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Inflammatory bowel disease (IBD), a global disease threatening human health, is commonly accompanied by secondary liver damage
(SLD) mediated by the gut-liver axis. Oxidative stress acts a critical role in the onset of IBD, during which excessive oxidation would
destroy the tight junctions between intestinal cells, promote proinflammatory factors to penetrate, and thereby damage the intestinal
mucosa. Ficus pandurata Hance (FPH) is widely used for daily health care in South China. Our previous study showed that FPH
protected acute liver damage induced by alcohol. However, there is no study reporting FPH treating ulcerative colitis (UC). This
study is designed to investigate whether FPH could inhibit UC and reveal its potential mechanism. The results showed that FPH
significantly alleviated the UC disease symptoms including the body weight loss, disease activity index (DAI), stool consistency
changing, rectal bleeding, and colon length loss of UC mice induced by dextran sulfate sodium (DSS) and reversed the influences
of DSS on myeloperoxidase (MPO) and diamine oxidase activity (DAO). FPH suppressed UC via inhibiting the TLR4/MyD88/NF-
κB pathway and strengthened the gut barrier of mice via increasing the expressions of ZO-1 and occludin and enhancing the
colonic antioxidative stress property by increasing the levels of T-SOD and GSH-Px and the expressions of NRF2, HO-1, and
NQO1 and reducing MDA level and Keap1, p22-phox, and NOX2 expressions. Furthermore, FPH significantly inhibited SLD
related to colitis by reducing the abnormal levels of the liver index, ALT, AST, and cytokines including TNFα, LPS, LBP, sCD14,
and IL-18 in the livers, as well as decreasing the protein expressions of NLRP3, TNFα, LBP, CD14, TLR4, MyD88, NF-κB, and p-
NF-κB, suggesting that FPH alleviated UC-related SLD via suppressing inflammation mediated by inhibiting the TLR4/MyD88/
NF-κB pathway. Our study firstly investigates the anticolitis pharmacological efficacy of FPH, suggesting that it can be enlarged to
treat colitis and colitis-associated liver diseases in humans.

1. Introduction

Inflammatory bowel disease (IBD), including Crohn’s disease
(CD) and ulcerative colitis (UC), is a kind of chronic nonspe-
cific inflammatory disease of the gut [1] and is the most risk
for colorectal cancer (CRC) in developed countries [2]. Cur-
rently, the number of IBD patients in America is more than

two million, and it is forecasted to be approaching four million
by 2030 [3]. Epidemiological survey data showed that the prev-
alence rates were 505 per 100,000 in Europe, 248 per 100,000 in
Canada, and 21.4 per 100,000 in the United States [4, 5]. The
incidences of IBD in Asian countries are also sharply increasing
in recent years, with a higher occurrence rate in women than
men and shifting to adolescents, mainly due to the great
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changes in living environment and lifestyle, interacting with
genetic factors [6, 7].

UC is a chronic inflammatory bowel disease with the
characteristics of bloody diarrhea, abdominal cramping,
and constant recurrence because of inflammatory cell infil-
tration [8]. Clinical and experimental evidence indicates that
long-term inflammatory infiltration would destroy the intes-
tinal mucosa barrier that cannot be restored [9]. It becomes
a major clinical problem due to its repeated attacking and
difficult curing. Currently, the treatments in the clinic are
mainly including sulfasalazine, mesalazine, prednisone, aza-
thioprine, methotrexate, antibodies, Janus kinase blockers,
and stem cell-based therapy [10]. These therapeutics are
not satisfying enough because they mainly relieve the disease
symptoms but do not cure UC completely. Patients would
relapse easily when the treatments terminate. Additionally,
long-term taking of the drugs would lead to a series of side
effects [11, 12]. Therefore, it is urgently demanded to
develop a more safe and effective drug for UC therapy. Tra-
ditional herbal medicine is a good resource to discover UC
therapeutic drugs on account of its long-time usage in clinics
with the features of low toxicity, multicomponents, and
multitargets.

The etiology of UC is still unclear. Multifactors including
living and social environments, lifestyle, and genetic factors
are mainly involved [2]. Oxidative stress plays a critical role
in the onset of UC, during which excessive oxidation would
destroy the tight junctions in the gut and promote the
inflammatory factors to penetrate, therefore damaging the
intestinal mucosa and aggravating the inflammatory
response [13]. Furthermore, patients with UC are often
accompanied by one or more extraintestinal symptoms
(EIM), leading to multiple organ damage, such as liver injury
[14]. During UC development, the intestinal mucosal barrier
function would be impaired and intestinal permeability
would be increased. Excessive growth of intestinal flora,
together with their metabolites such as lipopolysaccharide
(LPS), toxin, and reactive oxygen species (ROS), will enter
into the liver through the portal vein system, by which the
nonspecific immune system or proinflammatory signaling
in the liver would be activated, producing a large number
of inflammatory cytokines and chemokines, aggravating
the inflammatory response, thus leading to the occurrence
of liver injury or hepatitis [15]. Therefore, it is a good strat-
egy to treat liver injury or hepatitis by suppressing UC and
strengthening the gut barrier function. Studies reported that
several traditional Chinese herbal medicines, such as Cur-
cuma longa L., Atractylodes macrocephala Koidz., and Den-
drobium nobile Lindl. possessing the UC therapeutic
function, showed a good protective effect against liver dam-
age [16–19].

