster and survival curves were compared using the log-rank test of equality (survival). Differences in 612 

clinical traits across clusters (eg: antimicrobial exposure score, absolute neutrophil count) were tested using 613 

the non-parametric Kruskal-Wallis (kruskaltests) and Dunn’s tests (dunn.test) or Chi-squared test as 614 

appropriate. 615 

(3) Microbiome comparisons: Differences in microbial taxa, KEGG pathways, richness, and diversity 616 

across the 4 BAL clusters were tested using the non-parametric Kruskal-Wallis (kruskaltests) and Dunn’s 617 

tests (dunn.test) with Benjamini-Hochberg correction for multiple hypothesis testing. Differences in 618 
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microbial taxa and KEGG pathways were also tested using negative binomial generalized linear models, 619 

which account for both microbiome composition and size by inclusion of taxa-specific dispersion factors 620 

(edgeR).98 Associations between microbial taxa and clinical variables (e.g.: antimicrobial exposure score, 621 

in-hospital mortality) were tested using edgeR. Data were visualized with heatmaps showing cluster means 622 

for each variable (pheatmap) with individual comparisons shown using box-whisker plots (ggplot). Causal 623 

mediation was used to test whether the association between antimicrobial exposure and mortality was 624 

mediated by an antibiotic-induced reduction in certain BAL microbes (mediation).99,100 Using the latent 625 

structural equation framework, we fit (1) poisson models for the association between preceding AES and 626 

BAL quantity of a certain microbe, and (2) logistic regression models for the association between BAL 627 

quantity of a given microbe and outcome, independent of AES. Mediation was tested using 1,000 628 

simulations with bootstrapped confidence intervals and direct and indirect effects were plotted (eFigure 7). 629 

(4) Pathogen identification: Taxa considered as potential respiratory pathogens were adapted from the 630 

CZID Pathogen List (https://czid.org/pathogen_list) with modifications for immunocompromised patients 631 

and pathogens specific to the respiratory system. The final list of taxa considered is detailed in Data File 632 

4. We did not include avirulent viruses, such as TTV, or bacterial commensals that are infrequently a cause 633 

of pulmonary disease, such as Prevotella species, coagulase-negative Staphylococci, non-diphtheria 634 

Corynebacterium, and viridans group Streptococci, although these have at times been implicated in 635 

pulmonary disease in immunocompromised patients. To identify potentially pathogenic viruses, we applied 636 

a threshold of viral detection at any level above background (after applying the quality and contamination 637 

filters described above). This presence/absence approach was selected to mirror the approach used in 638 

clinical respiratory viral panels, which typically dichotomizes any level of detection as present/absent. To 639 

identify potentially pathogenic bacteria, we applied a threshold of detection with mass ≥10pg, bacterial 640 

dominance ≥20%, and Z-score ≥ +2, where Z-score was calculated as the number of standard deviations 641 

above the mean of the log10-transformed mass values for each microbe in the cohort. Requiring a minimum 642 

mass, dominance, and z-score was based on the historical framework that bacterial infections occur when 643 
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microbes are present at high mass that is greater than other microbes and greater than in other (non-infected) 644 

patients, although this may not be true in all instances. Cutoff values were empirically selected after analysis 645 

of data distributions and could be exchanged for other cutoffs in order to alter the balance between 646 

sensitivity and specificity of calls. Finally, to identify potentially pathogenic fungi, we applied a threshold 647 

of detection with mass ≥10pg and Z-score ≥ +2. We did not apply a microbiome dominance cutoff for 648 

fungal pathogens since the relationship between organisms in the pulmonary mycobiome is less well 649 

understood. 650 

(5) Gene expression: Only genes present in >25% of samples were used for differential gene expression. 651 

To identify individual differentially expressed genes, we used a 4-way ANOVA-like approach with 652 

negative binomial generalized linear models (edgeR). Select differentially expressed genes identified at a 653 

threshold FDR ≤0.05 were visualized with box-whisker plots of variance stabilization-transformed counts. 654 

