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An Integrative Genetic Study of 
Rice Metabolism, Growth and 
Stochastic Variation Reveals 
Potential C/N Partitioning Loci
Baohua Li1,*, Yuanyuan Zhang1,2,3,*, Seyed Abolghasem Mohammadi4,*, Dongxin Huai2,3, 
Yongming Zhou3 & Daniel J. Kliebenstein1,5

Studying the genetic basis of variation in plant metabolism has been greatly facilitated by genomic 
and metabolic profiling advances. In this study, we use metabolomics and growth measurements 
to map QTL in rice, a major staple crop. Previous rice metabolism studies have largely focused 
on identifying genes controlling major effect loci. To complement these studies, we conducted a 
replicated metabolomics analysis on a japonica (Lemont) by indica (Teqing) rice recombinant inbred 
line population and focused on the genetic variation for primary metabolism. Using independent 
replicated studies, we show that in contrast to other rice studies, the heritability of primary metabolism 
is similar to Arabidopsis. The vast majority of metabolic QTLs had small to moderate effects with 
significant polygenic epistasis. Two metabolomics QTL hotspots had opposing effects on carbon and 
nitrogen rich metabolites suggesting that they may influence carbon and nitrogen partitioning, with 
one locus co-localizing with SUSIBA2 (WRKY78). Comparing QTLs for metabolomic and a variety of 
growth related traits identified few overlaps. Interestingly, the rice population displayed fewer loci 
controlling stochastic variation for metabolism than was found in Arabidopsis. Thus, it is possible 
that domestication has differentially impacted stochastic metabolite variation more than average 
metabolite variation.

Metabolism is a central process required for the uptake of energy and nutrients to ensure an organism’s survival, 
reproduction, and development. Plants have hugely diverse and complex metabolic pathways with metabolites 
being generally categorized as primary metabolites or secondary metabolites1. Primary metabolites, including 
sugars, amino acids and lipids, are metabolites that are required for the survival of an individual cell by providing 
the necessary energy and building blocks. In contrast, secondary metabolites, including flavonoids, terpenoids 
and glucosinolates, are required for the viability of the organism within an environment to provide resistance 
against the associated biotic and abiotic stresses. This environmental function leads to secondary metabolites 
often being lineage-specific and their role in biotic interactions means that these compounds often have pharma-
ceutical benefits2.

Because metabolism is a key intermediary in any physiological or developmental process, it is essen-
tial to develop a detailed picture of the genetic basis of variation in plant metabolism3–6. The combination of 
high-throughput quantification of metabolites with quantitative genetic approaches has become a key approach 
to study the genetic basis of plant metabolism7–9. There are two major quantitative genetics avenues to study 
and identify the causal genes underlying the complex traits including metabolism, either genome-wide associ-
ation study (GWAS) or Quantitative Trait Locus (QTL) mapping in structured populations. These approaches 
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have different strengths and weaknesses causing them to be highly complementary approaches for quantitative 
genetics. Using both of these approaches has led to substantial progress in elucidating the genetic architecture 
underlying primary and secondary metabolism in several model plant systems. Studies in the model dicot plant 
Arabidopsis have shown that most primary metabolites have a highly polygenic basis with numerous causal loci 
that typically have an allelic substitution effect size of less than 30%. In contrast, secondary metabolites have a 
blend of a few large effect loci with an underlying suite of small effect loci10,11. The metabolic loci cluster into sets 
of hotspots that affect broad swathes of primary metabolism and show pairwise and higher order epistasis both 
with other loci in the nucleus as well as with genetic variation in the organellar genomes6,12. Metabolite QTL 
(mQTL) mapping effects in tomato and maize showed a similar pattern of polygenic moderate to small effect 
additive loci for primary metabolism13–16.

Another key model system for the analysis of quantitative genetic variation in metabolism is rice, a major 
staple crop plants in agriculture, and a model system for the monocots. Domesticated rice has been proposed 
to comprise two major subspecies, japonica grown mainly in temperate east Asia and upland areas of south and 
southeast Asia and indica grown mainly in lowland throughout tropical Asia, along with additional minor sub-
species17. Quantitative analysis of rice metabolomics in a collection of back-cross inbred populations, recombi-
nant inbred populations and GWAS collections identified a similar pattern that primary metabolites had smaller 
effect loci than secondary metabolites18–21. In contrast to the other species, the rice metabolite quantitative genet-
ics suggested that most metabolites had higher heritability and that there was little analysis of how much var-
iance is due to epistasis18,19. Specific to rice, the GWAS analysis suggested that the japonica and indica species 
were highly divergent in their metabolic profiles19. It is however possible that these contrasts to other species 
may be caused by differences in experimental design and a stronger reliance on GWAS that has difficulty in 
handling epistatic or transgressive traits10,12. Thus, there is a need to complement these GWAS comparisons of 
japonica to indica with a metabolomics analysis of a recombinant inbred line population to provide finer details 
on how divergent metabolism may be between the japonica and indica subspecies. RIL populations while having 
less entering genetic variation provide a stronger capacity to investigate transgression and epistasis than does 
GWAS22–24. Additionally, a key unresolved question is how metabolomics QTLs in rice may link to physiological 
or developmental traits like growth.