Ficus pandurata Hance (FPH) is a Moraceae plant
widely distributed in southern China, with high eatable
and medicinal values. In Chinese traditional usage, FPH
is considered to have the functions of clearing heat, pro-
moting blood circulation, and protecting liver injury [20,
21]. In folk tradition, FPH is used to treat cough and
make soup for daily health care. Our previous study had
revealed that FPH could significantly alleviate acute

alcohol-induced liver damage on mice [22]. However,
there is no study reporting FPH treating UC and UC-
related complications. Our present study is designed to
investigate whether FPH could inhibit UC and UC-
accompanied liver injury on colitis mice, as well as to
uncover its underlying mechanism.

2. Materials and Methods

2.1. Reagents and Drug Preparation. Dextran sulfate sodium
(DSS, MW: 36~50 kDa, S5036, 9011-18-1) was from MP
Biomedicals Inc. (California, USA). Alanine transaminase
(ALT, C010-2-1) and aspartate aminotransferase (AST,
C009-2-1) assay kits were purchased from Nanjing Jian-
cheng Bioengineering Institute (Nanjing, China). MPO
(#m1002070-2) and DAO (#m1002199-2) assay kits were
purchased from Mlbio Biotechnology Co. (Shanghai,
China). ELISA kits including MDA (417210607), GSH-Px
(312210519), T-SOD (535210519), LPS (261210519), LBP
(845210621), sCD14 (521210621), TNFα (569210610), and
IL-18 (375210519) were purchased from Tianjin Anoric Bio-
technology Co., Ltd. (Tianjin, China). Primary antibodies
against ZO-1 (AF5145), occludin (DF7504), MyD88
(AF5195), HO1 (AF5393), NQO1 (DF6437), Keap1
(AF5266), NOX2 (DF6520), p22-phox (DF10099), LBP
(DF4840), CD14 (DF13278), and β-actin (T0022) were
obtained from Affinity Biosciences Ltd. (OH, USA). Primary
antibodies against Nrf2 (A0674) and NLRP3 (A5652) were
obtained from ABclonal Biotechnology (Wuhan, China).
Primary antibodies against NF-κB (8242s) and phospho-
NF-κB (3033T) were obtained from Cell Signaling Technol-
ogy (Boston, USA). Primary antibodies against TLR4
(293072) and TNFα (YM3477) were obtained from Santa
Cruz (California, USA) and ImmunoWay Biotechnology
Company (Plano, USA), respectively.

The preparation of Ficus pandurata Hance extraction
was performed according to our previous study [22].

2.2. UPLC/MS Q-TOF Analysis. Characteristic components
of FPH were analyzed by Agilent LC/MS Q-TOF (USA,
1290-6545). The UPLC chromatographic conditions were
ZORBAX Eclipse Plus C18 column (3:0mm × 150mm,
1.8μm), 30°C of column temperature, and mixed mobile
phase (phase A: 0.1% of formic acid in water, mobile phase
B: 100% acetonitrile) with a gradient elution program (5%
B (0-2min), 5% B→ 35% B (2-20min), 35% B→ 50% B
(20-24min), 50% B→ 40% B (24-25min), 40% B→ 95% B
(25-30min), and 95% B (30-35min)) at 0.5mL/min of flow
rate and 0.5μL of injection volume. The mass spectrometer
was the Agilent G6545 quadruple-time-of-flight spectrome-
ter coupled with an Agilent Jet Stream Electrospray source
(Agilent, CA, USA). The system was operated in positive
or negative scan modes. The instrument parameters were
3500 kV (-) or 4000V(+) of capillary voltage, N2 drying
gas with 11L/min of flow rate at 300°C temperature, 350°C
of sheath gas temperature, 130V of cataclastic voltage,
45 psi of nebulizer pressure, MS scan and m/z 100–1000,
and 8 spectrums of the scan speed.
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2.3. Experimental Design. Ten-week-old C57BL/6 mice (♂)
were supplied by the Guangdong Laboratory Animal Center
(Foshan, China). All the mice had access to food and water
ad libitum and were kept under a condition with a 12 h
light/dark cycle. The mice were randomly assigned to con-
trol, 2.5% DSS (model), 2.5% DSS+5-ASA (200mg/kg, posi-
tive control), 2.5% DSS+FPH high dosage (FPH-H, 48 g/kg,
calculated based on the quantity of crude material), and
2.5% DSS+FPH low dosage (FPH-L, 24 g/kg, calculated
based on the quantity of crude material) groups. 5-ASA
and FPH were given orally from day 1 to day 12, and the
colitis mouse model was induced by 2.5% DSS (W/V) for
7 days (from day 6 to day 12). The mice were sacrificed
24 h after FPH treatment terminated.

