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Abstract

Understanding how environmental change has shaped species evolution can inform predictions of how future climate change
might continue to do so. Research of widespread biological systems spanning multiple climates that have been subject to
environmental change can yield generalizable inferences about the neutral and adaptive processes driving lineage divergence
during periods of environmental change. We contribute to the growing body of multi-locus phylogeographic studies
investigating the effect of Pleistocene climate change on species evolution by focusing on a widespread Australo-Papuan
songbird with several mitochondrial lineages that diverged during the Pleistocene, the grey shrike-thrush (Colluricincla
harmonica). We employed multi-locus phylogenetic, population genetic and coalescent analyses to (1) assess whether
nuclear genetic diversity suggests a history congruent with that based on phenotypically defined subspecies ranges,
mitochondrial clade boundaries and putative biogeographical barriers, (2) estimate genetic diversity within and genetic
differentiation and gene flow among regional populations and (3) estimate population divergence times. The five currently
recognized subspecies of grey shrike-thrush are genetically differentiated in nuclear and mitochondrial genomes, but
connected by low levels of gene flow. Divergences among these populations are concordant with recognized historical
biogeographical barriers and date to the Pleistocene. Discordance in the order of population divergence events based on
mitochondrial and nuclear genomes suggests a history of sex-biased gene flow and/or mitochondrial introgression at
secondary contacts. This study demonstrates that climate change can impact sexes with different dispersal biology in
different ways. Incongruence between population and mitochondrial trees calls for a genome-wide investigation into
dispersal, mitochondrial introgression and mitonuclear evolution.

Introduction

The relationship between environmental change and species
evolution is convoluted due to the plethora of ways in
which species are impacted by and can respond to change.
Understanding the population processes affected by envir-
onmental change is important for informing predictive
models of species’ responses to future climate change.
Climatic oscillations throughout the Pleistocene (~2.5-0.01
million years ago; Ma) impacted the evolution of biota
across the globe through fragmentation, displacement and
extinction (Hewitt 2004). Populations surviving glacial
maxima in disconnected refugia often diverged under
effects of different climatic and ecological pressures and
genetic drift (Avise 1998, 2000). Australo-Papua, however,
remained largely free from Pleistocene glaciation and
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instead experienced cycles of aridity and sea-level fluctua-
tions (Barrows et al. 2002; Byrne et al. 2008).
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Based on contemporary species’ ranges and taxonomic
treatments, numerous putative historical biogeographical
barriers, thought to reflect rising sea levels and expanded
arid areas that formed during the Pleistocene, have been
mapped across mainland Australia (Ford 1987; Keast 1961;
Schodde and Mason 1999). Two contemporary marine
barriers to gene flow, Bass Strait (in the South) and Torres
Strait (in the North), formed and dissipated repeatedly
throughout the Pleistocene and now separate mainland
Australia from Tasmania and the island of New Guinea,
respectively (Chivas et al. 2001; Lambeck and Chappell
2001). Speciation events across several of these biogeo-
graphical barriers support their role in shaping the evolution
of Australian biota (Dolman and Joseph 2015, 2016; Jen-
nings and Edwards 2005; Lee and Edwards 2008; Mellick
et al. 2014; Toon et al. 2010).

The biological influence of some Australo-Papuan bar-
riers, that is, how they limited migration and affected local
adaptation and lineage divergence, remains to be fully
explored with molecular data (e.g., Torres Strait—Kearns
et al. 2011; Toon et al. 2017; Canning Barrier—Lamb et al.
2018; Nyari and Joseph 2013). Moreover, earlier phylo-
geographic investigations of putative Australo-Papuan bar-
riers employed exclusively mitochondrial DNA (mtDNA)
markers (Joseph and Omland 2009), which are prone to the
effect of selection and do not always reflect population
history (Ballard and Whitlock 2004; Morales et al. 2015;
Toews and Brelsford 2012). Multi-locus tests of
mitochondrial-based inferences using nuclear data are called
for.

Pleistocene climate change impacted the evolution of
different species in different ways, depending on their
ecology (Bowman et al. 2010; Byrne et al. 2008). The
biogeographical barriers drove the divergence of species at
different times and to different extents depending on spe-
cies’ gene flow limitations (Bowman et al. 2010; Dolman
and Joseph 2012; Toon et al. 2010). Furthermore, arid-
adapted species have expanded their ranges during Pleis-
tocene glacial maxima, contrary to the majority of other
species studied, which experienced range contractions (e.g.,
butcherbirds; Kearns et al. 2014). Different responses to
climate change can result in different temporal patterns of
divergence across a barrier and also lead to different geo-
graphic patterns of population differentiation (Bryant and
Krosch 2016; Pefialba et al. 2017). Temporally and spatially
concordant biogeographic patterns can therefore be expec-
ted only in ecologically similar sympatric species. Further,
some barriers have formed, disappeared and reformed over
time, such that disconnected populations have experienced
multiple periods of secondary contact. In some cases of
secondary contact, gene flow can homogenize genetic var-
iation among populations (Joseph and Wilke 2006; Kearns
et al. 2014), and in others, intrinsic barriers evolved during

isolation (i.e., genomic incompatibilities) can drive evolu-
tion of pre-zygotic isolation and speciation (Sunnucks et al.
2017).

In addition to changing over time, climate varies greatly
across the Australo-Papuan region. Climatic differences
across the region may have further driven local adaptation
and divergence within some species (Lamb et al. 2018). The
dynamic spatio-temporal nature of Pleistocene population
splits, periods of secondary contact and climatic variation
has promoted phylogeographic complexity. Furthermore,
putative barriers have not always been found to be con-
cordant with intra- or interspecific nuclear and/or mito-
chondrial genetic divergence, sometimes despite their
concordance with phenotypic divergence (Eldridge et al.
2014; Kearns et al. 2010). Because of these complexities,
more multi-locus phylogeographic research on widespread
species spanning multiple climates is needed. This will aid
in achieving a comprehensive understanding of how Pleis-
tocene climate change influenced the evolution of the biota
throughout the Australo-Papuan region.

