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Because quantitative biology requires skills and concepts from a disparate collection of different
disciplines, the scientists of the near future will increasingly need to rely on collaborations to produce
results. Correspondingly, students in disciplines impacted by quantitative biology will need to be
taught how to create and engage in such collaborations. In response to this important curricular need,
East Tennessee State University and Georgia Technological University/Emory University cooperated
in an unprecedented curricular experiment in which theoretically oriented students at East Tennessee
State designed biophysical models that were implemented and tested experimentally by biomedical
engineers at the Wallace H. Coulter Department of Biomedical Engineering at Georgia Technological
University and Emory University. Implementing the collaborations between two institutions allowed
an assessment of the student collaborations from before the groups of students had met for the first
time until after they had finished their projects, thus providing insight about the formation and
conduct of such collaborations that could not have been obtained otherwise.

INTRODUCTION

Even if a majority of the numerous efforts to transform under-
graduate biology education are successful, there is no expecta-
tion that the biologist of the near future will be an expert in
several different scientific fields. Instead, the new biologist is
envisioned as a “scientist with a deep knowledge in one disci-
pline and a working fluency in several others” (Labov et al.,
2010). The BIO 2010 report (National Research Council, 2003),
for example, includes topics and skills in chemistry, physics,
computer science, and mathematics that traditional majors in
those respective fields do not experience before their senior
year. Indeed, current efforts tend to focus on creating inte-
grated, introductory curricula common to several majors
(mathematics, biology, and computer science) that indicate
how fundamental ideas in each discipline contribute to the

understanding of the life sciences (Bialek and Botstein, 2004;
Knisley et al., 2010; Moore et al., 2010). Researchers likewise
tend to become conversant in other fields while remaining an
expert in only one or two fields (Kuczenski et al., 2005).

Consequently, at the heart of the ongoing quantitative
biology revolution is the need to address problems via pro-
ductive collaborations among individuals from a wide vari-
ety of disparate backgrounds (Salazar et al., 2006). Molecular
biologists, for example, are partnering with computer scien-
tists and mathematicians (Kuczenski et al., 2005), physicists
are finding new uses for models once thought to be nonbio-
logical (Rowlands, 1983), and the process of conducting
clinical trials is being challenged by new trends in mathe-
matics and statistics (Couzin, 2004). Moreover, both the
successes and the failures of these collaborations can often
be traced to their being distributed across several different
locations, cultures, institutions, and disciplines (Hastings et
al., 2003).

Thus, at the heart of life sciences education reform is the
need to teach students from a wide range of disciplines—
biology, mathematics, computer science, engineering, phys-
ics, chemistry, psychology, medicine, and a host of others—
how to work together to solve problems, how to interpret
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the work of scientists in other disciplines, and how to avoid
being distracted or dissuaded by the obstacles that may arise
in such collaborations. Similarly, students will need to learn
how to communicate and interact with students not only
from other fields but also from other institutions and orga-
nizations, and they will need to learn how to communicate
and interact with others via nontraditional tools and tech-
nologies that exist in a truly interdisciplinary sense.

For example, mathematicians, physicists, computer scien-
tists, biologists, and health scientists alike will increasingly
be asked to work with data in the form of images (Kelley et
al., 2008). Tools such as video capture and ImageJ (National
Institutes of Health, Bethesda, MD) may currently be as
unfamiliar to medical personnel as they are to mathemati-
cians, but in the near future they will need to be used as
frequently as numerical data in measurement, prediction,
and inference (Dougherty, 2009). Similarly, systems biology
and computational biology are introducing new approaches
for life scientists and new problems for mathematicians,
statisticians, and computer scientists that probably would
not exist independent of an interdisciplinary context (Allara-
khia and Wensley, 2005).

Many interdisciplinary opportunities and outreach efforts
have developed in tandem with the need to collaborate—
and the need to teach students how to collaborate. However,
existing efforts tend to focus on particular aspects of quan-
titative biology, such as coding or molecular biology. Quan-
titative biology in general is expected to rely on a broad
expanse of collaborations involving a wide variety of scien-
tists; correspondingly, curricular models need to be devel-
oped that introduce students to such collaborations. In par-
ticular, quantitative biology education will need to develop
models in which experimenters, clinicians, and other empir-
ical scientists are involved in collaborations with theorists,
model builders, and computational scientists; and these
models need to span not only different disciplines but also
different institutions requiring an array of different commu-
nication tools and collaborative efforts.