2.4. Assessment of the Disease Activity Index (DAI). The DAI
scores were determined based on body weight change, rectal
bleeding, and stool consistency as previously described [23].
The scoring system for DAI is shown in Table 1.

2.5. Sample Collection. After treatment, the mice were anes-
thetized to collect serum and then sacrificed for dissection.
Briefly, blood was collected and serum was obtained by cen-
trifugation at 4,000 rpm at 4°C for 10min. The colon was
removed for length measurement. Part of colon tissue was
fixed in 4% paraformaldehyde (PFA) for hematoxylin and
eosin (H&E) staining, and the rest of the part was stored at
-80°C. The liver was also removed and weighted, with some
tissues fixed for histopathological examination by H&E
staining and other tissues stored at -80°C.

2.6. Enzyme-Linked Immunosorbent Assay (ELISA). ELISA
kits were obtained commercially, and biochemical analysis
was performed according to the manufacturer’s introduc-
tion. Briefly, colon and liver tissues were washed in cold
phosphate buffer saline (PBS, 0.01M, pH7.4) and homoge-
nized with 10 times of PBS (V/W). The samples were centri-
fuged at 5,000 g for 10min at 4°C, and the supernatants were
collected for biochemical analysis.

2.7. Western Blot Analysis. Colon tissues were lysed with
RIPA lysis buffer supplemented with a protease inhibitor
and phosphatase inhibitor (Beyotime, China) for 30min on
ice. The protein samples were collected after centrifugation
at 15,000 rpm at 4°C for 10min, and the protein concentra-
tions were measured by using a bicinchoninic acid (BCA)
protein assay kit (Beyotime, China). Equal amounts of pro-
tein (40μg) were loaded and separated on 8%~15% sodium
dodecyl sulfate-polyacrylamide gels and transferred onto
polyvinylidene difluoride (PVDF) membranes (Merck Milli-
pore Ltd. IPVH00010, Darmstadt, Germany). The mem-
branes were blocked with QuickBlock™ solution
(Beyotime, P0252, Shanghai, China) at room temperature
for 15min, washed in PBST buffer, and incubated overnight
at 4°C with primary antibodies of ZO-1, occludin, HO1,
NQO1, Keap1, NRF2, NOX2, p22-phox, TLR4, MyD88,
NF-κB, phospho-NF-κB, NLRP3, TNFα, LBP, CD14, and
β-actin. After washing with PBST 3 times, the membranes
were incubated with secondary antibodies conjugated with
horseradish peroxidase (HRP) (1 : 10000) at room tempera-

ture for 1.5 h. The membrane blots were detected by using
an enhanced chemiluminescence (ECL) kit. All gray analyses
for protein blots were performed with ImageJ software.

2.8. Hematoxylin and Eosin (H&E) Staining. Histopatholo-
gical examination was performed according to the reference
with minor modification [24]. Briefly, colon and liver tissues
were fixed in 4% PFA for 24 h, dehydrated by gradient etha-
nol, paraffin embedded, sectioned (~4μm thick), stained
with H&E, and mounted with neutral gum. The morpholog-
ical changes of tissues were observed under an optical micro-
scope, and photos were taken (magnifications, 50x and 200x
in colon tissues and 100x and 200x in liver tissues).

2.9. Immunohistochemistry (IHC) Study. IHC analysis was
performed to examine the protein expressions of TLR4 and
NF-κB in colon tissues and NLRP3 in liver tissues of each
group. Briefly, the paraffin-embedded samples were cut into
sections (~4μm) and sealed with 3% H2O2 at room temper-
ature to inactivate the enzyme, then boiled in 10mM sodium
citrate buffer (pH6.0) for 10 minutes, and cooled at room
temperature. The sections were blocked with normal goat
serum and then incubated with anti-TLR4, anti-NF-κB,
and anti-NLRP3 primary antibodies (1 : 200) at 4°C over-
night and corresponding secondary antibodies. The nucleus
was stained with DAPI. The expressions of TLR4 and NF-κB
in colon tissues and the expression of NLRP3 in liver tissues
were evaluated under an optical microscope, and photos
were taken (magnification, 200x in colon and liver tissues).

2.10. Statistical Analysis. All data were expressed as mean
± standard error of themean (SEM). The statistical differ-
ences between the two groups were compared by Student’s
t-test. Differences at p < 0:05 were considered statistically
significant.