The grey shrike-thrush (Colluricincla harmonica) is an
ideal species in which to investigate the complex evolu-
tionary effects of Pleistocene climate: it is widespread and
common throughout Australia and eastern coastal New
Guinea and divergence among its mitochondrial clades has
been dated to the Pleistocene (Higgins and Peter 2002;
Lamb et al. 2018). Analysis of mitochondrial sequence data
throughout the Australian range found clade boundaries to
be concordant with phenotypically defined subspecies ran-
ges (Lamb et al. 2018; Fig. 1). Further, Marki et al. (2018)
found that within the New Guinean range of the species,
DNA sequence data from two individuals from two differ-
ent regions suggested the presence of two lineages, one that
has, and one that has not diverged from the Cape York
Peninsula populations of Australia. However, denser sam-
pling of the region is required to test this observation. Eight
putative historical biogeographical and contemporary bar-
riers align with mitochondrial clade and subspecies
boundaries within grey shrike-thrush and so could have
affected its evolutionary history: the Carpentarian, Eyrean,
Canning, and Torresian Barriers, Einasleigh Uplands, Black
Mountain Corridor, and Bass and Torres Straits (Fig. 1).
These barriers have primarily been inferred from morpho-
logical and molecular data on bird species and have been
tested in a range of other taxa (see Appendix S1 for a brief
review).

Here we use multi-locus phylogeography to test whether
the barriers mentioned above have had different effects on
population diversification and mitochondrial lineage diver-
gence within the grey shrike-thrush. Specifically, we (1) test
for congruence between patterns of nuclear genetic differ-
entiation and those based on phenotypically defined sub-
species ranges (Schodde and Mason 1999), mitochondrial
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Fig. 1 The ranges of the
currently accepted grey shrike-
thrush subspecies: blue—
strigata, red—harmonica,
purple—superciliosa, green—
brunnea and yellow—
rufiventris, and contemporary
and putative historical
biogeographic barriers and
relevant geographic regions
(Schodde and Mason 1999). The
grey shrike-thrush mitochondrial
ND2 tree topology adapted from
Lamb et al. (2018) is also shown
(same colours apply); here we
considered the King Island and
Tasmanian lineages as one
because their ranges overlap
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clade boundaries and putative biogeographical barriers, (2)
quantify genetic diversity within, and genetic differentiation
and gene flow among regional populations, and (3) estimate
population divergence times.

Materials and methods
Study species

Across its Australian range, five regional populations of
grey shrike-thrush are currently recognized as subspecies
based on morphometrics and plumage (epithets only here-
after for brevity: rufiventris, brunnea, superciliosa, har-
monica, strigata; Fig. 1; Schodde and Mason 1999). New
Guinean populations occur almost exclusively in Papua
New Guinea (PNG); they are sometimes assigned to a
separate subspecies (fachycrypta) but are mostly synony-
mized with superciliosa of Cape York Peninsula (Fig. 1;
Beehler and Pratt 2016; Macdonald 1973; Schodde and
Mason 1999).

Samples, DNA extractions, DNA sequencing and
length-variable marker genotyping

Lamb et al. (2018) obtained mitochondrial ND2 sequences
for 170 grey shrike-thrush individuals sampled from the
Australian range of the species. Here we extend that work
and that of Marki et al. (2018) by denser sampling of New
Guinean populations and screening of 20 loci in the nuclear
genome, enabling new analyses and hypothesis tests. We
sampled PNG grey shrike-thrush individuals from three
isolated savannah areas: the Trans-Fly region of the Wes-
tern Province of PNG and adjacent Indonesia and imme-
diately north of Cape York Peninsula, the north coast of
PNG in Oro Province, and the south coast of PNG in
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Central Province (see Appendix S2 in Supporting Infor-
mation). The sex of the grey shrike-thrush individuals was
inferred from phenotype and/or molecular sexing (Appen-
dix 2). A Qiagen extraction kit was used to extract the
genomic DNA from 19 PNG and Cape York Peninsula
tissue samples from the Australian National Wildlife Col-
lection (ANWC, CSIRO, Canberra), following the manu-
facturer’s instructions. These 19 individuals were sequenced
for the ND2 locus following the approach in Pavlova et al.
(2014), augmenting the total ND2 dataset to 189 sequences
(Appendix S2). A subset of 69 individuals, representative of
the entire range of the species, was further sequenced for
one Z-linked and five autosomal intron loci (see Appendix
S2 for a list of sequenced individuals and Appendix S3 in
Supporting Information for amplification and sequencing
details). The Phase 2.1 algorithm (Stephens and Donnelly
2003) implemented in DnaSP 6.11.01 (Rozas et al. 2017)
was used to resolve the gametic phases of the nuclear intron
sequences. For the Z-linked nuclear intron locus, only
sequences from males were phased to account for hemi-
zygosity of the Z-chromosome in females. Sequences con-
taining double-indels could not be accurately aligned and
phased and so were excluded from analyses. All sequenced
loci were tested for significant deviations from linkage
equilibria in each of the grey shrike-thrush populations
using GENEPOP 4.2 (Raymond and Rousset 2004); for this
analysis, populations were defined based on ND2 clade
membership (see below) because of the tight correlation
between ND2 clade and subspecies geographic boundaries.
We further genotyped 170 individuals with sampling loca-
tions within Australia for 14 length-variable markers
(Appendix S2): 11 microsatellite (BMC3, Cpi4, FhU?2,
FT25, HrU2, Pdo5, Ppi2, Ppml1, Ppm11, Ppm3, Ppm7) and
3 variable-length exon-primed-intron-crossing loci (23989,
4550s1, 24254s) that had previously been shown to be in
linkage equilibria in grey shrike-thrush populations



Pleistocene-dated biogeographic barriers drove divergence within the Australo-Papuan region in a... 611

(Pavlova et al. 2012). Individuals from PNG were not
included in these length-variable nuclear assays, because
they were collected in the field after analyses of the
microsatellite and variable-length exon-primed-intron-
crossing dataset was complete.