Here, we suggest one such model and discuss its imple-
mentation. In particular, this article describes the motivation
and structure of collaboration between students in a Bio-
medical Engineering PBL laboratory at Georgia Institute of
Technology–Emory Biomedical Engineering program (BME)
and students in a senior-level undergraduate mathematical
modeling course at East Tennessee State University (ETSU)
that was used to investigate an inquiry-based, open-ended
problem in physiology (anterior cruciate ligament [ACL]
injury differences between male and female athletes). This
project was carried out with the support of the Howard
Hughes Medical Institute as a part of its science education
efforts via existing grants to the two different institutions.
Although there is room for improvement on this initial effort
(which we discuss in Assessing Outcomes), we nonetheless
believe this can be used as a model for developing similar
multi-institutional collaborations.

COURSE COUPLING AND CASE-BASED
LEARNING

The sciences curriculum of the near future is commonly
envisioned to be that of an integrated introduction to math-

ematics, computation, and the sciences in the context of
relevant biological problems (Bialek and Botstein, 2004). In
particular, there are problems in biology in which temporal,
ethical, or spatial considerations require biologists to aug-
ment traditional biological approaches with models and
techniques from mathematics, statistics, and computation
experts (Cohen, 2004). Indeed, some have suggested that the
creation of biologically realistic models is foundational to
the life sciences of the next century (Bower, 2005).

However, current interactions between biology and math-
ematics tend to follow from classical interactions over the
past 500 yr, especially pedagogically (Cohen, 2004), whereas
the types of collaborations driving the quantitative biology
revolution tend to be based on relatively recent techniques
and models. In particular, the mathematical models intro-
duced in biological contexts, e.g., the predator–prey equa-
tions, do not lend themselves to data fitting and testable
predictions; likewise, experimental designs in biology tend
to focus on the empirical.

Thus, to facilitate the development of models that can be
implemented experimentally, the ETSU–BME collaboration
used a problem-based learning approach, which is an ap-
proach in which students collaboratively develop and im-
plement strategies to solve problems. A particular type of
problem-based learning strategy is that of investigative case-
based learning (ICBL), in which the problem addressed by
the students follows from a case to be investigated, i.e., a
problem motivated and defined by a particular example
from the real world (Stanley and Waterman, 2005). The case
in this project—why female athletes are 4–6 times more
likely to suffer ACL injuries than male athletes—emerged
from a quantitative biology workshop on case-based learn-
ing hosted by Emory University in July 2009 (Pat Marstellar,
organizer).

The ACL problem was selected, in part, because such
problems in a sufficiently broad context allow courses to be
linked in a mutually beneficial manner (Knisley et al., 2010).
Our goal was to use an ICBL approach with the ACL injury
difference problem to couple two courses in two different
institutions and disciplines into a coherent case-based learn-
ing experience, one that would have model builders creating
models that experimenters could implement leading to pre-
dictions about the solution to the problem itself. That is, the
ETSU–BME project is an experiment in course coupling, in
which separate courses with separate pedagogical goals are
designed as one meta-course that serves two separate stu-
dent populations. The course-coupling concept has been
used at several institutions, including ETSU and BME, and it
serves as a seminal concept in the design and implementa-
tion of the Symbiosis Project (Knisley et al., 2010).

Once a sufficiently broad yet well-defined problem has
been chosen, the next task is that of establishing a timeline
for the project. In this project, the timeline was developed to
a large degree during the Emory University-hosted work-
shop, primarily by examining where typical timelines for the
individual courses would allow ETSU–BME interaction. The
goal was to introduce collaborative activities in association
with the project while maintaining the overall structure of
the two individual courses. For example, the time period
during which the BME students conducted the experiments
began a week after the presentations by the ETSU students;
thus, this interim week served as a period of dialog during
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which the project was transferred from the theoretical, model-
making activities into the empirical, experimentally design
activities.