3. Results

3.1. Phytochemical Identification of FPH. The components of
FPH were analyzed by UPLC/MS Q-TOF. As shown in
Figure 1, a total of 29 major compounds were identified by
UPLC/MS Q-TOF in a positive mode (Figure 1(a)), includ-
ing creatinine (peak 1), 2,3-dihydro-5,7-dihydroxy-2,8-
dimethyl-6-(3-methyl-2-butenyl)-4H-1-benzopyran-4-one
(peak 2), gamma-octalactone (peak 3), histamine (peak 4),
sinapine (peak 5), nicotinic acid (peak 6), mimosine (peak
7), nicotinamide (peak 8), gentianaine (peak 9), tuliposide
B (peak 10), cryptochlorogenic acid (peak 11), verbenalin
(peak 12), tuberosine A (peak 13), bavachin (peak 14), quas-
simarin (peak 15), podolide (peak 16), loliolide (peak 17),

Table 1: Scoring system for DAI.

Score Weight loss Stool consistency Blood stool

0 None Normal None

1 1~5% Soft stool Slight occult blood

2 5~10% Paste stool Occult blood

3 10~15% Loose stool Bleeding

4 >15% Diarrhea Gross bleeding
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icariside B9 (peak 18), miraxanthin III (peak 19), bruceine E
(peak 20), angelol B (peak 21), tagitinin F (peak 22), erianin
(peak 23), dihydrocapsaicin (peak 24), terpinyl acetate (peak
25), santenone alcohol (peak 26), gentianadine (peak 27),
menthyl acetate (peak 28), and aristolophenanlactone I
(peak 29). A total of 23 major compounds were identified
in a negative mode (Figure 1(b)), including mesaconic acid
(peak 1), pyroracemic acid (peak 2), trans-aconitic acid
(peak 3), piceatannol (peak 4), succinic acid (peak 5), poly-
datin (peak 6), protocatechuic acid (peak 7), canthoside B
(peak 8), 4-hydroxybenzoic acid (peak 9), geniposide (peak
10), justicidin B (peak 11), daphentin (peak 12), syringic acid
(peak 13), methyl(2,4-dihydroxy-3-formyl-6-methoxy)phe-
nylketone (peak 14), p-coumaric acid (peak 15), 7-
hydroxycoumarin (peak 16), berberastine (peak 17), 4-
hydroxybenzoic acid (peak 18), methyl-5,7-dihydroxy-
2(Z)-octenoate (peak 19), 5,6,7-trimethoxycoumarin (peak
20), sanleng acid (peak 21), 6-gingerol (peak 22), and
damascenine (peak 23). The information of all compounds
that had been detected by UPLC/MS QTOF is shown in
Supplementary Tables 1 and 2.

3.2. FPH Alleviated Ulcerative Colitis Induced by DSS on
Mice. The UC mouse model was established by taking
2.5% DSS orally to assess the therapeutic function of FPH
against UC. The experiment design is shown in

Figure 2(a). As a result, compared with the control group,
the body weight loss, diarrhea, and rectal bleeding were
severe in the DSS model group, which were the classical fea-
tures of UC, while the body weight loss, diarrhea, and rectal
bleeding were significantly delayed in FPH and 5-ASA treat-
ment groups (Figure 2(b)). DAI scores in the model group
were significantly higher than those in the control group,
indicating that the UC model was established successfully.
After FPH (24 g/kg and 48 g/kg, calculated based on the
quantity of crude material) and 5-ASA (200mg/kg) treat-
ments, the high DAI scores induced by DSS were signifi-
cantly reversed (Figure 2(c)), showing the good therapeutic
efficacy of FPH and 5-ASA against UC. Furthermore, as
shown in Figures 2(d) and 2(e), FPH and 5-ASA could sig-
nificantly lengthen the colon of UC mice. These data dem-
onstrated that FPH could be a good candidate for UC
therapy.

3.3. FPH Inhibited UC via Suppressing the TLR4/MyD88/NF-
κB Pathway. The effect of FPH on histopathological mor-
phology of colon tissues in UC mice was determined via
H&E staining. As shown by the arrow in Figure 3(a), in
the control group, there are many columnar cells in the
intestinal mucosal layer, with the shapes being regular,
arranged, and full of goblet cells. After DSS induction, the
histopathological morphology changed remarkably,
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Figure 1: Identification of the compounds in FPH by UPLC/MS Q-TOF analysis. Data in (a) positive mode and (b) negative mode.
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including that the mucosal layer was destroyed, goblet cells
were almost invisible, and both the muscular layer and
mucosal layer were widened, indicating that the intestinal
permeability was significantly increased. In addition, the
inflammatory infiltration in the mucosal layer was
enhanced in the DSS induction group. However, after
FPH treatment, the goblet cells in the intestinal mucosa
were restored and the columnar cells were arranged regu-