Assessing nuclear genetic structure

Nuclear genetic structure within the species was assessed
using Bayesian clustering using tessellations in TESS
2.3.1 (Chen et al. 2007) to test whether putative biogeo-
graphical barriers, shown to be concordant with phenoty-
pically defined subspecies boundaries and mitochondrial
clade boundaries, are also concordant with nuclear genetic
structure. Two analyses were run: one on length-variable
marker genotypes, the other on nuclear intron sequence
data (excluding the data for the sex-linked locus) in which
the phased alleles at the sequenced introns were considered
diploid genotypes. Individuals missing >20% of genotypes
were excluded from analyses. A BYM model was imple-
mented with a parameter of Dirichlet allele frequency
model D = 1.0, a spatial interaction parameter P = 0.6 and
a trend degree T =2 (Durand et al. 2009). TESS was run
assuming a range of cluster values (K from 2 to 10); for
each K, 100 replicates of 30,000 burn-in sweeps followed
by 100,000 sweeps were run. The calculated cluster
probabilities of the 10 replicates with the lowest deviance
information criterion (DIC) values of each K were aver-
aged using CLUMPP 1.1.2 (Jakobsson and Rosenberg
2007). The most likely number of genetic clusters was
identified based on run DIC values (see Appendix S4 in
Supporting Information for details). To visualize the geo-
graphic arrangement of clusters for each nuclear dataset,
we mapped memberships of each individual in genetic
clusters over subspecies distributions (Schodde and Mason
1999) using Quantum GIS (qGIS 2.14.3) (qGIS Devel-
opment QGIS Development Team 2017). Within-locus
haplotypic relationships of the nuclear intron loci were
analyzed using median-joining networks (Bandelt et al.
1999) constructed in PopArt (Leigh and Bryant 2015).

Estimating divergence times among mitochondrial
lineages and regional populations

Coalescent analyses were conducted to estimate the timing
of mitochondrial lineage divergence and population diver-
gence based on nuclear data to test for concordance between
nuclear and mitochondrial evolution. Co-analysis of mito-
chondrial and nuclear DNA data using *BEAST within
BEAST 2.4.7 (Bouckaert et al. 2014) was attempted but the
parameters did not converge (low effective sample size
(ESS) values and multimodal parameter distributions).

Mitochondrial ND2 and nuclear intron sequence data were
therefore analyzed separately.

A mitochondrial phylogeny was constructed from the
ND2 sequences including individuals from PNG in BEAST
2.4.7 (building on Lamb et al. 2018). The Bayesian Infor-
mation Criterion implemented in PartitionFinder 1.1.1
(Lanfear et al. 2012) identified the optimal partitioning
scheme of the ND2 alignment to be by codon position and
the ideal models of molecular evolution to be HKY + I for
position 1, TrN93 +1I for position 2 and HKY for position
3. BEAST analyses were run with unlinked substitution
rates and clock models but linked trees for the three parti-
tions. Trial 100 million generation runs of BEAST were
conducted using each of the coalescent tree priors and
compared. The divergence times within the trees derived
from these trail runs were consistent, irrespective of which
coalescent tree prior was implemented. A Bayesian Coa-
lescent Skyline plot prior (Drummond et al. 2005), which
allows for complicated demographic histories (Ho and
Shapiro 2011) was applied for the final analysis and a
random starting tree was used. Divergence times were
calibrated using ND2 clock rates estimated from the
Hawaiian honeycreeper system (Lerner et al. 2011), which
represents a comparable case of recent divergence ( <2 my)
among the lineages of a passerine species: prior clock rates
(mean of a lognormal distribution; range of 95% sampled
rates) were set at 6.3 x 107> (5.6-7.2 x 107>) substitutions
per site per million years (s/s/my) for codon position one,
1.6 x 1073 (1.3-2.0 x 10~%) s/s/my for position two and 5.8
1072 (5.2-6.3 x 10~2) s/s/my for position 3. Four runs of
100 million generations were conducted, sampled every
10,000 generations and checked for convergence using
Tracer 1.6.0 (Rambaut and Drummond 2007). The runs
were combined and thinned 10,000-fold using LogCombi-
ner 1.8.3 (Drummond and Rambaut 2007) after discarding
the first 10% as burn-in. The resulting set of trees was
summarized using Tree Annotator 1.8.3 (Drummond and
Rambaut 2007) to create a Maximum Clade Credibility tree
visualized using FigTree 1.4.2 (Rambaut 2014) and strongly
supported clades with posterior probability >0.90 were
considered distinct mitolineages.

To estimate time of population divergence, we used a
species tree approach implemented in *BEAST within
BEAST 2.4.7 using the sequencing data for the six nuclear
intron loci. PartitionFinder was used to identify the best-fit
model of molecular evolution for each locus: AB4: K80,
DRD4: K80+I1+G, GAPDHII1: K80+1, MUSK-I4:
HKY, RI2: K80, and TGFb2: K80 + I+ G. A strict clock
model was implemented and the following prior clock rates
were set: 1.05x 1073 (0.38-2.1 x 10’3) s/s/my for AB4,
DRD4, MUSK-4, RI2 and TGFb2, and 12x10°°
(0.78-1.7 x 10’3) s/ss/my for GAPDHI11 (Lerner et al.
2011). The five nuclear genetic clusters identified for grey
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shrike-thrush based on TESS analysis of nuclear intron data
were treated a priori as different species in this analysis
(Appendix S4): Tasmania, east Australian, Cape York
Peninsula and PNG, north-west and south-west/central. The
Yule speciation model and continuous-linear and constant
root population size model were applied to species trees
(Heled and Drummond 2010). The analysis was run for four
replicates of 100 million generations, and sampled every
10,000 generations. The replicate runs were combined,
summarized and visualized to generate a species tree based
on the nuclear intron data using the approach outlined
above. It should be noted that *BEAST assumes that there
is no gene flow among diverged lineages and so the pre-
sence of gene flow may have biased divergence time esti-
mates towards more recent times.