To further investigate the metabolomic architecture of rice, we conducted an integrated genetic study of rice 
leaf metabolism, stochastic variation and development traits using a RIL derived from the Lemont (japonica) and 
Teqing (indica) parents. This identified a highly polygenic system whereby the vast majority of QTL had small to 
moderate effects and there was extensive transgressive segregation of loci from the japonica and indica parents. 
The heritability in a replicated design was similar to that found for other plants in contrast to previous reports. 
Twelve statistically significant mQTL hotspots were identified, with two of them controlling the partition of car-
bon and nitrogen partition in the rice primary metabolism. These hotspots displayed epistatic interactions at a 
level that was similar to that found in Arabidopsis and stochastic variation in metabolism was independent of the 
mean metabolite accumulation suggesting that the underlying architecture is similar between the two species. 
Finally, two out of twelve metabolomic hotspots were linked with altered variation in growth and development 
of the plant.

Results
The Rice Population, Metabolite Distribution and Detection.  To map metabolomic QTLs within 
rice, we utilized a recombinant inbred population from a ‘Lemont’ x ‘Teqing’ (LT-RIL) rice cultivar cross25. 
Lemont (PI 475833) is a US tropical japonica rice cultivar, while Teqing (PI 536047) is an indica cultivar from 
China, and the LT-RILs have been widely used in rice QTL mapping researches, including the study of element 
concentration in grain26, grain yield27, developmental traits28, and disease resistances29. This population has not 
been previously studied for metabolomic variation and provides a novel genetic comparison with other rice 
metabolomics studies. The LT-RIL population in our study has 280 lines, with 175 restriction fragment length 
polymorphism (RFLP) markers spanned across all 12 chromosomes.

To measure metabolite variation, we grew the LT-RIL population together with the parental lines in two inde-
pendent experiments during the fall of 2011 at the University of California Davis. Each line was planted within 
two random complete blocks within each experiment providing 4 independent replicates per line for metabolite 
analysis. Leaf samples were harvested 5 weeks after sowing and metabolites was measured using GC-TOF at the 
West Coast Metabolomics Center at UC Davis (http://metabolomics.ucdavis.edu/)30,31. This analysis detected 512 
metabolites commonly found amongst the LT-RIL including 172 metabolites that could be specifically identified 
(Supplemental Table S1). The 172 known compounds are mainly from the primary metabolism as expected uti-
lizing GC-TOF10,32,33.

Genetic impact of LT-RIL and parental variation on metabolism.  To assess the impact of genetic 
variation in the Lemont and Teqing parents and the LT-RIL on metabolite accumulation, we built linear models 
comparing the genetic and experimental variation. We first utilized a linear model to assess the metabolite varia-
tion in solely the Lemont and Teqing parents showing that only 16 of the 512 metabolites had statistical support 
for differential accumulation in Lemont versus Teqing. These 16 metabolites included 11 unknowns as well as 
valine, piceatannol, cerotinic acid, phosphate and acetophenone (P <​ 0.05) (Supplemental Table S2). In compari-
son, using the same linear model with the LT-RIL found 214 metabolites that had a significant genetic impact on 
their accumulation (P <​ 0.05). Thus, these japonica and indica parental lines have largely the same metabolomic 
profile for the detectable primary metabolism in our platform but the LT-RIL progeny expose extensive transgres-
sive segregation underlying this similarity in the parental metabolomes.

In addition to the genetic variation, we utilized the linear model to estimate the effect of the uncontrolled dif-
ferences between the two independent experiments upon the metabolite accumulation in the LT-RIL population. 

http://metabolomics.ucdavis.edu/
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This showed that 422 metabolites had a significant influence of experimental variation on their accumulation but 
this did not greatly influence the genotype effect with only 42 of the 214 metabolites that had a genotype effect 
also having a genotype x experiment interaction effect (Supplemental Fig. S1 and Supplemental Table S2). Thus, 
the majority of these metabolites genetic variation is independent of the experiment. To compare heritability with 
other rice and plant metabolite QTL experiments, we estimated broad-sense heritability within each single exper-
iment and across the combined experiments. Using the individual experiments, we found the median metabolite 
heritability of experiment 1 and experiment 2 are very similar, 0.507 and 0.513, respectively. This within experi-
mental heritability of rice metabolites is similar to comparable previous rice studies of metabolomics variation in 
LT-RIL population that did not replicate across independent experiments but is significantly higher than the her-
itability found within Arabidopsis experiments that utilized multiple experiments10,12,18. To test if this difference 
is solely due to experimental variance, we estimated the broad-sense heritability using the combined experiments 
and this showed a significant decrease in broad-sense heritability, median of 0.248 (Fig. 1). This median herita-
bility is similar to that found in Arabidopsis and other species indicating that the previously reported high herit-
ability in rice metabolomics was simply a complication of not having replicated randomized experiments10,12,18.