Another important aspect of this course-coupling experi-
ment was that of at least one face-to-face meeting. Although
students in both institutions gravitated toward social net-
working, e-mail, and cell phones as the primary means of
communication, the face-to-face meeting filled both an im-
portant social need—that of putting faces with the names—
and the important pedagogical need of having the ETSU
students transfer the project to the BME students. Although
modern communication tools support a host of sophisti-
cated interactions, reflection on the project suggests that the
in-person meetings, during which the ETSU students trans-
ferred the project to the BME students, were crucial to al-
lowing the BME students to reinterpret the project in a
context more familiar to them. Without the in-person spon-
taneity, many important questions and interpersonal inter-
actions might not have occurred.

Finally, it also seems to be important to create a common
website enabling communication and housing a common
library of relevant articles and other important materials. In
particular, this common library should contain materials
explaining the efforts and contexts of one group in terms
understandable to the other. For example, for the ACL injury
differences project, a library of papers describing experi-
mental equipment, techniques, and expected outcomes was
combined with papers describing logistic models and their
use.

ETSU–BME COLLABORATION

In fall 2009, ETSU and BME cooperated in an unprecedented
curricular experiment. The Institute for Quantitative Biology
(IQB) at ETSU coupled a modeling course with a biomedical
engineering laboratory at The Wallace H. Coulter Depart-
ment of Biomedical Engineering, under the direction of one
of us (E.B.). The BME lab is a required junior-level course
that focuses on experiment design and data analysis. Ill-
constrained, problem-based modules are designed to incor-
porate topics covered in prerequisite lecture-based courses.
This collaborative project was the third of a five-module
semester. There were 67 undergraduate students enrolled
and divided into four sections, with �16 students per sec-

tion. The modeling course at ETSU is a senior-level course in
predictive modeling, in which the emphasis is on data min-
ing via statistical and computational models. The collaborative
project occurred during the first month of the course, where the
focus is on logistic regression. There were 11 students overall
ranging from a particularly talented freshman to a second-year
graduate student, with the majority being senior-level math
majors and first-year graduate students.

Students in the two courses worked together to address a
critical issue in biomedical engineering, that of why females
are 4–6 times more likely to suffer ACL injuries than male
athletes, and how this difference might provide insight as to
why ACL injuries occur so frequently among both genders.
The ACL injuries problem was selected because it is current,
open-ended, and poorly understood (McLean, 2008). The
goal was for the two different populations of students to
collaboratively develop insight into possible factors in the
ACL injury difference phenomenon that would not have
been obtained separately from any other source.

In particular, ETSU mathematics students were required
to produce models that could be implemented experimen-
tally; subsequently, Georgia Tech engineering students were
required to design experiments that implement the mathe-
matical models and produce data that can be used to esti-
mate parameters in those models. For simplicity, the five
models designed by the ETSU students were logit models
(logistic regression), because these models are common in
undergraduate statistics courses and are a straightforward
means of using data to make predictions (Moore et al., 2009).
Logistic regression is of the following form: logit(p) � w0 �
w1 x1 � … � wn xn, where p is the probability of observing
an empirical success, logit(p) is the log-odds of p, the vari-
ables xj are measured in the experiments, and the regression
coefficients wj are estimated using maximum likelihood
methods.

In the ACL injury models, the literature suggested that
abnormal stress on the ACL results in elevated quadriceps
activity, so p is defined to be the probability of significant
increase in quadriceps muscle electromyographic activity
during a drop-landing. The factors xj varied from model to
model in accordance with the ETSU students’ incorporation
of biomechanics and ACL-related ideas into their models.
Table 1 lists the factors used in the five logistic regression
models used in the collaboration.