larly, showing that the intestinal permeability and inflam-
mation were ameliorated. The TLR4/MyD88/NF-κB
signaling pathway plays a critical role in the development
of UC [25]. In this study, Western blot and IHC assays
were used to evaluate the effect of FPH on the TLR4/
MyD88/NF-κB signaling pathway. As shown by the results
in Figures 3(b)–3(d), DSS significantly increased the
expressions of TLR4, MyD88, NF-κB, and phospho-NF-
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Figure 2: FPH alleviates DSS-induced acute colitis on mice. (a) Design for FPH in an anticolitis effect on the mouse model induced by DSS.
Effect of FPH on body weight (b) and disease activity index (c) of colitis mice. (d) Representative photographs of the colon. (e) Effect of FPH
on colon length of colitis mice. Results were expressed as mean ± SEM. ∗∗p < 0:01 vs. the control group; #p < 0:05, ##p < 0:01 vs. the model
group (DSS only).
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κB in the colon tissues (p < 0:05 vs. control group), while
FPH strongly suppressed the high levels of TLR4,
MyD88, NF-κB, and phospho-NF-κB induced by DSS in

the colon (p < 0:01 vs. model group). All of the results
indicated that FPH could inhibit UC via suppressing the
TLR4/MyD88/NF-κB signaling pathway.
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Figure 3: FPH suppresses DSS-induced colitis in mice by inhibiting the TLR4/MyD88/NF-κB signaling pathway. (a) Histological analysis
for the colon by H&E staining (EC: epithelial cell; IG: intestinal glands; SL: submucous layer; ML: muscular layer; McL: mucous layer; GC:
goblet cell). The protein expressions of TLR4, MyD88, NF-κB, and phospho-NF-κB in colonic tissues were determined by Western blot (b)
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3.4. FPH Enhanced the Intestinal Barrier of UC Mice.Myelo-
peroxidase (MPO), a glycoprotein promoting a series of per-
oxidative stress responses when neutrophils are stimulated,
is a key marker reflecting the development of intestinal
inflammation [26]. Diamine oxidase reflects intestinal
mucosal injury and intestinal barrier [27]. As shown by the
results in Figures 4(a) and 4(b), DSS induced a high level
of MPO and a low level of DAO in the colon, compared with
the control group. After FPH treatment, the influences of
DSS on MPO and DAO were significantly reversed
(p < 0:01 vs. model group). Furthermore, the effect of FPH
on tight junction (TJ) protein expressions including ZO-1
and occludin in the colon tissues was investigated via the
Western blot assay. The results showed that FPH could sig-
nificantly increase the protein expressions of ZO-1 and
occludin in colon tissues of the DSS-induced colitis mouse
model (Figures 4(c) and 4(d)), indicating the strengthening
function of FPH on the gut barrier, which was consistent
with the H&E staining result.

3.5. FPH Enhances Colonic Antioxidation in the Colitis
Mouse Model. Oxidative stress has been recognized as an
important mechanism underlying the pathophysiology of

IBD [28]. Hence, targeting oxidative stress is a good strategy
for IBD therapy. In our present study, we investigated the
influence of FPH on oxidative stress of the colon in DSS-
induced colitis mice via ELISA and Western blot assays. As
shown in Figures 5(a)–5(c), the levels of total superoxide dis-
mutase (T-SOD) and glutathione peroxidase (GSH-Px), two
important antioxidation parameters, were 5significantly
decreased (p < 0:05 vs. control group), and malondialdehyde
(MDA) was significantly increased after DSS induction
(p < 0:01 vs. control group). After FPH treatment, the influ-
ences of DSS on T-SOD, GSH-Px, and MDA were signifi-
cantly reversed (p < 0:05 vs. model group). Additionally,
the effects of FPH on oxidative stress-related protein expres-
sions were assessed, including Keap1, Nrf2, HO1, NOX2,
p22-phox, and NQO1. The results in Figures 5(d) showed
that DSS markedly upregulated the expressions of Keap1,
NOX2, and p22-phox, three important proteins producing
ROS, and downregulated Nrf2 and its downstream factor
heme oxygenase-1 (HO1), as well as quinone oxidoreductase
1 (NQO1), a cytosolic antioxidant flavoprotein catalyzing
the oxidation of NAD(P)H to NAD(P)+ [29]. However, after
FPH treatment, the levels of Keap1, NOX2, and p22-phox in
colon tissues were strongly reduced, and the levels of Nrf2,

0

50

100

150

M
PO

 (p
g/

m
g 

pr
ot

ei
n)

# #

C
on

tro
l

D
SS

FP
H

-H

FP
H

-L

⁎⁎

(a)

0

50

100

150

D
AO

 (p
g/

m
g 

pr
ot

ei
n) # ##

C
on

tro
l

D
SS

FP
H

-H

FP
H

-L

⁎⁎

(b)

ZO-1 195 kDa

Occludin 23-30 kDa

Control DSS FPH-H FPH-L

43 kDa𝛽-Actin

(c)

0.0

0.5

1.0

1.5

2.0

2.5

Re
lat

iv
e e

xp
re

ss
io

n 
(fo

ld
 o

f 𝛽
-a

ct
in

)

 ##

#
 #

##

C
on

tro
l

D
SS

FP
H

-H

FP
H

-L

C
on

tro
l

D
SS

FP
H

-H

FP
H

-L

⁎⁎

⁎

ZO-1
Occludin

(d)

Figure 4: Effect of FPH on the intestinal barrier of IBD mice. (a) Effect on MPO concentration of the colonic homogenate. (b) Effect on
DAO concentration of the colonic homogenate. The expression levels of tight junction proteins ZO1 and occludin in colon tissues were
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HO1, and NQO1 were remarkably increased, indicating the
good regulation of FPH on oxidative stress of the colon.
Altogether, these data demonstrated that FPH could alleviate
ulcerative colitis in mice via strengthening the gut barrier
mediated by enhancing the antioxidation activity of the
colon.