Metabolomic QTLs.  The average accumulation of the 512 metabolites traits in the LT-RIL were utilized 
for the following QTL mapping effort. Because there was a significant effect of experimental variation between 
experiments on the genetics controlling metabolic accumulation, we conducted the QTL mapping with the means 
of each metabolites calculated from the combined experiments, experiment 1 and experiment 2 separately. This 
allows us to assess how the differences between the experiments may alter our ability to detect loci. QTL mapping 
for all metabolites was conducted using the R/qtl package with a two-step model involving a multi-QTL model34. 
This analysis identifed1797 QTLs for 202 metabolite traits using the data from the combined experiments, 1282 
QTLs for 152 metabolite traits in experiment 1 and 1394 QTLs for 161 metabolite traits in experiment 2. In total, we 
detected QTLs for 285 of the 512 metabolites with an average of 8.5 QTLs per metabolite (Supplemental Table S3).  
The additive effects of the detected QTLs are generally small, with greater than 90% of all QTLs having less than a 
50% additive change in metabolite accumulation (Fig. 2). There is a roughly symmetric distribution on the QTL 
effects caused by the japonica and indica alleles with a slight trend towards the Lemont (japonica) allele having a 
positive effect (Fig. 2). This lack of directional bias in additive effect of the japonica versus indica allele agrees with 
the previous observation of significant transgressive variation within this population. Thus, while there is genetic 
differentiation between the two parents, this is not caused by a general directionality in how the independent 
domestication histories have shaped the general metabolomes of these japonica and indica parents.

Metabolic QTL Clusters.  To identify genomic hotspots controlling metabolomic variation in the LT-RIL, 
we plotted the QTL position of all metabolites across the rice genome using the QTLs identified in the combined 
experiment, experiment 1 and experiment 2 metabolite accumulations. This analysis identified 10, 11, and 10 
hotspots from the combined experiment, experiment 1 and 2, respectively (Permutation significance thresholds 
using P ≤​ 0.05 were 25, 19 and 20 QTL per position respectively) (Fig. 3 and Supplemental Figs 2–4). Combining 
the data from the three hot-spot surveys suggested 19 unique hotspots which we then proceeded to test against 
all metabolites using a linear model that utilized the marker closest to each hotspot peak as a factor in the model 
in combination with the experiment term. The inclusion of the experiment was used to help us assess the role of 
variation between the two experiments. This model with 19 hotspot markers and an experiment term was tested 

Figure 1.  Metabolomic Heritabilities from the Rice Lemont and Teqing LT-RIL Population. Frequency 
plots of broad sense heritabilities of the metabolites are shown. The metabolite heritabilities are measured using 
the following datasets: metabolite accumulation in the combined experiments (pink square dot), metabolite 
accumulation in only experiment 1 (orange dash line), metabolite accumulation in only experiment 2 (purple 
dash dot), and heritability of -within line CV for all metabolites (Blue solid line). In addition, the variation due 
to genotype x experiment variation per metabolite is shown (green round dot).
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against all the metabolites and the data randomized and permuted to assess if a hotspot was indeed valid10,12. This 
analysis indicated that there was only strong support for 12 of the 19 hotspots (Fig. 3, Supplemental Tables S4 
and S5).

To explicitly test if the 12 metabolomic QTL hotspots were conditional on differences between the two exper-
iments or were detected across both experiments, we changed the linear model to include a marker x experiment 
term (Supplemental Table S6). This showed that 10 of the 12 QTL hotspots have most metabolites significantly 
altered by the main effect of genotype rather than the interaction of experiment x genotype. Across these 10 loci, 
there are on average 63 metabolites significantly altered by the main effect of genotype with only 32 metabolites 
being significantly altered by the genotype x experiment interaction. In contrast, the RG140 and G193 loci were 
more dependent on genotype x experiment interactions with more metabolites altered in a genotype x experi-
ment interaction (53 and 70 metabolites respectively) than by solely genotype (49 and 68). This demonstrates that 
genotype is the main factor controlling metabolomic variation for most metabolite QTL hotspots in this set of 
experiments but that there is also a substantial influence of the genotype x experiment interaction that has not 
frequently been accounted for in rice metabolite QTL experiments.

Figure 2.  Distribution of Metabolite QTL Effect Sizes. The allelic effect for each locus for each metabolite 
was calculated by subtracting the average trait value for the lines with the Teqing genotype at a QTL from the 
average trait value for the lines with the Lemont genotype at the same QTL, then divided by the average trait 
value across all LT-RIL to standardize the allelic effect estimate. Effect sizes for QTLs found using the combined 
experiments are shown with a green round dot, metabolomics from only experiment 1 is shown with an orange 
dash line and metabolomics from only experiment 2 is shown with a purple dash dot.