Regional population genetic differentiation, within-
population genetic diversity and tests of selection
or demographic changes in ND2

We estimated differentiation among regional populations of
grey shrike-thrush and across putative biogeographical
barriers in Arlequin 3.5.2.1 (Excoffier and Lischer 2010)
using pairwise Fgr for the length-variable marker data and
@gr for the ND2 and nuclear intron sequence data. For these
analyses, individuals were assigned to populations based on
their locations relative to putative barriers and compared
with tests for correlations between the putative barriers and
population differentiation (Fig. 1). To account for multiple
comparisons (n = 56), a P-value corrected using a modified
false discovery rate procedure (Benjamini and Yekutieli
2001) of 0.011 was used to determine the significance of
Fgsr and @g7 values. Length-variable marker diversity of
each population was estimated by calculating expected
heterozygosity in Arlequin 3.5 (Excoffier and Lischer
2010), number of private alleles using GenAlEx (Peakall
and Smouse 2006) and allelic richness in FSTAT (Goudet
2001). Sequence diversity was assessed by calculating the
number of segregating sites, number of haplotypes, haplo-
type diversity and nucleotide diversity of the ND2 and
nuclear intron sequence data in Arlequin. 0,, a mutation-
scaled estimate of effective population size derived from
number of pairwise differences, was further estimated in
Arlequin for the nuclear intron sequence dataset. The
diversity indices of the nuclear intron dataset were averaged
among loci to give mean diversity indices. Diversity indices
of the Cape York Peninsula regional population could not
be calculated for GAPDH11, because all but one of the
relevant sequences showed double-indels. Tajima’s D and
Fu and Li’s F statistic were -calculated from the
ND2 sequences of each regional population to test for
selection and/or demographic change in DnaSP (Rozas et al.
2017).

SPRINGER NATURE

Estimating gene flow among regional populations

Nuclear gene flow among the Australian grey shrike-thrush
regional populations was estimated from length-variable
markers using MIGRATE-N 3.6.11 (Beerli and Felsenstein
2001). MIGRATE-N is a Bayesian analysis that co-estimates
historical (Kuhner 2009) mutation-scaled migration rates
M = m/u and effective population sizes 8 = 4Ney, where m—
immigration rate, p—mutation rate, Ne—effective population
size and 4—scalar for diploid data. The number of effective
migrants per generation moving from population A to popu-
lation B can be estimated using (M _g0g)/4; where M_g is
the mutation-scaled migration rate from A to B, and 05 is the
effective population size B. The lower and upper bounds of
confidence intervals around the number of effective migrants
per generation were estimated by inputting, respectively, the
2.5th and 97.5th percentile estimates of M_,g and 65 into the
same equation. The Tasmanian regional population was
excluded from this analysis due to its contemporary isolation
(supported by strong and significant differentiation; see
Results) and to prevent problematic over-parameterization of
the model. Among the Australian mainland populations, 12
asymmetric migration parameters were estimated. The dataset
was subsampled using a random sample size of 12 (the
smallest sample size for a regional population) so that an
equal number of individuals was analyzed from each regional
population. Analyses were run with gamma-distributed priors
on M (mean 0.5) and 6 (mean 10). This low migration rate
prior ensured that the Markov chains were started in regions
of parameter space that are consistent with the clear mito-
chondrial genetic structure seen among regional populations
of the species (Lamb et al. 2018). The Brownian motion
approximation of the stepwise mutation model was imple-
mented and Watterson’s approximations of relative mutation
rates were estimated from the data. Markov chain Monte
Carlo (MCMC) analyses were run with four heated chains of
temperatures 1.0, 1.5, 3.0 and 1 x 10° for 20 replicates that
each had a 500 sample burn-in and an additional 500 sample
chain. Convergence of the MCMC was confirmed by unim-
odal and approximately normal posterior distributions and
acceptance ratios between 0.2 and 0.6.

Results
Nuclear genetic structure—TESS analyses

For length-variable marker data (collected only for Aus-
tralian grey shrike-thrush individuals), four genetic clusters
were identified (Appendix S4). Three of these clusters align
with the geographic ranges of strigata, harmonica and
rufiventris and boundaries of their respective mitochondrial
clades: Tasmania, east Australian and south-west/central
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(Lamb et al. 2018) (Fig. 2f). The two northern Australian For nuclear intron sequence data (collected for the

subspecies, brunnea and superciliosa, comprise the fourth
genetic cluster (Fig. 2f).

Australian and PNG individuals), five genetic clusters were
identified across the entire range of the species (Appendix
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Fig. 2 Individual membership to genetic clades, phylogenetic ND2
gene tree (a) and nuclear intron species tree (¢) showing divergence
among clades and gene flow between subspecies. Subspecies ranges
are coloured as in Fig. 1. Mapped individuals in (b) are coloured by
mitochondrial clade based on phylogenetic analysis of ND2 data. Pies
in (d) and (f) represent genetic cluster membership probabilities
identified by TESS analyses of the nuclear intron data (d) and length-
variable marker data (f). Note that grey slices in the pies in (f)
represent the genetic cluster shared by brunnea and superciliosa
individuals. Map on (e) shows effective immigration rate estimates (in
number of effective migrants per generation (confidence interval))
inferred by MIGRATE-N from the length-variable marker data. Where
confidence intervals overlapped zero, effective immigration rates are
shown as nonsignificant (ns)

S4) and each genetic cluster mainly mapped to one of the
five subspecies (Fig. 2d; see Appendix S5 for nuclear intron
haplotype networks). That is, a single genetic cluster mainly
mapped to the distributions of the PNG and Cape York
Peninsula populations.