To compute gene set enrichment scores, we used non-parametric gene set variation analysis with Poisson 655 

distributions (gsva) and the Reactome set of n=1,554 gene sets.101,102 Differences in enrichment scores 656 

across the BAL clusters were compared using Kruskal-Wallis (kruskaltests) and Dunn’s tests (dunn.test) 657 

and gene sets with significant differences were visualized using dot plots of the mean expression scores 658 

(pheatmap). Next, cell types contributing to bulk seq expression were imputed using CIBERSORTx 659 

(Docker version), which employs a user-defined reference single-cell atlas to identify cell-type specific 660 

transcript ratios and impute cell fractions (we selected the Travaglini et al lung cell atlas).42–44 Cell-type 661 

specific gene expression was imputed using CIBERSORTx high resolution mode, which utilizes previously 662 

created cell fractions to impute cell-type specific expression. Finally, lymphocyte receptor repertoires were 663 

imputed using Imrep (Linux install), which identifies CDR3 alignments from within bulk gene expression 664 

data.103,104  665 

(6) Classification and validation: Since cluster assignments cannot be directly applied to an external 666 

dataset, a classification tool is required to predict cluster assignments. We trained a random forest of 667 

n=10,000 trees using microbiome taxonomy and lung gene expression datasets as input, and 2x weighting 668 
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of clusters 3 and 4 given the BAL cluster imbalance (randomforestSRC).105,106 Ideal forest parameters 669 

determined using tune were similar to default settings and thus default settings were used for all other 670 

parameters (eg: mtry, nodesize, etc). Forest accuracy was determined using out of bag AUC and a confusion 671 

matrix. Variable importance was determined using permutation VIMP (Breiman-Cutler importance) by 672 

permuting OOB cases (vimp). To validate the classifier, the random forest classifier was applied to 673 

microbiome taxonomy and lung gene expression data from the n=57 Utrecht BALs and 1-year post-BAL 674 

non-relapse mortality rates were compared according to predicted BAL cluster type using Kaplan-Meier 675 

survival curves with the log-rank test. 676 

DATA AVAILABILITY: Sequencing files are posted on dbGaP: 677 

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001684.v2.p1  678 
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Table 1.  Patient Characteristics 679 

Demographics (n=229 patients)  

Age (median years, IQR) 11.0 (IQR 4.7-16.7) 

Sex (male) 133 (58.15%) 

Race 

  - White 

  - Black 

  - Other/multiple 

  - Asian/PI 

  - Native American 

  - Unknown 

 

140 (61.1%) 

29 (12.7%) 

26 (11.4%) 

25 (10.9%) 

2 (0.9%) 

7 (3.1%) 

Ethnicity - Latino/Hispanic 59 (25.8%) 

Medical History (n=229 patients)  

Disease 

  - Leukemiaa 

  - Inborn errors of immunityb 

  - Non-malignant hematologicc 

  - Solid tumord 

  - Lymphomae 

  - Inborn errors of metabolismf 

 

125 (54.6%) 

40 (17.5%) 

27 (11.8%) 

14 (6.1%) 

12 (5.2%) 

11 (4.8%) 

HCT Type 

  - Allogeneic 

    - Bone marrow 

    - Peripheral blood 

    - Umbilical cord blood (UCB) 

  - Autologous 

 

213 (93.0%) 

- 92 (43.2%) 

- 88 (41.3%) 

- 33 (15.5%) 

16 (7.0%) 

HLA match (allogeneic only) 

  - Matched related donor 

  - Matched unrelated donor (inc. 6/6 UCB) 

  - Mismatched related donor (haplo) 

  - Mismatched unrelated donor (inc. <6/6 UCB) 

 

45 (21.1%) 

49 (23.0%) 

57 (26.8%) 

61 (29.1%) 

Conditioning Agents Usedg 

  - Backbone agent 

     - Busulfan 

     - Melphalan 

     - Total body irradiation (TBI) 