Figure 3.  The Metabolite QTL Hotspots. The number of metabolite QTLs per chromosomal position is 
plotted using a 10 cM sliding window using the combined experiments. The closest marker names are provided 
for the twelve validated hotspots. The black lines on the x-axis for chromosomes 3 and 9 indicate gaps in the 
genetic maps for the LT-RIL population. The underlined markers C74a and CDO497 show the two hotspots 
potentially affecting carbon and nitrogen relationships.
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We next proceeded to visualize how the different hotspots alter the primary metabolomic network. Using 
a network illustration of primary metabolism, we plotted the additive effects of an allelic substitution between 
Lemont and Teqing for all hotspots against primary metabolism (Fig. 4 and Supplemental Figs S1 and S5–S14). 
The most striking network effects on metabolism were displayed by the C74A hotspot on chromosome 3 and 
the CDO497 hotspot on chromosome 7. Both of these loci lead to an apparent rebalancing of major metabolites 
associated with carbon and nitrogen accumulation. For the C74A hotspot, the Teqing allele leads to increased 
accumulation of nitrogen-rich amino acids, including isoleucine, homoserine, methionine, aspartic acid, lysine, 
leucine, glutamic acid, serine and phenylalanine. In contrast, the Lemont allele leads to a corresponding decrease 
in the accumulation of diverse sugars including fructose, glucose, raffinose, myo-inositol and galactinol. The 
CDO497 hotspot showed an opposite pattern where the Teqing allele was low in amino acid accumulation but 

Figure 4.  Metabolomic Consequence of Variation at Hotspots of C74A and CDO497. A map of central 
metabolism was created in Cytoscape and used to plot the estimated allele effect of genetic variation across 
primary metabolites. A red box shows increased metabolite accumulation when the line contains the Teqing 
allele while green shows increased metabolite accumulation when the line contains the Lemont allele of a QTL. 
White boxes are metabolites that were detected but not significantly influenced by the specific QTL and gray 
boxes show metabolites that were not detected. (A) Estimated allelic effects of the C74A hotspot across central 
metabolism. (B) Estimated allelic effects of the CDO497 hotspot across central metabolism.
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higher in sugars (Fig. 4 and Supplemental Table S6). The other hotspots had more dispersed effects on primary 
metabolism (Supplemental Figs S5–S14). This suggests that the C74A and CDO497 loci potentially influence the 
internal balance of carbon and nitrogen metabolites.

Pairwise Epistasis for Metabolic QTL Hotspots.  Previous work in Arabidopsis has shown that epistatic 
interactions amongst metabolomic QTLs plays a major role in controlling primary metabolomic variation but 
this has been less apparent in rice studies predominantly focused on analyzing secondary metabolite accumula-
tion6,10–12,18. Potential differences between the rice and Arabidopsis studies that could explain this discrepancy are 
the experimental design and the technical metabolomic platform. As our study utilized the same experimental 
design and technical platform as the previous Arabidopsis studies, we proceeded to test the level of epistasis 
that influences rice primary metabolism. To test the scale and the effect of epistatic interaction between the 12 
metabolomic hotspots, we used linear models to test all potential interactions between hotspots and between the 
experiment and the epistatic terms for all metabolites (Supplemental Table S7). Using our previously published 
permutation assessment of which interactions occur more than expected by random chance10, 22 of the hot-
spot epistatic interactions were identified to control accumulation for more metabolites than expected randomly 
(Fig. 5 and Supplemental Table S4). Plotting the epistatic interactions showed that the loci were highly inter-
connected with a number of the epistatic interactions being significantly altered by a three-way interaction with 
experiment (Fig. 5 and Supplemental Table S7). There were no apparent central hubs in this epistatic network as 
nearly all of the loci interacted with 2–3 other loci suggesting that the genetic control of primary metabolism in 
rice is as epistatic as that previously found for Arabidopsis. The metabolites showed a wide range of epistatic pat-
terns (Fig. 6, Supplemental Table S7). Interestingly, the two hotspot regions controlling the partitioning of carbon 
and nitrogen metabolites, C74a and CDO497 did not interact (Fig. 5). C74a interacted with RZ382, RG1094e and 
CDO118, while CDO497 interacted only with G20. This would suggest that the two underlying loci likely func-
tion to control carbon and nitrogen metabolite accumulation via separate genetic pathways.

To directly compare the level of epistasis in the Arabidopsis and rice populations, we calculated the percentage 
of variation explained by the significant pairwise epistasis between the hotspots10,12. Interestingly, this showed 
that the scale of epistasis is similar and comparable in the rice and Arabidopsis populations for primary metab-
olism (Fig. 7). This suggests that the previously reported discrepancy between the level of epistasis in rice and 
Arabidopsis is either a result of experimental design or technical platform18. Taken together, the analysis showed 
the importance of the epistatic interactions in regulating the accumulation of the plant metabolism in both wild 
dicots and domesticated monocots. The one difference between the two species is that there was no significant 
three-way epistasis in rice in contrast to Arabidopsis. This could however be caused by differences in population 
size and remains to be assessed.

QTLs for Metabolite Stochastic Variation.  Stochastic phenotypic variation within a genotype is an 
important strategy for organisms to cope with the fluctuating experimental challenges35,36. Genetic variation of 
stochastic fluctuations in phenotypes has been shown to significantly influence the genetic basis of Arabidopsis 
metabolic variation37,38. To compare the rice metabolomics to Arabidopsis, we calculated the coefficient of vari-
ance (CV) for each metabolic trait as the measurement of genotypic stochastic variation38. CV is a dimensionless 
value and readily comparable across different model systems using a similar experimental design. Using the 
same QTL mapping procedure as described above, we were able to map 89, 69 and 53 QTLs from combined 

Figure 5.  Epistatic Networks Influencing Rice Metabolic Variation. Solid lines show significant epistatic 
interactions between QTL hotspots are shown as edges linking the QTLs as nodes. QTL hotspots are named 
by the closest markers. Dashed lines show pairwise epistatic interaction between QTL hotspots is significantly 
influenced by experimental differences between the two experiments.
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experiment, experiment 1 and experiment 2 that controlled CV of specific metabolites. This showed that we iden-
tified far fewer CV QTLs per metabolite than QTLs for average metabolite accumulation (Supplemental Table S3). 
As the heritability of the CV was similar to the heritability of metabolites traits (Fig. 1), the low identification rate 
of QTL for CV in the same rice population could be potentially due CV being more polygenic39.