3.6. FPH Inhibited Colitis-Associated Secondary Liver
Damage of Mice. Secondary liver injury is commonly accom-
panied by IBD in the clinic and would probably be aggra-
vated, leading to chronic hepatitis or hepatic fibrosis [30,
31]. In our study, the protective effect of FPH on liver injury
was evaluated in the DSS-induced UC mouse model. As
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Figure 5: FPH enhances the colonic antioxidation in the UC mice induced by DSS. Effect of FPH on the levels of MDA (a), T-SOD (b), and
GSH-Px (c) in the colonic homogenate detected by ELISA. (d) Effect of FPH on the protein expressions of Keap1, Nrf2, HO1, NQO1, p22-
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shown in Figure 6(a), the appearance of liver tissue changed
obviously after DSS induction, while FPH could significantly
reverse the liver appearance change induced by DSS. The
liver index data showed that FPH could retard the influence
of DSS on the liver index of mice (Figure 6(b)). Furthermore,
the serum levels of ALT and AST (Figures 6(c) and 6(d)),
two biochemical parameters reflecting liver injury, were also
significantly reversed after FPH treatment (p < 0:05 vs.
model group). Additionally, the H&E staining assay showed
that the liver tissues in the DSS group mice had typical fea-

tures of liver injury, including disorderly arranged liver cells,
enlarged vacuoles, unclear cell edge, broken cell membranes,
and visibly appeared necrotic areas. After FPH treatment,
the classical features of pathological changes in liver tissues
were remarkably ameliorated (Figure 6(e)). In all, these data
indicated that FPH could inhibit ulcerative colitis-associated
secondary liver damage in mice.

3.7. FPH Protected Secondary Liver Injury of UC Mice via
Regulating the Gut-Liver Axis. This study had shown that
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FPH alleviated UC by suppressing the TLR4/MyD88/NF-κB
pathway and inhibited UC-associated secondary liver dam-
age in mice. It had been reported that the gut-liver axis
played a key role in the pathogenesis of liver diseases and
gut-derived lipopolysaccharide (LPS) played a central role
in the induction of organ injury, inflammation, and fibrosis
of the liver through the portal circulation [32]. Hence, we
speculated that the underlying mechanism of FPH protect-
ing secondary liver injury of UC mice was probably related
to the regulation of the gut-liver axis. Therefore, the levels
of IL-18, LPS, and LPS-related signaling factors in livers,
such as soluble CD14 (sCD14), LPS-binding protein (LBP),
and TNFα, were determined via ELISA and Western blot
assays. As we speculated, the data in Figures 7(a)–7(e)
showed that DSS strongly increased the levels of TNFα,
LPS, LBP, sCD14, and IL-18 in the liver tissues (p < 0:05
vs. control group), while FPH significantly reversed the
effect of DSS on mice (p < 0:05 vs. model group). Mean-
while, the Western blot assay showed that DSS increased
the expressions of LBP, CD14, TNFα, and NLRP3 in the
liver tissues (p < 0:05 vs. control group), while FPH signifi-
cantly decreased the expressions of these proteins in the liver
tissues (p < 0:05 vs. DSS group). The TLR4/MyD88/NF-κB
pathway plays a critical role in the inflammatory response
and liver injury. Hence, we also detected the expressions of

the TLR4/MyD88/NF-κB signaling pathway in the liver tis-
sues of UC mice. As a result, DSS significantly increased
the expressions of TLR4, MyD88, NF-κB, and phospho-
NF-κB in the liver tissues, while FPH strongly reversed the
effect (Figures 7(f) and 7(g)), indicating the excellent allevi-
ated effect of FPH against inflammatory response and liver
injury. The IHC result also validated that FPH obviously
reduced the expression of NLRP3, which was consistent with
the Western blot data (Figure 7(h)).

All in all, these results showed that FPH could alleviate
ulcerative colitis and ulcerative colitis-associated secondary
liver damage by strengthening the gut barrier of mice via
enhancing the antioxidation activity of the colon.