Table 1. Factors tested experimentally in the five logistic models (all involved drop landings from a height of 50 cm)

Model Experiment Factors

1 Variations in feet positions at
landing

Duck-foot vs. preferred; trunk, hip, and knee valgus angles at impact, hip–foot ratio, femur–tibia
ratio, maximum valgus knee angle, angles of hyperextension, age, gender, previous ACL
injury, lifelong athlete

2 Variations in inward flexing of
knees at landing

Foot and lower leg flexion angles, valgus flexion angles, ground reaction forces (vertical,
posterior), foot area-to-weight ratio, gender, weight, height, effort, previous ACL injury,
lifelong athlete

3 Variations in hip rotation at
landing

Hip rotation angle, velocity of rotation, weight distribution, ground reaction forces (vertical,
posterior), gender, weight, height, previous ACL injury, lifelong athlete

4 Before/after fatiguing exercise Gender, age, weight, height, fatigue level after exercise, effort, sagittal plane trunk angle,
landing center of mass, landing force

5 Fatigue and landing dominant
leg first

Gender, age, weight, height, fatigue level after exercise, trunk flexion angle, dominant vs.
nondominant leg, landing center of mass, landing force
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On September 28, 2009, 10 students from the predictive
modeling class traveled to Georgia Tech to present the mod-
els to approximately 60 biomedical engineering students.
The biomedical engineers subsequently formed teams
charged with designing the experiments and collecting the
data necessary for model prediction and validation.

Throughout the ACL injury project, students at the two
institutions served as consultants for one another. Once the
data were collected, they were returned to the ETSU stu-
dents for analysis, and then the results were shared with the
BME students.

The outcomes of the project were modest but respectable.
Not all the models lent themselves to implementation, and
not all the data from the resulting experiments proved to be
analyzable. Many of the models and the resulting experi-
ments focused on fatigue, and although fatigue does seem to
be an issue, evidence suggests that it is no more a factor for
females than for males. This matches results published pre-
viously (Pappas et al., 2007).

However, there were several of the BME experimental
groups that used the ETSU models to indicate that landing
force is significant in predicting ACL injury differences be-
tween male and female athletes. Of particular note is that
several experiments seem to indicate that as valgus angles
increase, male athletes’ landing forces tend to decrease,
whereas female athletes’ landing forces remain the same or
increase. That is, although highly preliminary, there is evi-
dence to suggest that males have either a behavioral or
physiological means of compensating for the inward bend-
ing of their knees by decreasing their landing force. Specu-
latively, the data may suggest that males tend to use their
ankles proactively to protect their knees as they land,
whereas females do not.

ASSESSING OUTCOMES

Implementing collaborations across different institutions not
only provided a meaningful experience for our respective
students but also gave us a chance to assess the development
and productivity of the collaborations among two groups of
students with no prior interactions. Thus, in addition to the
outcomes produced by the collaborations themselves, we
assessed the attitudes of the groups individually and the
relationships fostered between them. These assessments
were then analyzed and summarized to produce a picture of
how the students themselves viewed the collaborative expe-
riences.

Initially, at the end of the course, a survey was provided
to BME students to gain insight into their experience with
the structure of the initial interaction between the students at
two universities. In this survey, only 43% of the respondents
believed that the initial presentation was important in estab-
lishing a collaborative relationship (Table 2). However,
when asked how they rated their overall collaboration ex-
perience, those who believed that the initial presentations
were effective in establishing the collaboration were more
than twice as likely to rate their overall collaborative inter-
action as average or above average, suggesting that this
initial meeting was important in their overall experience.
Moreover, they were �2 times less likely to state that more
interactions would help in establishing a relationship.

Due to the much smaller numbers of student participants
at ETSU, the end-of-course survey at ETSU was free re-
sponse and solicited information not only about the collab-
orations but also about the results of the collaborations
themselves. Of significance is that ETSU students tended to
create models with a bias toward what they expected the
experiments to show and were surprised when the experi-
ments did not confirm their expectations. In addition, the ETSU
students also commented on the tendency of the experimenters
to produce data that were not relevant to the models.

However, in agreement with the results from the BME
students, the success of the ETSU students’ models seemed
to be directly connected to the quality of their initial contact
with each other and, in fact, the most significant improve-
ment suggested by the ETSU students was that the initial
contacts needed to be more focused with fewer students
engaged in each such initial meeting. Suggested improve-
ments to this initial meeting by BME students included form-
ing small groups, promoting face-to-face and individual con-
tact, and posting electronic presentations before the initial
meeting for better preparation. Moreover, all the data suggest
that initial contact was critical to a successful collaboration.