The rate of metabolic CV QTL identification in this rice population (average of 0.17 QTL per metabolite; 
510 metabolites) is around one tenth the rate of CV QTL identification in a previous Arabidopsis study (average 
of 1.75 QTLs per metabolite; 414 metabolites). Both populations were of similar size and grown in a similar 
experimental design suggesting that there may be biological basis of the lower prevalence of CV QTLs in rice in 
comparison to Arabidopsis. Next we plotted all the QTLs of CV and metabolite traits from combined experiment, 
experiment 1 and experiment 2 together to compare hotspots found for CV and average metabolite accumulation 
(Fig. 8). By using the same permutation approaches described above, 19 hotspots were identified for the CV QTLs 
(threshold was 4, P <​ 0.05), and only 4 of them overlapped with the 12 metabolic hotspots. This showed that like 
in Arabidopsis, the genetic landscape of the average of the metabolites and their stochastic variation measured by 
CV was distinct (Fig. 8). Thus, CV of rice metabolic traits is a separate traits from the metabolic traits themselves, 
which is in accord with previous observation in Arabidopsis38.

QTLs for Developmental Traits.  To compare the relationship between genetic variation for development 
and metabolomic QTLs across this LT-RIL population, we measured various developmental parameters in the 
same plants as used for the metabolomics. This included measuring plant height at different ontogenetic stages 
including measurements every two days from 11 days post germination to 37 days germination as well as the final 
matured plants. This provides 14 different temporally spaced measures of growth. For plant height, 32, 100 and 
15 QTLs were identified from combined experiment, experiment 1 and experiment 2 respectively (Supplemental 
Table S3). This included a locus at the previously cloned OsSPL14 locus for controlling rice plant height40. We 

Figure 6.  Epistasis Influencing Lysine and Ornithine. Boxplots showing the average ±​ SE accumulation of 
Lysine or Ornithing across tje four allelic classes for pairwise combinations of two QTL hotspots. Each allelic 
class is was represented by minimally 70 lines. Letters indicate statistically significant differences at P <​ 0.05 
using Tukey’s post-hoc test.
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also plotted all the QTLs of plant height and metabolite traits from combined experiment, experiment 1 and 
experiment 2 together for direct comparison of the loci influencing developmental and metabolic traits (Fig. 9). 
Using the permutation approaches described above, 16 hotspots were identified for plant height (threshold was 

Figure 7.  Comparison of Pairwise Epistasis between Arabidopsis and Rice Population. Frequency plots 
showing the percentage of variation explained by pairwise epistasis between metabolomic QTL hotspots from 
the rice Lemont-Teqing population (blue line), the Arabidopsis Kas-Tsu population (red dash line)12, and the 
Arabidopsis Bay-Sha Population (green round dot)10.

Figure 8.  The Distribution of QTLs for Stochastic Metabolic Variation. The number of metabolite QTLs 
per chromosomal position is plotted using a a 10 cM sliding window using the combined experiments. The red 
dashed line shows QTL hotspots for Metabolite CV while the blue solid lines shows QTLs for average metabolite 
accumulation. QTL hotspots with the name underlined are those loci where there was overlap between hotspots 
for average and CV. The short black vertical lines on chromosomes 3 and 9 indicate gaps of the genetic maps on 
these two chromosomes. The horizontal lines show the permutation threshold for significant hotspots.
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3, P ≤​ 0.05), and only 2 of them overlapped with the metabolic hotspots. Estimating the additive effects of QTLs 
for plant height showed that there was transgressive segregation with both parents supplying alleles with positive 
impacts on growth (Supplemental Fig. S15). For tiller number, both at 5 weeks and 3 months, 5, 2, and 4 QTLs 
were identified from combined experiment, experiment 1 and experiment 2 respectively (Supplemental Table S3), 
including the previously confirmed and cloned loci on controlling tiller numbers, including MOC141 and TAD142. 
The overlap of our identified tillering QTLs with previously published cloned and confirmed loci suggests that our 
measurements are reproducible=​.

To further explore the scale of the epistatic effect for the plant growth traits by the metabolite cluster markers, 
we used the same ANOVA model for metabolite traits to test the epistatic interactions of growth data. It showed 
that the variation explained by the epistatic interactions between the hotspots for the growth data (27.6 ±​ 1.1, 
Average ±​ SE of the fraction of total model variance explained by epistatic interactions) was statistically indis-
tinguishable (p =​ 0.065, t-test) to the interactions of the hotspots of metabolite data (24.7 ±​ 0.3, Average ±​ SE) 
(Supplemental Fig. S16), indicating that epistatic interactions have comparable influence on both metabolism and 
plant growth in the rice population, albeit involving different suites of loci.