Mitochondrial gene tree

Each of the four BEAST runs converged and combined ESS
values were >200 for all parameters. The splitting order and
divergence dates of Australian mitolineages (Fig. 2a) were
consistent with those of Lamb et al. (2018) (Fig. 1; see
Appendix S6 for detailed phylogeny). Consistent with
Marki et al. (2018), New Guinea was found to have two
mitochondrial lineages. One lineage was indistinguishable
from the Cape York Peninsula lineage and included indi-
viduals from the Oro and Central PNG Provinces. Another
lineage was found to be a sister to the east Australian and
Cape York Peninsula/east PNG lineages, from which it was
estimated to have diverged 0.38-0.76 Ma, and included
individuals from the Trans-Fly region.

Nuclear intron species tree

The four *BEAST runs converged, and combined ESS
values were >200 for all parameters. The topology of the
species tree (Fig. 2c) did not match that of the ND2 gene
tree (Fig. 2a). Within the species tree, the ancestor of the
east Australian and Tasmanian regional populations was
estimated to have diverged 0.47-1.15 Ma from the ancestor
of the south-west/central, Cape York Peninsula/east PNG
and north-west regional populations. The east Australian
and Tasmanian regional populations were estimated to have
diverged 0.11-0.39 Ma. The south-west/central regional
population was estimated to have diverged 0.32-0.90 Ma
from the ancestor of the Cape York Peninsula/PNG and
north-west regional populations. The Cape York Peninsula/
PNG and north-west regional populations were estimated to
have diverged 0.16-0.59 Ma.

SPRINGER NATURE

Genetic differentiation and diversity and
ND2 selection in regional populations

With one exception, regional grey shrike-thrush populations
separated by contemporary or putative historical biogeo-
graphical barriers were significantly differentiated from
each other at ND2, microsatellite and three or more nuclear
intron loci (P<0.011) (Table 1). The exception was that
differentiation across the Torres Strait (between Australia
and New Guinea) was not significant for nuclear intron
sequences.

Relative to mainland Australian populations, the Tas-
manian population was consistently found to have low
genetic diversity in length-variable markers, mitochondrial
ND2 and nuclear intron sequences (Table 2). The PNG
population also had relatively low genetic diversity in
nuclear intron sequences (Table 2), but harboured two
mitochondrial ND2 lineages with relatively high combined
nucleotide diversity (Table 2). Effective population sizes
derived from the length-variable marker dataset were
similar among mainland populations (Table 2). Relative to
the mainland populations, the effective population sizes of
the Tasmanian and PNG populations estimated using
nuclear intron sequences were low (Table 2).

Tajima’s D and Fu and Li’s F statistic estimates were
significantly negative for the ND2 sequences of the south-
west/central and east Australian regional populations
(Table 2). Estimates for all other regional populations were
nonsignificant (Table 2).

Nuclear gene flow among regional populations

Low levels of nuclear gene flow (mean effective population
immigration rates <1 migrant per generation) were detected
among the grey shrike-thrush regional populations (Fig. 2e;
Appendix S7 in Supporting Information). Unidirectional
gene flow was detected from north-west Australia to Cape
York Peninsula and to east Australia, and from the south-
west/central to the north-west regional populations
(Fig. 2e). Bidirectional gene flow was detected between the
Cape York Peninsula and east Australian and between east
Australian and south-west/central populations (Fig. 2e).
Gene flow in five other directions did not differ significantly
from O (confidence intervals overlapped with 0; Appendix
S7).

Discussion

In using nuclear and mitochondrial genetic data to assess
the roles of biogeographic barriers in the evolution of a
widespread Australo-Papuan songbird, the grey shrike-
thrush, we have generated four key findings. First, the
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Table 1 Pairwise Fgr and @gt values estimating differentiation across contemporary and putative historical biogeographical barriers between the populations of grey shrike-thrush inhabiting the

regions either side of each barrier

ND2 &gr

Length-variable marker

Fsr

Nuclear intron @gp

Barrier

Regions compared

TGFb2

RI2

GAPDH MUSK-14

DRD4

AB4

0.87 (<0.001)

0.29 (<0.001) 0.34 (<0.001)
0.10 (<0.001) 0.07 (<0.001)

0.19 (0.027)

0.06 (0.153)

0.48 (<0.001) 0.09 (0.009)

0.57 (<0.001)
0.00 (0.387)

0.49 (<0.001)

Bass Strait

East-Australia V Tasmania

0.66 (<0.001)

0.93 (<0.001)

Torresian 0.51 (<0.001) 0.15 (0.288)

East-Australia V Cape York

Peninsula

0.91 (<0.001)
0.91 (<0.001)
0.19 (<0.001)
0.92 (<0.001)
0.94 (<0.001)

0.10 (<0.001) 0.09 (<0.001)

0.00 (0.315) 0.93 (<0.001)  0.04 (0.207)

0.25 (<0.001)

Carpentarian 0.48 (<0.001)

East-Australia V north-west

0.44 (<0.001) 0.18 (<0.001) 0.07 (<0.001)

0.20 (<0.001) 0.169 (<0.001) 0.85 (<0.001)

0.03 (0.126)
0.36 (0.009)

0.50 (<0.001)
Torres Strait 0.14 (0.216)
0.369 (<0.001) —0.06 (0.68)

Carpentarian 0.24 (0.027)

Eyrean

East-Australia V south-west/central
Cape York Peninsula V PNG

NA

0.05 (0.378)  0.10 (0.091)
0.10 (0.054)  0.05 (<0.001)

0.00 (0.423)

~0.27 (0.991)

0.68 (<0.001) —0.08 (0.991)

0.94 (<0.001)

0.18 (0.108)

Cape York Peninsula V north-west

0.67 (<0.001) 0.46 (<0.001) 0.08 (<0.001)

0.09 (0.198)

Canning

North-west V south-west/central

Significant (P-value < 0.011) estimates are in bold. Length-variable marker data were not available for the Papua New Guinean (PNG) range of the species, so differentiation across the Torres

Strait could not be estimated using this dataset (NA)

geographic arrangement of nuclear genetic diversity was
broadly concordant with mitochondrial genetic diversity,
phenotypically defined subspecies ranges and con-
temporary or putative historical biogeographical barriers.
Two exceptions to this were that the Trans-Fly population
and the Cape York Peninsula/east PNG populations are
distinguishable based on mitochondrial but not nuclear
sequence data, and the Cape York Peninsula and north-west
populations are distinguishable based on mitochondrial
data and cluster analysis of the nuclear intron sequence
data, but not cluster analysis of the microsatellite data.
Second, genetic differentiation across the implicated bar-
riers was significant for mitochondrial, microsatellite and
some nuclear intron data and dated to the Pleistocene
(0.01-2.58 Ma). There was one exception to this: nuclear
genetic differentiation was not significant across the Torres
Strait. Third, the order of population divergence inferred
from mtDNA and nuclear DNA (nDNA) is not consistent,
suggesting a history of sex-biased gene flow and/or mito-
chondrial introgression. Finally, parapatric regional popu-
lations appear to be connected by low levels of gene flow
(<1 migrant per generation).