     - Otherh 

  - Other alkylating agent 

     - Cyclophosphamide 

     - Thiotepa 

- Antimetabolite 

     - Clofarabine 

     - Cytarabine 

     - Fludarabine 

  - Serotherapy (ATG or Alemtuzumab) 

 

 

86 (37.6%) 

146 (63.8%) 

63 (27.5%) 

20 (8.7%) 

 

91 (39.7%) 

66 (28.8%) 

 

15 (6.6%) 

  5 (2.2%) 

146 ( 63.8%) 

119 (52.0%) 

 680 

Legend: a includes B-ALL (n=54), AML (n=39), T-ALL (n=12), JMML (n=6), CML (n=4), 681 

other/MDS/mixed phenotype (n=10). b includes SCID (n=14), HLH (n=7), CGD (n=4), WAS (n=3), other 682 
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(n=12). c includes SAA (n=12), Fanconi anemia (n=4), sickle cell disease (n=9), thalassemia (n=2). d 683 

includes neuroblastoma (n=10), medulloblastoma (n=3), other solid tumor (n=1). e includes B-cell 684 

lymphoma (n=6), non-EBV T-cell lymphoma (n=4), EBV+ T-cell lymphoma (n=2). f includes Hurler 685 

syndrome (n=4), osteopetrosis (n=2), X-linked adrenoleukodystrophy (n=2), other (n=3). g Patients may 686 

have received multiple agents in the same or multiple categories.  h includes carmustine (n=2), treosulfan 687 

(n=3), carboplatin (n=4), etoposide (n=16).  688 
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Table 2.  Clinical Presentation and Outcomes 689 

Characteristics at Enrollment (n=278 events with BAL) 

Days from HCT to BAL (n, %) 114 (IQR 36-331) 

Days from Symptoms to BALa (n, %) 8 (IQR 2-21) 

Clinical Presentation Symptoms (n, %) 

  - Lower respiratory symptoms (cough, tachypnea, etc)b 

  - Hypoxia ≤96% 

  - Abnormal chest x-rayc 

  - Abnormal chest CTd 

  - Worsening PFTs 

 

249 (89.7%) 

202 (72.7%) 

174/207 (84.1%) 

209/218 (95.9%) 

16 (5.8%) 

Respiratory Support Prior to BAL (n, %) 

  - No oxygen 

  - Nasal cannula or face mask 

  - High-flow nasal cannula 

  - Non-invasive positive pressure (CPAP or BiPAP) 

  - Endotracheal intubation with mechanical ventilation 

 

159 (56%) 

41 (14%) 

19 (7%) 

11 (4%) 

54 (19%) 

Comorbidities at time of BAL (n, %) 

  - Engraftment syndrome 

  - GVHD active at time of BALe 

  - GVHD ever preceding BAL 

  - Heart failure or reduced function 

  - Kidney injury 

  - Pericardial effusion 

  - Pulmonary hemorrhage/hemoptysis 

  - Sepsis 

  - TA-TMA 

  - VOD/SOS 

 

15 (5.4%) 

83/260 (31%) 

126/260 (48.5%) 

11 (4.0%) 

47 (16.9%) 

25 (9.0%) 

23 (8.3%) 

37 (13.3%) 

22 (7.9%) 

24 (8.6%) 

Immunologic Function Prior to BALf 

  - WBC (median. IQR) 

  - ANC (median, IQR) 

  - ANC <0.5 x109/L (n, %) 

  - ALC (median, IQR) 

  - ALC <0.2 x109/L (n, %) 

 

4,415 (2,370-8,400) 

3,060 (1,632-5,508) 

34 (12.2%) 

420 (156-1,035) 

77 (27.7%) 

BAL Clinical Microbiology Results (n, %) 

  - Any positive 

  - Bacterial 

  - Viral 

  - Fungal/Protozoal 

  - More than 1 organism 

 

116 (41.7%) 

51 (18.3%) 

76 (27.3%) 

25 (9.0%) 

29 (10.4%) 

Antimicrobials in Preceding 1 Week (median, IQR) 

  - Antibacterial 

  - Antivirals 

  - Antifungals 

 