Discussion
By studying a classic RIL population derived from japonica (Lemont) and indica (Teqing) in rice, we used quan-
titative genetics to work to integrate the genetic basis of phenotypic variation of rice metabolism, stochastic var-
iation and development. The vast majority of primary metabolite QTLs had small to medium size effects that 
involved epistatic interactions similar to that found in other species. The use of a RIL population derived from 
a cross between the two major rice subspecies allowed us to show that there was extensive transgressive segre-
gation for both metabolism and growth between these parents suggesting that it is possible to re-blend these 
two germplasms to create novel metabolic phenotypes. This transgressive segregation included several loci that 
may potentially affect the balance of carbon and nitrogen rich metabolites. We were also able to identify loci 
that specifically affected stochastic variation in metabolic phenotypes suggesting that it is possible to breed for 
metabolic stability separately from the average metabolite accumulation. The co-localization of the loci found in 
our study, both in primary metabolism and developmental traits, with the cloned and validated genes reinforced 
the accuracy and value of the findings in this study. Our findings also showed that discrepancies in heritability 
and epistasis with regards to previous rice research and other plant systems likely arise from differences in exper-
imental design.

Figure 9.  The Distribution of QTLs for Metabolites and Plant Height. The number of metabolite QTLs per 
chromosomal position is plotted using a 10 cM sliding window using the combined experiments. Metabolite 
QTL hotspots are shown with a solid blue line while those for plant height are shown using a line with green 
dots. QTL hotspots with the name underlined are those loci where there was overlap between hotspots for 
growth and metabolites. The short black vertical lines on chromosomes 3 and 9 indicated gaps of the genetic 
maps on these two chromosomes. The threshold of hotspot for plant height was 3 QTLs.
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It was generally believed that genetic variation and diversities of most crop plants, including rice decreased 
during the domestication process because only a few of individuals from a wild progenitor species were used for 
the human selection process causing a bottleneck43. Domestication has made clears marks on the appearance of 
the domesticated plants with larger grains, more robust plants structure, increased apical dominance and a loss of 
natural seed dispersal, also known as “domestication syndrome”44. It remains to be explored if the genetic archi-
tecture of metabolism in domesticated crops is dramatically different than that in wild species. Interestingly, the 
genetic architecture of this rice population is highly similar to that found in wild species, Arabidopsis, and other 
crops, tomato and maize. Specifically, the heritability’s are similar, most QTLs are small to moderate effect with 
large effect loci being predominantly secondary metabolites and effect distributions are symmetric. Finally, there 
is evidence of epistasis in primary metabolism. Thus, there is no direct evidence of a domestication syndrome for 
metabolism within the existing data. This raises the possibility that while domestication has significantly altered 
development in domesticated crop plants, this has not dramatically altered the architecture of genetic variation 
controlling the average primary metabolite. The one trait that did show evidence of lower variation in the domes-
ticated crop was the stochastic variation of metabolite accumulation. It remains to be tested how much these 
results are driven by differences in the evolutionary lineages of the rice and Arabidopsis progenitor’s versus how 
much is truly representing a difference in how domestication influences morphological versus metabolic traits.

Although the population structure of rice is clearly defined17,45 with japonica and indica as two major sub-
species, the effect of this on genetic variation in plant metabolism in the two subspecies is just beginning to be 
assessed via recent QTL and GWAS studies18–21. The study of rice secondary metabolism using GWAS studies 
showed that there was extensive partitioning amongst the subspecies involving large effect loci19. This study did 
not specifically assess if primary metabolism alone showed the extensive subspecies partitioning. The Lemont 
and Teqing parents showed very few metabolites that were differentially accumulating while their progeny in the 
LT-RIL population showed that this was caused by extensive transgressive in primary metabolism. Further, the 
effects of the loci were largely symmetric. Thus, these japonica and indica parents do not support an extensive 
effect of the subspecies partitioning on primary metabolism. This raises the possibility of creating new primary 
metabolic phenotypes by introgressing loci between the two subspecies, potentially the two loci that may be linked 
to controlling the partitioning of Carbon and Nitrogen such as the locus that overlaps SUSIBA2/WRKY7846–49. 
If these results are generally indicative of the japonica and indica primary metabolism, the difference between 
primary and secondary metabolism could provide hints as to what was selected upon during domestication.