Discrepancies between mitochondrial ND2 and
nuclear intron evolution

The timing and order of divergence events inferred from
mtDNA and nDNA are not consistent. Unusually for
songbirds, the grey shrike-thrush has male-biased dispersal
(Pavlova et al. 2012), which can slow down population
divergence at nuclear genes while maintaining divergence
of the mitochondrial genome (Melnick and Hoelzer 1992).
Therefore, a low level of nuclear gene flow among the
parapatric Australian regional populations, which harbour
different mitochondrial lineages, could be mediated by
males. Differing levels of male-mediated gene flow among
population pairs and female-mediated mitochondrial intro-
gression can influence the order of apparent divergence
events on nuclear and mitochondrial genomes (Ballard and
Whitlock 2004; Havird and Sloan 2016; Morales et al.
2017; Toews and Brelsford 2012). Lineage sorting is
expected to be slower for nuclear autosomal loci than for the
mitochondrial genome because of a larger effective popu-
lation size (Charlesworth 2002). Relatively rapid lineage
sorting at mitochondrial loci may have resulted in the more
ancient divergence among lineages at mitochondrial com-
pared with nuclear loci seen across some barriers. However,
different rates of lineage sorting cannot explain the different
order of splitting events in the mitochondrial gene tree and
nuclear intron species tree. For example, in two cases, sister
groups that are well-supported on nuclear data, North-west
and Cape York Peninsula/PNG, diverged 0.16-0.59 Ma,
and East Australia and Tasmania, diverged 0.11-0.39 Ma,
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Table 2 Estimates of genetic diversity for the regional populations of C. harmonica and results of tests of selection/demographic change (Tajima’s
D and Fu and Li’s F statistic estimates) in ND2

Dataset Regional Tasmanian East Australia Cape York Papua New  North-west South-west/
population Peninsula Guinea central
Length- N inds 18 83 12 - 15 42
variable g, polymorphic  35.7 100.0 100.0 - 78.6 85.7
markers loci
N alleles/locus  2.64 9.50 5.64 - 5.93 7.71
N private alleles/ 0.29 1.93 0.29 - 0.57 1.00
locus
AR 293 5.52 5.64 - 5.61 5.38
He (sd) 0.23 (0.13) 0.57 (0.29) 0.55 (0.29) - 0.53 (0.28) 0.52 (0.27)
0 - 429 4.90 - 4.29 4.26
ND2 N inds 18 84 15 16 15 41
S 5 80 12 30 23 31
H 6 37 9 6 12 25
Hd 0.719 0.903 0.848 0.808 0.971 0.955
n 0.0015 0.004 0.0028 0.010 0.0042 0.003
Tajima’s D 0.151 (>0.10) —2.191 (<0.01) —0.860 (>0.10) 0.771 (>0.10) —1.576 (>0.10) —1.934
(P-value) (<0.05)
Fu and Li’s F —0.252 (>0.10) —3.503 (<0.02) —1.209 (>0.10) 1.457 (>0.05) —1.962 (>0.10) —2.812
(P-value) (<0.05)
Nuclear N inds mean 6.2 (2-7) 32.2 (29-33) 5.7 (1-7) 7.7 (6-8) 6.2 2-7) 7.5 (6-8)
introns (min—-max)
S mean 2.7 (0-9) 13.0 (2-29) 6.2 (1-16) 3.7 (0-12) 6.3 (1-18) 5 (0-9)
(min—max)
H mean 1.8 (1-3) 15.2 (3-32) 4.4 (2-9) 2.7 (1-5) 4.7 (2-10) 5.2 (1-9)
(min—-max)
Hd mean 0.263 0.703 0.559 (0.20-0.923) 0.296 0.621 (0.264-1) 0.550
(min—max) (0-0.833) (0.461-0.966) (0-0.525) (0-0.9242)
7 mean 0.0026 0.0053 0.0035 0.0020 0.0046 0.0031
(min—max) (0-0.0123) (0.0009-0.0111) (0.0007-0.0095) (0-0.0039) (0.0009-0.0118) (0-0.0101)
0, (min—max) 0.93 (0-3.83)  2.39 (0.48-5.45) 1.90 (0.2-5.63) 0.87 (0-2.32) 2.04 (0.26-5.49) 1.33 (0-3.14)

The number of individuals analyzed for each dataset (N inds); percentage polymorphic loci, number of alleles per locus, number of private alleles
per locus, allelic richness (AR) and heterozygosity (He) of the length-variable marker data; and the number of segregating sites (S), number of
haplotypes (H), haplotype diversity (Hd) and nucleotide diversity (r) of sequence data are listed. Mutation-scaled estimates of effective population

size calculated for the length-variable marker (0) and nuclear intron (6,) data are also listed

are interspersed with other lineages on the mitochondrial
tree, with divergence dating to 0.79-1.35Ma and
0.55-1.00 Ma, respectively (Fig. 2). Even if the mutation
rate priors applied for the coalescent analyses are not
appropriate for one or multiple loci, this would have resulted
in consistent differences in divergence times between the
mitochondrial gene and nuclear intron species trees. Thus,
neither different rates of lineage sorting nor inappropriate
mutation rate priors, alone or together, can explain different
tree topologies derived from mitochondrial and nuclear
markers. Different combinations of purifying, positive and
frequency-dependent natural selection, however, can have
complex effects on phylogenies (Edwards 2009). Sig-
nificantly negative Tajima’s D and Fu and Li’s F statistic
estimates for the mitochondrial locus indicate a selective
sweep or purifying selection and/or recent population
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expansion in the east Australian and south-west/central
regional populations. Furthermore, mitochondrial sequence
variation within grey shrike-thrush has previously been
associated with aridity, and a candidate amino-acid target of
positive selection was identified in ND6 for the south-west/
central mitolineage through comparative analysis (Lamb
et al. 2018). It is possible that climate-driven selection drove
adaptive mitochondrial introgression, resulting in dis-
crepancies between mitochondrial and nuclear DNA evolu-
tion, specific cases of which we discuss below.