4. Discussion

Ulcerative colitis (UC) is a chronic, nonspecific inflamma-
tory bowel disease caused by an interaction of genetic back-
ground with environmental factors. The incidence of UC is
rising rapidly, with characteristics of the chronic disease
course, repeated attacks, gradual aggravation, and life-
threatening in severe cases [33]. At present, the clinical
drugs for UC treatment are not so satisfying owing to their
low efficacy and obvious side effects for long time usage.
Herbal medicine has the characteristics of multitargets,
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multisignaling pathways, reducing recurrence rate, and
treating complications against IBD. According to the basic
theory of traditional herbal medicine in China, IBD belongs
to damp-heat, static blood, and poison accumulated in the
colon tract recorded in Yellow Emperor’s Inner Canon.
Therefore, herbal medicines or prescriptions with the func-
tions of heat-clearing, detoxication, activating blood, and
eliminating dampness would have good therapeutic efficacy
against IBD, such as Trametes robiniophila Murr., Curcuma
longa L., and Plantago depressa Willd. [17, 34, 35]. Ficus
pandurata Hance, mainly containing the chemical constitu-
ents of triterpenes, flavonoids, coumarins, sterols, and so on
[36, 37], had been recorded to possess the functions of clear-
ing heat, detoxification, and anti-inflammation in the tradi-
tional Chinese medicine documentation [22]. Therefore,
Ficus pandurata Hance would be probably used for IBD
therapy according to the basic theory of traditional China
herbal medicine, which has been validated in our experi-
mental study.

Inflammation is the key characteristic of IBD. DSS, a
low-molecular-weight sulfated polysaccharide, is a common
chemical used to induce IBD through increasing the secre-
tion of proinflammatory cytokines, affecting the distribution
of tight junction proteins and even destroying the intestinal
epithelial cell (IEC) structure, which would lead to innate
immune cell response [38]. Activated immune cells would
release inflammatory cytokines to regulate different kinds
of cells [39]; for instance, neutrophil and macrophage would
induce T helper cells to produce IL-6 and TNFα and mono-
nuclear phagocytes and intestinal epithelial cells produced
IL-1β and IL-18, aggravating inflammation [40–42], while
dendritic cells would activate T regulatory cells to secrete
IL-10 and TGFβ, playing a protective role [43–45]. During
inflammation evolution, the proinflammatory factors con-
tinuously stimulate the immune response, promoting the
body to develop into chronic inflammation, which is a major
pathological cause of many serious diseases including can-
cer, diabetes, organ failure, and so on [46]. It is reported that
IBD is prone to colonic carcinogenesis, and the incidence of
colitis-related colorectal cancer is 4~10 times higher than
that of sporadic colorectal cancer [47, 48]. Hence, inhibiting
the acute inflammatory response and retarding chronic
inflammation evolution can prevent other diseases such as
colorectal cancer from occurring.

Increasing evidence shows that oxidative stress can pro-
mote IBD [13, 49]. In patients with ulcerative colitis, the
reactive oxygen metabolites of the intestinal mucosa increase
and would break the balance of oxidation and antioxidation
[50]. Studies have shown that under the action of reductive
coenzymes and magnesium oxide in the cell membrane, a
large number of superoxide anions, hydroxyl radical, hydro-
gen peroxide, and lipid peroxides are produced through cel-
lular respiration and further induce chemotaxis of
neutrophils, leading to inflammatory infiltration of colon tis-
sue [51]. NOX1 and NOX2, two important family members
of NOXs, are the main catalytic enzymes that catalyze the
generation of oxygen free radicals in the intestinal mucosa
[52]. When IBD happens, the expressions of NOX1 and
NOX2 abnormally elevate, the generation of oxygen free

radicals including MDA increases, and the levels of GSH
and SOD decrease, leading to oxidative stress injury on the
intestinal mucosa [53]. Excessive oxygen metabolites would
promote inflammation and harm to DNA, proteins, and
lipids, which are destroying the structural integrity of cells
[54]. On the other side, Nrf2 plays a key role in the body’s
response to oxidative stress by regulating the expressions
of antioxidant genes. Once being activated, Nrf2 enters the
nucleus and combines with the antioxidant response ele-
ment (ARE) to regulate the antioxidant enzymes and phase
II detoxification enzymes such as heme oxygenase 1 (HO-
1) and benzoquinone oxidoreductase (NQO1) [55–57].
Therefore, targeting oxidative stress is an important mecha-
nism for IBD treatment. In our study, we assessed the
expressions of Keap1, Nrf2, HO1, NQO1, NOX2, and p22-
phox in the colon tissues via the Western blot assay and
the levels of MDA, GSH-Px, and T-SOD, three important
markers of oxidative stress, via ELISA. Our results showed
that FPH significantly increased the levels of SOD and
GSH and promoted the expressions of Nrf2, HO1, and
NQO1, while it inhibited the expressions of Keap1 and
NOX2 and reduced MDA level, indicating that FPH could
strongly suppress the oxidative stress of the colon in IBD
mice.