Rice is one of the most important staple crop plants in the world thus serving as one of the major source in 
providing human nutrition, including carbon and nitrogen. The optimal allocation of carbon and nitrogen in rice 
metabolism would potentially contribute to the high quality and production of rice, benefit billions of people, 
especially in developing countries, and is generally believed be controlled by multiple genes50. What’s more, the 
climate changes would have complex impacts on the carbon and nitrogen status with higher temperature and 
CO2 concentration in the coming decades51. So understanding the genetic control of the carbon/nitrogen par-
tition in rice would help to address some of the most challenging problems in modern agriculture. In our study, 
we identified two hotspot regions, C74A hotspot on chromosome 3 and the CDO497 hotspot on chromosome 
7, with opposite effects on carbon (sugar) and nitrogen (amino acid) containing metabolites that may influence 
the broader Carbon/Nitrogen partitioning (Fig. 4). Interestingly, the CDO497 locus co-localizes with SUSIBA2 
(Os07g0583700), a WRKY transcription factor (WRKY78), that regulates the carbon reallocation from amylose 
to amylopectin and proved to be a promising breeding locus for optimal carbon partition46–49. The dramatic 
effects of transgenic SUSIBA2 on regulating rice primary metabolism and sink-source suggesting that this is a 
prime candidate for this locus47. In contrast, there were no known candidate genes underlying the C74A hotspot 
on chromosome 3 from our knowledge. Thus, the choice of the RIL population derived from japonica and indica 
gave us more power in detecting the metabolic QTLs underlying the genetic variation between the two subspe-
cies, and the co-location of one of the hotspots with SUSIBA2 highlights the potential value of the novel locus 
around hotspot C74, which would be worth to be further explored in the future study.

A key aim of quantitative and system biology is to bridge genetic connections between phenotypes52. Using 
our data, we were investigating if there are QTLs that co-localize for rice metabolism and growth. The landscapes 
of the mQTL and plant height QTL were distinct, and there were only two hotspots that showed co-localization 
between plant height QTLs and mQTLs (Fig. 9). This is similar to what was found when comparing QTLs for 
plant growth and metabolism in Arabidopsis. This could be interpreted as saying that the QTLs for growth and 
metabolism are different. However, further analysis of the Arabidopsis data showed that there was a connection 
between the traits that was not identifiable in the mapped QTLs. This was most likely caused by small RIL popula-
tions (<​500) having a previously unrecognized false-negative error rate in QTL detection for polygenic traits6,53. 
To fully resolve the overlap in growth and metabolomic QTLs will require the development of vastly larger QTL 
or GWAS populations than are currently available.

Summary
The large number of metabolite and growth QTLs found in this population and their transgressive nature suggests 
that there is significant potential for manipulating the rice metabolome by combining the japonica and indica 
lineages in future efforts. Critically the analysis of the metabolomic network effects of these loci showed that it 
may be potential to identify loci of interest for carbon/nitrogen partitioning. This also showed how investigating 
the metabolic network effects of loci may help to identify broader physiological consequences of these loci. It will 
be important to assess the ability of these loci to control Carbon/Nitrogen partitioning at both the whole plant 
and field level to test if they can be utilized in agronomic settings. Expanding these results will require the devel-
opment of additional populations that are larger and include reciprocal crosses.
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Methods
Growth of the Lemont × Teqing Rice RIL population.  Seeds of the 280 lines of the Lemont ×​ Teqing 
Rice recombinant inbred population together with parent lines were obtained25. The LT-RILs and the parental 
genotypes were grown in two separate experiments in the fall of 2011 within a greenhouse at the University of 
California, Davis. Within each experiment, two plants per LT-RIL line and two plants per each parental genotype 
were grown with one plant per each of two randomized complete blocks. This provides four independent repli-
cates for most of LT-RIL lines, and each of the parental genotypes. Each independent plant was grown in a 10 cm 
(length) ×​ 10 cm (width) ×​ 9 cm (height) pot filled with UC Soil Mix (1 peat moss: 1 coarse sand (v:v)). Prior to 
sowing, the seeds were imbibed in water for the 3 days. We placed approximately 3–5 seeds from each line in 
the center of a pot and thinned the plants to leave one seedling per pot one week after sowing. The plants were 
watered twice a week with nutrient water prepared by UC Davis Research Greenhouses throughout the following 
study. The fertilizer supply was based on a packaged pre-mixed material from GrowMore, Inc with continuous 
feed into the irrigation supply allowing plants to receive a small amount of fertilizer at every irrigation. The 
macronutrient ratio for nitrogen:phosphorus:potassium was 2:1:2. No boron was added to the irrigation water 
as there is sufficient boron in the potting soil and water in the facility (http://greenhouse.ucdavis.edu/research/
materials/mediafert.html).

Metabolomics analysis.  5 weeks after sowing, we harvested leaf material from each plant for metabolomics 
analysis. Briefly, for each of the randomized complete blocks, we harvested all of the samples within 2.5 hours 
surrounding the middle of the day. In a preliminary experiment with both parental genotypes and a random sam-
pling of 10 RILs, we measured the weight of each leaf disk from each genotype in eight fold replication. ANOVA 
analysis of this showed no statistical evidence for genetic variation in the weight per leaf disk across the genotypes 
suggesting that this is an acceptable approach to speed up the harvest time and decrease any temporal bias while 
introducing minimal bias from density variation (P =​ NS). Three leaf discs from the middle of the most extended 
leaf blade including the midvein of each plant were taken, placed into 2 mL centrifuge tubes, snap frozen in liquid 
nitrogen, and stored at −​70 before extraction. Metabolites were extracted as previously described data10,12. All 
metabolomic samples were run at the UC Davis Genome Center Metabolomics Facility using a GC-TOF per 
previously published protocols30,31. Metabolite identity was determined by comparing retention time and mass 
to the 2007 UC Davis Genome Center Metabolomics Facility metabolites database (http://fiehnlab.ucdavis.edu/
Metabolite-Library-2007)33. For the control sample, a bulk sample was made by mixing aliquots from all the sam-
ples into a single sample, and this control was reinjected every 20 samples as per the UC Davis Genome Center 
Metabolomics Facility protocols30. The control sample was then then used to adjust the GC-MS response signals 
to account for any drift in the sensitivity of the MS and thus minimize any influence on the data caused by tech-
nical variation30,31. The adjusted ion count values were used as a surrogate for metabolite abundance. Metabolite 
abundance was median normalized prior to analysis to account for any technical variation between samples. In 
total, replicated metabolomics data were available for 238 lines of the rice LT-RIL population together with parent 
lines. The metabolites that were robustly called in all samples were further investigated for the QTL mapping 
effort in our study.