Evidence of biogeographical barriers driving
divergence during the Pleistocene

The Carpentarian Barrier is concordant with significant
mitochondrial and nuclear DNA differentiation dated to the
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Pleistocene between the north-west and Cape York Penin-
sula and north-west and east Australian forms of grey
shrike-thrush. Notably, clustering analysis of length-
variable markers did not reveal a phylogeographic break
concordant with the Carpentarian barrier between the north-
west and Cape York Peninsula populations. The length-
variable markers in the dataset are mainly microsatellite loci
and so this is contrary to the common view that micro-
satellites provide greater genetic resolution than sequence
data because of their relatively high mutation rate; this
could be due to homoplasy resulting from limit to size
changes (see Coates et al. 2009 for explanatory mechan-
isms). Further, mtDNA divergence between the north-west
and Cape York Peninsula/east PNG lineages was estimated
to be relatively ancient compared with nuclear DNA
divergence. We detected nuclear gene flow from the north-
west to Cape York Peninsula population. Male-mediated
dispersal via the land bridges that connected northern
Australia and the island of New Guinea prior to the last
marine transgression (9.7 ka) may have been sufficient to
overcome some of the effect of the Carpentarian barrier on
nuclear differentiation (Chivas et al. 2001; Torgersen et al.
1988; counter example in Eldridge et al. 2014). We infer
that the Carpentarian Barrier drove vicariance-based phy-
logeographic structure of the grey shrike-thrush as seen in
many, but not all, relevant species studied to date (Eldridge
et al. 2014; Jennings and Edwards 2005; Joseph et al. 2011;
Kearns et al. 2010, 2011; Lee and Edwards 2008; Potter
et al. 2012; Schweizer et al. 2013). This, together with the
variable timing of divergence across the Carpentarian bar-
rier among species, indicates it may have had species-
specific effects on divergence perhaps relating to dispersal
ability, habitat preference and overall geographical range
(Jennings and Edwards 2005; Lee and Edwards 2008;
Schweizer et al. 2013; Toon et al. 2010).

The Eyrean Barrier is concordant with the substantial
phylogeographic structure seen in nuclear and mitochondrial
data between the east Australian and south-west/central
regional forms of grey shrike-thrush. This barrier also fits
Pleistocene phylogeographic breaks within a number of arid-
adapted birds (Dolman and Joseph 2015; Joseph and Wilke
2006; Kearns et al. 2009; McElroy et al. 2018; see Alpers
et al. 2016 and Neaves et al. 2012 for mammalian examples).
In this study, divergence across the Eyrean Barrier dated to
early to mid-Pleistocene (0.47-1.15Ma) based on nuclear
sequence data and early Pleistocene (1.02-1.71 Ma) based on
mitochondrial sequence data. Bidirectional gene flow was
detected across the Eyrean Barrier despite mitochondrial
divergence, suggesting that male-biased dispersal might be
operating. In addition, the east Australian and south-west/
central regional populations have relatively high genetic
diversity and effective population sizes, suggesting that the
effect of drift in these populations is low. Thus, male-biased

gene flow and/or a low level of genetic drift might be
responsible for the more recent inference of divergence from
nuclear intron data compared with mitochondrial data.
Pleistocene-dated divergence times are consistent with the
estimates for two sister species of quail-thrush (Cinclosoma
spp.) and diversity within the mulga parrot (Psephotellus
varius) (Dolman and Joseph 2016; McElroy et al. 2018). We
infer that the Eyrean Barrier drove vicariance-based phylo-
geographic structure of the grey shrike-thrush as inferred for
many other species.

Three barriers, the Torresian Barrier, the Black Mountain
Corridor and Einasleigh Uplands, are concordant with
phylogeographic structure between east Australian and
Cape York Peninsula/east PNG regional forms of the grey
shrike-thrush. This pattern is significant for nuclear and
mitochondrial genetic markers, although relatively recent
mitochondrial divergence was observed. This can be
explained by vicariance, followed by secondary contact and
mitochondrial introgression. Other studies show extreme
variation in the time of divergence across these barriers
among species (see Bryant and Krosch 2016 and examples
therein); divergence within a genus of evergreen trees
(Elaeocarpus) dates to 0.04-0.18 Ma while divergence
within a genus of earthworm (Terrisswalkerius) dates to
31-84 Ma (Mellick et al. 2014; Moreau et al. 2015).
Together with evidence of secondary contact within some
relevant taxa, this indicates that multiple vicariance events
have occurred across these three barriers that have had
taxon-specific effects on divergence (Pefialba et al. 2017).

The Canning Barrier is reasonably inferred here as hav-
ing been the driver of the mitochondrial and nuclear
Pleistocene-dated phylogeographic structure between the
south-west/central and north-west regional populations of
grey shrike-thrush. This adds to the growing body of
molecular data affirming this barrier as a Pleistocene driver
of divergence (Lamb et al. 2018; Nyéri and Joseph 2013).
An ND6 amino acid may be evolving under positive
selection in the south-west/central populations (Lamb et al.
2018), which may have further promoted divergence
between the south-west/central and north-west populations.