Lipopolysaccharide is an endotoxin derived from gram-
negative bacteria, penetrating the gut mucosa only in trace
amounts in normal physiological status, while in pathologi-
cal status, it can increase the levels of proinflammatory cyto-
kines by stimulating toll-like receptors such as TLR4 [25,
58]. Once TLR4 is activated by LPS, the cell signal transduc-
tion would be triggered, and the downstream target genes
MyD88 and NF-κB would be activated, thereby promoting
the development of inflammation, such as the formation of
pro-IL-18 [59]. Meanwhile, the NLRP3 inflammasome and
oxygen free radicals promoted the maturation of pro-IL-1β
and pro-IL-18 and then augmented the production of proin-
flammatory cytokines [60]. Studies found that TLR4 and its
downstream factors are significantly enhanced in IBD, and
the LPS/TLR4 pathway plays an important role in the occur-
rence and development of organ damage response and
vicious circle [61–63]. The intestinal mucosa barrier, com-
posed of intestinal epithelial cells (IECs) and tight junction
proteins, is an important defense system maintaining the
integrity of the barrier function and intestinal homeostasis
by isolating harmful substances in the intestine [64]. Tight
junction proteins mainly consist of zonula, occludin, and
claudins, which regulate the permeability of the intestinal
barrier and maintain the polarity of epithelial cells [65, 66].
Studies showed that IL-18 would directly inhibit the goblet
cell maturation and then do harm to the defense function
of the intestinal mucosal layer [67]. Continuous inflamma-
tory response induced by LPS would destroy the morphol-
ogy of the intestinal epithelium and aggravate the mucosal
damage via decreasing the expression of intestinal tight junc-
tion proteins and increasing the intestinal permeability, by
which more inflammatory factors would be gathered and
infiltrate the intestine, forming a vicious circle. Han et al.
found that LPS influenced the microbiota and energy metab-
olism of the gut-liver axis in the colitis model [68].
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Therefore, suppressing the LPS-mediated TLR4/MyD88/
NF-κB pathway is regarded as an important strategy to treat
IBD, which has been validated in our study.

Extraintestinal liver damage is one of the most common
complications in severe IBD. Trivedi and Adams reported
that colitis can cause liver injury, and the degree of liver
injury is positively correlated with the severity of colitis
[69]. When IBD occurs, the intestinal permeability is
enhanced, and entheogenic bacterial metabolites, such as
LPS, toxins, ROS, and short-chain fatty acid (SCFA), enter
into the liver through the portal circulation. Hence, the
levels of LPS or other endotoxins synthesized by gram-
negative bacteria would be increased in the liver, inducing
hepatocholangeitis and liver injury [68]. Under normal
physiological status, LPS can be cleared in the liver to main-
tain the control of immune homeostasis, while under patho-
logical conditions such as liver damage, hepatic fibrosis, or
cirrhosis, LPS clearance from the circulation is decreased,
and excessive LPS would activate innate immune cells,
including Kupffer cells, leading to promoting various proin-
flammatory cytokines, chemokines, and other factors to
release and reinforce the inflammatory response [70]. The
LPS/TLR4 pathway plays a key role in triggering liver injury.
It is reported that LPS binds to LPS-binding protein (LBP)
and transfers to the cluster of differentiation 14 (CD14)
and then binds to TLR4/myeloid differentiation factor-2
(MD-2) complex. This signal can be passed through
MyD88-dependent intracellular pathways, which would
activate downstream transcription factors and proinflamma-
tory cytokines such as tumor necrosis factor α (TNFα) [71,
72]. In this study, we speculated that FPH could probably
protect secondary liver injury induced by DSS through regu-
lating the gut-liver axis mediated by suppressing LPS/LBP/
CD14 signaling. As it was expected, the results showed that
FPH obviously alleviated the secondary liver injury of UC
mice including alleviating the steatosis and mitigating
inflammation of the liver and significantly reduced the levels
of ALT and AST in serum and IL-18, NLRP3, LPS, LBP,
sCD14, and TNFα in liver tissues.

In summary, this study demonstrated that FPH not only
could inhibit ulcerative colitis via suppressing the LPS/
TLR4/MyD88/NF-κB pathway and strengthen the gut bar-
rier via enhancing the antioxidation of the colon but also
could protect against secondary liver injury accompanied
by ulcerative colitis.

5. Conclusion

In this study, the suppression of Ficus pandurata Hance
against IBD on mice and the protective effect on secondary
liver injury were investigated, as well as the underlying
mechanism. The data showed that Ficus pandurata Hance
had a good alleviated effect on IBD induced by DSS and a
protective effect on secondary liver injury accompanied by
IBD, mainly through inhibiting the inflammatory pathway
LPS/TLR4/MyD88/NF-κB and enhancing the gut barrier
through suppressing oxidative stress of the colon. Our study
for the first time provides experimental evidence for the
therapeutic effect of Ficus pandurata Hance against IBD

and secondary liver injury, which strongly suggests its appli-
cation in IBD therapy for humans in the future.
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