Growth Phenotyping.  After sowing, plant height was measured every 2 days for all individuals beginning 
from Day 11 until metabolomics harvest, Day 37. Post-harvest, we allowed the population to fully mature in the 
greenhouse and plant height was measured at the end of the growth. We also counted tiller numbers in each indi-
vidual on day 37 (Tiller1), and at the end of growth (Tiller2). Means of the plant height and tiller numbers were 
used for QTL mapping.

Estimation of Heritability.  All the LT-RIL lines were represented in every block in both experiments cre-
ating a balanced randomized complete block design. Thus, we used a linear model to estimate the broad-sense 
heritability (H2) for all traits as = σ σH /2

g
2

p
2, where σg

2 was the traits genetic variance from the LT-RILs and σp
2 was 

the total phenotypic variance for a trait8. The ANOVA model (Linear heritability model) for each trait is shown in 
the Supplemental Table S3. In addition to the absolute metabolite accumulation, we also utilized the independent 
experiments to estimate the per-line CV for each metabolite as previously described38.

QTL Analysis.  QTL analysis was performed using the R/qtl package34 and the R software suite54. We applied 
a two-step methodology to identify significant QTLs. QTLs were initially identified by simple interval mapping 
using the Haley-Knott (hk) algorithm. Genome wide LOD significance thresholds were calculated by permu-
tation test (1000 repetitions) for all QTL mapping steps and approaches. The identified QTLs were further by 
fitting a multi-QTL model via multiple interval mapping and dropping one QTL at a time using the scantwo 
function. Confidence intervals were calculated as 1.5- LOD support intervals. In addition, QTL and QTL x QTL 
interactions were assessed by building stepwise models for multiple QTL using forward selection and backward 
elimination to independently identify the best QTL model for each metabolite and growth trait. For all the QTL, 
percentage of variance explained, additive effect, standard error of additive effect, lower and higher confidence 
interval markers and lower and higher confidence interval genomic position were estimated within R/QTL.

Additive ANOVA model.  To directly test the additive effect of each identified QTL hotspots, we used an 
ANOVA model containing the markers most closely associated with each of the significant QTL hotspots as indi-
vidual main effect terms together with experiment term. For each metabolite, the average accumulation in lines 
of genotype g at marker m was shown as ygm. The model (Additive Model) for each metabolite in each line (ygm) 
was: ε= µ + ∑ ∑ += =y Mgm g m

m
mg gm1

2
1 , where g =​ Lemont (1) or Teqing (2); and the main effect of the markers 

http://greenhouse.ucdavis.edu/research/materials/mediafert.html
http://greenhouse.ucdavis.edu/research/materials/mediafert.html
http://fiehnlab.ucdavis.edu/Metabolite-Library-2007
http://fiehnlab.ucdavis.edu/Metabolite-Library-2007
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was denoted as M involving 12 markers m =​ 1, …​, m. The experiment term was included as an additional factor 
to test for experimental effects. We tested all metabolites with the appropriate model implemented in the R/car 
package, which returned all P values, Type III sums-of-squares for the complete model and each main effect, and 
QTL main-effect estimates (in terms of allelic substitution values)54,55.

QTL epistasis analysis.  To test directly for epistatic interactions between the detected QTL hotspots, we 
conducted an ANOVA using the pairwise epistasis model. Within the model, we tested all possible pairwise inter-
actions between the markers near the hotspots. For each phenotype, the average value in the LT-RIL of genotype 
g at marker m was shown as ygm. The model for each metabolite in each line (ygm) was:

∑ ∑ ∑ ∑ ∑µ ε= + + += = = = = +y M M Mgm g m
m

gm g m
m

n m
m

gm gn gmn1
2

1 1
2

1 1

where g =​ Lemont (1) or Teqing (2); The main effect of the markers was denoted as M having a model involving 12 
markers m =​ 1, …​, m. and the identity and count of the second marker is represented by the Mn term. The exper-
iment term was included as an additional factor to test for interactions between the experiment and hotspots.  
P values, Type III sums-of-squares for the complete model and each individual term and QTL pairwise-effect esti-
mates in terms of allelic substitution values were obtained as described for marker model ANOVA54,55 Significance 
values were corrected for multiple testing within a model using FDR (<​0.05) in the automated script. The main 
effect and epistatic interactions of the loci in each phenotypic class were visualized using Cytoscape.v2.8.312,56.
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