There were collaborations that did produce results, and in
these collaborations, the lines of communication established
at the initial meeting were invaluable. Indeed, the call for
improving the initial contacts seemed to be most significant
among those groups that were most productive, and we
noted that the most productive collaborations seemed to be
those that best used the initial contacts in jump-starting the
process of implementing the models themselves. Indeed,
groups that did not use the initial contacts to begin imple-
menting the models tended to work somewhat indepen-
dently of each other after the fact without ever returning to
a true collaborative mode.

CONCLUSIONS

A significant challenge in quantitative biology is that of
developing productive collaborations that do not have the
unrealistic requirement of at least one collaborator being an
expert in everyone else’s field (Kuczenski et al., 2005). Al-

Table 2. Student perception (%) of collaborative projecta

Were the in-person
presentations im-

portant in establish-
ing a collaborative
relationship with
ETSU students?

How would you rate the over-
all collaboration experience
with students from ETSU?

Yes 43 Above average 5
Average 80
Below average 15

No 57 Above average 0
Average 37
Below average 63

a BME student response in the end-of-term voluntary survey to
questions relating to collaborative project. Forty-seven students re-
sponded to the survey.
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though such collaborations have been developed and have
shown to be productive, it is not immediately apparent how
students in disparate fields might be taught to collaborate
productively even if each member has incomplete knowl-
edge of the field(s) of their fellow collaborators. This project
is a first step in addressing how students can be guided into
such collaborations, and although admittedly a proof-of-
principle more than a complete study, this project shows
that such collaborations among students with widely vary-
ing backgrounds can be productive.

Moreover, students learn a great deal not only about the
associated field but also about how science and engineering
will be pursued now and in the future. For example, both the
BME and ETSU students learned that although mutual re-
spect is desirable, it is not a substitute for genuine commu-
nication. Indeed, the ETSU students did not realize initially
that some aspects of their models would be difficult, if not
impossible, to implement experimentally; and the BME stu-
dents did not realize how important a correct interpretation
of a theoretical model would be to the experimental design
and data collection. Without genuine communication as the
ETSU students were handing the project over to the BME
students, there may not have been any meaningful results.

That is, the initial efforts in forming collaborations across
a variety of disciplines are crucial—so much so that in-
person meetings are more than justified—and as impor-
tantly, the initial formation of such collaborations should be
focused on facilitating approaches and channels of commu-
nication that can be used to address a mutual problem
(Karsai and Knisley, 2010). Indeed, the need for channels of
communication within and between fields is already being
addressed by the larger scientific community. For example,
scientists are creating a variety of markup languages to
facilitate the problem-focused exchange of data and ideas
between scientists and practitioners in different fields, in-
cluding the systems biology markup language (SBML),
CellML, and the predictive model markup language (PMML)
(Guazzelli et al., 2009).

In fact, among the many possible improvements upon this
first effort are the incorporation of more avenues and pro-
tocols for interaction between ETSU and BME students. For
example, a markup language was not used, primarily be-
cause it was a first effort, but certainly the use of PMML in
particular would have reduced or eliminated the significant
workload in translating data and results between the two
groups. In addition, the ETSU-BME collaboration would
have benefited from a larger library of materials accessible to
both groups; likewise, the methods for analyzing data could
have been more clearly defined at the outset of the project.
And although there was a shared course website within
Georgia Tech’s course management system, this interactivity
could be greatly enhanced. For example, web 2.0, and col-
laborative tools such as first class, blogs, wikis, or other
meeting tools would have greatly enhanced this first effort.

Nonetheless, this first attempt was quite successful and
illustrates how students from different disciplines and insti-
tutions can collaborate and even instruct one another while
addressing an important problem in quantitative biomedi-
cine. Moreover, the experience was mutually beneficial, pro-
viding insight to the modeling course that could not have
been obtained otherwise and introducing engineering stu-
dents to the concept of implementing and using theory

rather than just seeing it in a textbook. Indeed, we feel that
this project serves as a model for introducing students to the
important need to communicate and collaborate across dis-
ciplines, organizations, and even institutions.
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