Divergence across Bass Strait between east Australian
and Tasmanian populations of grey shrike-thrush dates to
0.55-1.00 Ma based on ND2 diversity and 0.11-0.39 Ma
based on nuclear intron diversity. These estimates predate
the Last Glacial Maximum (LGM, ~21 ka). This suggests
that gene flow was limited between these two regions
despite LGM land bridges connecting them, as has been
observed for the butterfly species Heteronympha merope
(Norgate et al. 2009). Marshy habitat in exposed areas
during the LGM (Lambeck and Chappell 2001) would have
been unsuitable for grey shrike-thrush. Male-biased gene
flow may explain more recent divergence across Bass Strait
of nuclear intron lineages compared with ND2 lineages.
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Slow lineage sorting of nuclear DNA is less likely here
since the Tasmanian population, having relatively low
effective population size and low genetic diversity, is
expected to experience higher rates of genetic drift.

The few molecular studies of trans-Torres Strait species
have revealed a range of patterns in historical and con-
temporary gene flow among regions of north Australia and
the island of New Guinea (Christidis et al. 1988; Edwards
1993; Kearns et al. 2011, 2014; Roshier et al. 2012; Toon
et al. 2017). Cape York Peninsula and PNG populations of
grey shrike-thrush are indistinguishable based on nuclear
markers. This accords with their current classification as C. h.
superciliosa and suggests they maintained male-mediated
gene flow during the LGM across then-exposed savannah
woodlands and grasslands (Nix and Kalma 1972; Williams
et al. 2009). Grey shrike-thrush currently inhabit savannah
areas within PNG and relatively shallow divergence across
Torres Strait has been repeatedly observed in savannah-
adapted species (Keighley et al. 2019; Murphy et al. 2007,
Toon et al. 2017; Williams et al. 2008; Wiister et al. 2005)
compared with deeper divergence observed in mesic closed
forest-adapted species (Joseph et al. 2001; Kearns et al. 2011;
Krajewski et al. 2004; Macqueen et al. 2011, 2010; Norman
et al. 2007; Rawlings and Donnellan 2003; Zwiers et al.
2008). A mitochondrial lineage unique to the Trans-Fly was
estimated to have diverged from mainland Australian and east
PNG lineages 0.38-0.76 Ma. Distinct, albeit varyingly so,
lineages have been identified within the Trans-Fly region for
the eastern brown snake, the Australian magpie and the palm
cockatoo (Murphy et al. 2007; Toon et al. 2017; Williams
et al. 2008). The savannahs of the Trans-Fly and Central
Province are separated by a markedly different zone of the
Southern Lowlands of the Gulf Province with relatively high
rainfall (Nix and Kalma 1972; Shearman and Bryan 2011).
This zone may have acted as a driver of endemism within the
Trans-Fly (Beehler and Pratt 2016; Heinsohn and Hope 2006;
Keams et al. 2011; Schodde 2006). Populations of grey
shrike-thrush from the Oro and Central Provinces are indis-
tinguishable based on nuclear and mtDNA. Though latitud-
inally separated by New Guinea’s central Cordillera, they
may have experienced recent and current connectivity via a
ring of lowland forest that surrounds the Cordillera (Dum-
bacher and Fleischer 2001; Kearns et al. 2011).

Inferences about species evolution and taxonomy

The evolutionary history of the grey shrike-thrush appears
more complex than a simple case of vicariant divergence; it
has involved instances of discordant evolution of mitochon-
drial and nuclear DNA, asymmetric and sex-biased gene flow
and apparent mitochondrial introgression. The five currently
recognized subspecies of the grey shrike-thrush (New Gui-
nean populations included in C. h. superciliosa) comprise five
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geographically and phylogenetically discrete clades for
nuclear and mtDNA. Marki et al. (2018) identified deep
divergence among the grey shrike-thrush lineages that could
indicate multiple species. Compared with the rufous shrike-
thrush C. megarhyncha, a closely related but non-sister spe-
cies, the grey shrike-thrush displays an intermediate level of
intra-specific divergence: the clades of C. megarhyncha are
much older and likely represent different species, while C.
tenebrosa, despite being widely sampled, showed little
genetic variation (Marki et al. 2018). Significant genetic dif-
ferentiation, Pleistocene-dated divergence, low gene flow and
few discernable phenotypic differences among the Australian
mainland subspecies place the species firmly in the grey zone
of speciation, i.e., different species concepts disagree on
placement of species limits (De Queiroz 2007; Roux et al.
2016). It is particularly difficult to infer the trajectory of the
Australian regional populations. The putative barriers impli-
cated in their divergence are now concordant with hybrid
zones between them. The Australian regional populations
may have experienced isolation during the Pleistocene and
could now be experiencing secondary contact, where gene
flow may be either promoting uniformity or being restricted
by reproductive incompatibilities (Ottenburghs et al. 2017).
Testing for the presence of intrinsic genomic incompatibilities
using genome-wide data may indicate whether there are
barrier loci between the regional populations preventing their
admixture. In addition, an analysis incorporating estimates of
divergence, gene flow and Ne from hundreds of genome-wide
markers (Hey 2009) is required to clarify the evolutionary
history of grey shrike-thrush populations and to determine
where they stand on the speciation continuum.

Conclusions

Pleistocene climate change has shaped the evolution of the
grey shrike-thrush as it has for a diverse suite of other species.
Cycles of marine transgressions and regressions and expan-
sions and contractions of arid zones have driven divergence
and sex-biased gene flow within the species. This system
demonstrates that climate change can have sex-specific effects
on evolution of species with different dispersal biology of
sexes and this in turn has implications for the future of this
and other species in our changing world. Incongruence
between population and mitochondrial trees in this and other
studies should trigger a genome-wide investigation into sex-
biased population processes including dispersal, mitochon-
drial introgression and mitonuclear evolution.

Data archiving

Sequence data have been submitted to GenBank: acces-
sion numbers MH316208-MH316549 and MH472639-
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MH472641. Sequences for the aldolase B intron 4 locus (<200
nucleotides in length) are included in Supporting Information
S2. Length-variable marker genotypes are also included in
Supporting Information S2.
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