3 (IQR 2-4, range 0-9) 

1 (IQR 1-2, range 0-3) 

1 (IQR 0-1, range 0-3) 

Outcomes (n=229 patients) 

Required intensive care 

Required ≥7 days mechanical ventilation 

In-hospital mortality 

121 (52.8%) 

71 (31.0%) 

45 (19.7%) 

 690 
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Legend: a missing in n=14. b n=29 patients without clinical symptoms underwent BAL to evaluate declining 691 

PFTs or chest CT abnormalities. c,d chest-xray and chest CT obtained prior to n=207 and n=218 BALs, 692 

respectively. e GVHD assessed in allograft recipients only. f WBC, ANC, ALC expressed as 109 cells/L 693 

whole blood.  694 
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FIGURE LEGENDS 695 

Figure 1. Study design and clinical outcomes. (A) Patients were recruited from 32 participating children’s 696 

hospitals in the United States, Canada, and Australia. (B) Study design concept diagram. (C) BAL 697 

processing and analysis workflow. (D) Four microbiome-transcriptome clusters were identified. (E) In-698 

hospital survival for all patients (left) and the subset requiring respiratory support prior to testing (right) 699 

was plotted according to BAL cluster and differences were analyzed with the log rank test. 700 

Figure 2. BAL microbiome. (A) The fraction (left) and mass (right) of major bacterial, viral, and fungal 701 

phyla are plotted, with shading representing the average for each of the 4 BAL clusters. The average mass 702 

of bacterial genera in each of the 4 BAL clusters are shown to the right. (B) Taxonomic richness and 703 

diversity are plotted across the 4 BAL clusters. (C) Microbes associated with in-hospital mortality were 704 

identified using negative binomial generalized linear models (edgeR) and are plotted according to logFC 705 

(position, color) and FDR (dot size). (D) Taxonomic richness and diversity stratified by survival status. (E) 706 

Microbial alignments to KEGG metabolic pathways were averaged for each BAL cluster. (F) Select 707 

metabolic pathways that differ across the BAL clusters are shown. 708 

Figure 3. BAL pathogen detection. (A) Left: Dotplots of common community-transmitted respiratory 709 

viruses (left), herpesviruses (middle), and all other viruses (right) detected in the cohort, plotted according 710 

to microbial mass (x-axis) and microbiome dominance (y-axis). Right: A bar chart comparing viral 711 

detection across the 4 BAL clusters according to hospital tests and metagenomic sequencing. (B) Left: All 712 

H.influenzae, S.aureus, and S.pneumoniae detected in the cohort are plotted, with dotted lines indicating 713 

cutoffs of mass ≥10pg and bacterial dominance ≥20%. Taxa above these cutoffs are shown in the upper-714 

right quadrant (shaded yellow) to indicate outliers within the cohort. Right: A bar chart comparing 715 

potentially pathogenic bacteria detected across the 4 BAL clusters according to hospital tests and 716 

metagenomic sequencing. (C) Left: All microbes detected in BAL of three patients are shown, with arrows 717 

pointing to fungi present in high quantities. Right: A bar chart comparing potentially pathogenic eukaryotes 718 

detected across the 4 BAL clusters according to hospital tests and metagenomic sequencing.  719 
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Figure 4. Antibiotic exposure and impact on BAL microbiome. (A) Days of antimicrobials are listed for 720 

antibacterials (black), antifungals (green), and antivirals (blue). Patients are listed in columns and shading 721 

indicates number of days of exposure to each antibiotic in the week preceding BAL. (B) Antibiotic exposure 722 

score (AES) was calculated prior to each BAL as the sum of antibiotic exposure days times a broadness 723 

weighting factor, summed for all therapies received in the week preceding BAL.  AES varied across the 724 

clusters and was highest for patients in Cluster 4. (C) Negative binomial generalized linear models were 725 

used to test for BAL microbes associated with AES. Microbes are listed in rows, with phyla shown on the 726 

left and bacterial genera shown on the right. 727 

Figure 5. BAL gene expression. (A) Differentially expressed genes were identified by 4-way ANOVA 728 

like analysis with negative binomial generalized linear models.  Mean normalized expression levels for 729 

significant genes are displayed for the 4 BAL clusters. (B) Individual differentially expressed genes were 730 

identified across the 4 clusters (edgeR) and variance-stabilized transformed gene counts for select genes 731 

highest in each of the 4 clusters are plotted. (C) Gene set enrichment scores to Reactome pathways were 732 

calculated and example gene sets most enriched in each of the 4 clusters are shown. 733 

  734 
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Figure 1. Study design and clinical outcomes. (A) Patients were recruited from 32 participating children’s hospitals in the United States, Canada,

and Australia. (B) Study design concept diagram. (C) BAL processing and analysis workflow. (D) Four microbiome-transcriptome clusters were

identified. (E) In-hospital survival for all patients (left) and the subset requiring respiratory support prior to testing (right) was plotted according to BAL

cluster and differences were analyzed with the log rank test.
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Figure 2. BAL microbiome. (A) The fraction (left) and mass (right) of major bacterial, viral, and fungal phyla are plotted, with shading representing

the average for each of the 4 BAL clusters. The average mass of bacterial genera in each of the 4 BAL clusters are shown to the right. (B) Taxonomic

richness and diversity are plotted across the 4 BAL clusters. (C)Microbes associated with in-hospital mortality were identified using negative binomial

generalized linear models (edgeR) and are plotted according to logFC (position, color) and FDR (dot size). (D) Taxonomic richness and diversity

stratified by survival status. (E) Microbial alignments to KEGG metabolic pathways were averaged for each BAL cluster. (F) Select metabolic

pathways that differ across the BAL clusters are shown.
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Figure 3. BAL pathogen detection. (A) Left: Dotplots of common community-transmitted respiratory viruses (left), herpesviruses (middle), and all

other viruses (right) detected in the cohort, plotted according to microbial mass (x-axis) and microbiome dominance (y-axis). Right: A bar chart

comparing viral detection across the 4 BAL clusters according to hospital tests and metagenomic sequencing. (B) Left: All H.influenzae, S.aureus,

and S.pneumoniae detected in the cohort are plotted, with dotted lines indicating cutoffs of mass ≥10pg and bacterial dominance ≥20%. Taxa above

these cutoffs are shown in the upper-right quadrant (shaded yellow) to indicate outliers within the cohort. Right: A bar chart comparing potentially

pathogenic bacteria detected across the 4 BAL clusters according to hospital tests and metagenomic sequencing. (C) Left: All microbes detected in

BAL of three patients are shown, with arrows pointing to fungi present in high quantities. Right: A bar chart comparing potentially pathogenic

eukaryotes detected across the 4 BAL clusters according to hospital tests and metagenomic sequencing.
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Figure 4. Antibiotic exposure and impact on BAL microbiome. (A) Days of antimicrobials are listed for antibacterials (black), antifungals (green),

and antivirals (blue). Patients are listed in columns and shading indicates number of days of exposure to each antibiotic in the week preceding BAL.

(B) Antibiotic exposure score (AES) was calculated prior to each BAL as the sum of antibiotic exposure days times a broadness weighting factor,

summed for all therapies received in the week preceding BAL. AES varied across the clusters and was highest for patients in Cluster 4. (C) Negative

binomial generalized linear models were used to test for BAL microbes associated with AES. Microbes are listed in rows, with phyla shown on the left

and bacterial genera shown on the right.
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Figure 5. BAL gene expression. (A) Differentially expressed genes were identified by 4-wayANOVA like analysis with negative binomial generalized

linear models. Mean normalized expression levels for significant genes are displayed for the 4 BAL clusters. (B) Individual differentially expressed

genes were identified across the 4 clusters (edgeR) and variance-stabilized transformed gene counts for select genes highest in each of the 4 clusters

are plotted. (C) Gene set enrichment scores to Reactome pathways were calculated and example gene sets most enriched in each of the 4 clusters

are shown.
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